Auto merge of #126108 - workingjubilee:rollup-g7m92b6, r=workingjubilee
Rollup of 7 pull requests Successful merges: - #125606 (Size optimize int formatting) - #125724 (Uplift `Relate`/`TypeRelation` into `rustc_next_trait_solver`) - #126040 (Don't warn on fields in the `unreachable_pub` lint ) - #126098 (Remove `same-lib-two-locations-no-panic` run-make test) - #126099 (Crate loader cleanups) - #126101 (Revert "Disallow ambiguous attributes on expressions" on nightly) - #126103 (Improve Docs for `hir::Impl` and `hir::ImplItem`) r? `@ghost` `@rustbot` modify labels: rollup
This commit is contained in:
commit
468310ea0c
77 changed files with 1488 additions and 1308 deletions
|
@ -28,7 +28,6 @@ rustc_hir = { path = "../rustc_hir" }
|
|||
rustc_hir_pretty = { path = "../rustc_hir_pretty" }
|
||||
rustc_index = { path = "../rustc_index" }
|
||||
rustc_macros = { path = "../rustc_macros" }
|
||||
rustc_next_trait_solver = { path = "../rustc_next_trait_solver" }
|
||||
rustc_query_system = { path = "../rustc_query_system" }
|
||||
rustc_serialize = { path = "../rustc_serialize" }
|
||||
rustc_session = { path = "../rustc_session" }
|
||||
|
|
|
@ -62,7 +62,7 @@ macro_rules! arena_types {
|
|||
[] candidate_step: rustc_middle::traits::query::CandidateStep<'tcx>,
|
||||
[] autoderef_bad_ty: rustc_middle::traits::query::MethodAutoderefBadTy<'tcx>,
|
||||
[] canonical_goal_evaluation:
|
||||
rustc_next_trait_solver::solve::inspect::CanonicalGoalEvaluationStep<
|
||||
rustc_type_ir::solve::inspect::CanonicalGoalEvaluationStep<
|
||||
rustc_middle::ty::TyCtxt<'tcx>
|
||||
>,
|
||||
[] query_region_constraints: rustc_middle::infer::canonical::QueryRegionConstraints<'tcx>,
|
||||
|
|
|
@ -32,7 +32,7 @@ use std::hash::{Hash, Hasher};
|
|||
|
||||
pub use self::select::{EvaluationCache, EvaluationResult, OverflowError, SelectionCache};
|
||||
// FIXME: Remove this import and import via `solve::`
|
||||
pub use rustc_next_trait_solver::solve::BuiltinImplSource;
|
||||
pub use rustc_type_ir::solve::BuiltinImplSource;
|
||||
|
||||
/// Depending on the stage of compilation, we want projection to be
|
||||
/// more or less conservative.
|
||||
|
|
|
@ -7,13 +7,12 @@
|
|||
|
||||
use crate::error::DropCheckOverflow;
|
||||
use crate::infer::canonical::{Canonical, QueryResponse};
|
||||
use crate::ty::error::TypeError;
|
||||
use crate::ty::GenericArg;
|
||||
use crate::ty::{self, Ty, TyCtxt};
|
||||
use rustc_macros::{HashStable, TypeFoldable, TypeVisitable};
|
||||
use rustc_span::Span;
|
||||
// FIXME: Remove this import and import via `traits::solve`.
|
||||
pub use rustc_next_trait_solver::solve::NoSolution;
|
||||
pub use rustc_type_ir::solve::NoSolution;
|
||||
|
||||
pub mod type_op {
|
||||
use crate::ty::fold::TypeFoldable;
|
||||
|
@ -91,12 +90,6 @@ pub type CanonicalTypeOpProvePredicateGoal<'tcx> =
|
|||
pub type CanonicalTypeOpNormalizeGoal<'tcx, T> =
|
||||
Canonical<'tcx, ty::ParamEnvAnd<'tcx, type_op::Normalize<T>>>;
|
||||
|
||||
impl<'tcx> From<TypeError<'tcx>> for NoSolution {
|
||||
fn from(_: TypeError<'tcx>) -> NoSolution {
|
||||
NoSolution
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default, HashStable, TypeFoldable, TypeVisitable)]
|
||||
pub struct DropckOutlivesResult<'tcx> {
|
||||
pub kinds: Vec<GenericArg<'tcx>>,
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
use rustc_ast_ir::try_visit;
|
||||
use rustc_data_structures::intern::Interned;
|
||||
use rustc_macros::{HashStable, TypeFoldable, TypeVisitable};
|
||||
use rustc_next_trait_solver as ir;
|
||||
pub use rustc_next_trait_solver::solve::*;
|
||||
use rustc_type_ir as ir;
|
||||
pub use rustc_type_ir::solve::*;
|
||||
|
||||
use crate::infer::canonical::QueryRegionConstraints;
|
||||
use crate::ty::{
|
||||
|
|
|
@ -1,119 +0,0 @@
|
|||
use crate::ty::error::TypeError;
|
||||
use crate::ty::relate::{self, Relate, RelateResult, TypeRelation};
|
||||
use crate::ty::{self, InferConst, Ty, TyCtxt};
|
||||
use tracing::{debug, instrument};
|
||||
|
||||
/// A type "A" *matches* "B" if the fresh types in B could be
|
||||
/// instantiated with values so as to make it equal to A. Matching is
|
||||
/// intended to be used only on freshened types, and it basically
|
||||
/// indicates if the non-freshened versions of A and B could have been
|
||||
/// unified.
|
||||
///
|
||||
/// It is only an approximation. If it yields false, unification would
|
||||
/// definitely fail, but a true result doesn't mean unification would
|
||||
/// succeed. This is because we don't track the "side-constraints" on
|
||||
/// type variables, nor do we track if the same freshened type appears
|
||||
/// more than once. To some extent these approximations could be
|
||||
/// fixed, given effort.
|
||||
///
|
||||
/// Like subtyping, matching is really a binary relation, so the only
|
||||
/// important thing about the result is Ok/Err. Also, matching never
|
||||
/// affects any type variables or unification state.
|
||||
pub struct MatchAgainstFreshVars<'tcx> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> MatchAgainstFreshVars<'tcx> {
|
||||
pub fn new(tcx: TyCtxt<'tcx>) -> MatchAgainstFreshVars<'tcx> {
|
||||
MatchAgainstFreshVars { tcx }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> TypeRelation<'tcx> for MatchAgainstFreshVars<'tcx> {
|
||||
fn tag(&self) -> &'static str {
|
||||
"MatchAgainstFreshVars"
|
||||
}
|
||||
|
||||
fn tcx(&self) -> TyCtxt<'tcx> {
|
||||
self.tcx
|
||||
}
|
||||
|
||||
fn relate_with_variance<T: Relate<'tcx>>(
|
||||
&mut self,
|
||||
_: ty::Variance,
|
||||
_: ty::VarianceDiagInfo<'tcx>,
|
||||
a: T,
|
||||
b: T,
|
||||
) -> RelateResult<'tcx, T> {
|
||||
self.relate(a, b)
|
||||
}
|
||||
|
||||
#[instrument(skip(self), level = "debug")]
|
||||
fn regions(
|
||||
&mut self,
|
||||
a: ty::Region<'tcx>,
|
||||
_b: ty::Region<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Region<'tcx>> {
|
||||
Ok(a)
|
||||
}
|
||||
|
||||
#[instrument(skip(self), level = "debug")]
|
||||
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
|
||||
if a == b {
|
||||
return Ok(a);
|
||||
}
|
||||
|
||||
match (a.kind(), b.kind()) {
|
||||
(
|
||||
_,
|
||||
&ty::Infer(ty::FreshTy(_))
|
||||
| &ty::Infer(ty::FreshIntTy(_))
|
||||
| &ty::Infer(ty::FreshFloatTy(_)),
|
||||
) => Ok(a),
|
||||
|
||||
(&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
|
||||
Err(TypeError::Sorts(relate::expected_found(a, b)))
|
||||
}
|
||||
|
||||
(&ty::Error(guar), _) | (_, &ty::Error(guar)) => Ok(Ty::new_error(self.tcx(), guar)),
|
||||
|
||||
_ => relate::structurally_relate_tys(self, a, b),
|
||||
}
|
||||
}
|
||||
|
||||
fn consts(
|
||||
&mut self,
|
||||
a: ty::Const<'tcx>,
|
||||
b: ty::Const<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Const<'tcx>> {
|
||||
debug!("{}.consts({:?}, {:?})", self.tag(), a, b);
|
||||
if a == b {
|
||||
return Ok(a);
|
||||
}
|
||||
|
||||
match (a.kind(), b.kind()) {
|
||||
(_, ty::ConstKind::Infer(InferConst::Fresh(_))) => {
|
||||
return Ok(a);
|
||||
}
|
||||
|
||||
(ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
|
||||
return Err(TypeError::ConstMismatch(relate::expected_found(a, b)));
|
||||
}
|
||||
|
||||
_ => {}
|
||||
}
|
||||
|
||||
relate::structurally_relate_consts(self, a, b)
|
||||
}
|
||||
|
||||
fn binders<T>(
|
||||
&mut self,
|
||||
a: ty::Binder<'tcx, T>,
|
||||
b: ty::Binder<'tcx, T>,
|
||||
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
|
||||
where
|
||||
T: Relate<'tcx>,
|
||||
{
|
||||
Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
|
||||
}
|
||||
}
|
|
@ -200,6 +200,12 @@ impl<'tcx> AdtDef<'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'tcx> rustc_type_ir::inherent::AdtDef<TyCtxt<'tcx>> for AdtDef<'tcx> {
|
||||
fn def_id(self) -> DefId {
|
||||
self.did()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq, HashStable, TyEncodable, TyDecodable)]
|
||||
pub enum AdtKind {
|
||||
Struct,
|
||||
|
|
|
@ -149,6 +149,10 @@ impl<'tcx> Const<'tcx> {
|
|||
}
|
||||
|
||||
impl<'tcx> rustc_type_ir::inherent::Const<TyCtxt<'tcx>> for Const<'tcx> {
|
||||
fn try_to_target_usize(self, interner: TyCtxt<'tcx>) -> Option<u64> {
|
||||
self.try_to_target_usize(interner)
|
||||
}
|
||||
|
||||
fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferConst) -> Self {
|
||||
Const::new_infer(tcx, infer)
|
||||
}
|
||||
|
@ -168,6 +172,10 @@ impl<'tcx> rustc_type_ir::inherent::Const<TyCtxt<'tcx>> for Const<'tcx> {
|
|||
fn new_unevaluated(interner: TyCtxt<'tcx>, uv: ty::UnevaluatedConst<'tcx>) -> Self {
|
||||
Const::new_unevaluated(interner, uv)
|
||||
}
|
||||
|
||||
fn new_expr(interner: TyCtxt<'tcx>, expr: ty::Expr<'tcx>) -> Self {
|
||||
Const::new_expr(interner, expr)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Const<'tcx> {
|
||||
|
|
|
@ -69,6 +69,7 @@ use rustc_span::symbol::{kw, sym, Ident, Symbol};
|
|||
use rustc_span::{Span, DUMMY_SP};
|
||||
use rustc_target::abi::{FieldIdx, Layout, LayoutS, TargetDataLayout, VariantIdx};
|
||||
use rustc_target::spec::abi;
|
||||
use rustc_type_ir::fold::TypeFoldable;
|
||||
use rustc_type_ir::TyKind::*;
|
||||
use rustc_type_ir::WithCachedTypeInfo;
|
||||
use rustc_type_ir::{CollectAndApply, Interner, TypeFlags};
|
||||
|
@ -135,9 +136,12 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
|
|||
type ParamEnv = ty::ParamEnv<'tcx>;
|
||||
type Predicate = Predicate<'tcx>;
|
||||
type Clause = Clause<'tcx>;
|
||||
|
||||
type Clauses = ty::Clauses<'tcx>;
|
||||
|
||||
fn expand_abstract_consts<T: TypeFoldable<TyCtxt<'tcx>>>(self, t: T) -> T {
|
||||
self.expand_abstract_consts(t)
|
||||
}
|
||||
|
||||
fn mk_canonical_var_infos(self, infos: &[ty::CanonicalVarInfo<Self>]) -> Self::CanonicalVars {
|
||||
self.mk_canonical_var_infos(infos)
|
||||
}
|
||||
|
@ -148,6 +152,12 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
|
|||
self.generics_of(def_id)
|
||||
}
|
||||
|
||||
type VariancesOf = &'tcx [ty::Variance];
|
||||
|
||||
fn variances_of(self, def_id: Self::DefId) -> Self::VariancesOf {
|
||||
self.variances_of(def_id)
|
||||
}
|
||||
|
||||
fn type_of(self, def_id: DefId) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
|
||||
self.type_of(def_id)
|
||||
}
|
||||
|
@ -205,7 +215,11 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
|
|||
self.mk_args(args)
|
||||
}
|
||||
|
||||
fn mk_args_from_iter(self, args: impl Iterator<Item = Self::GenericArg>) -> Self::GenericArgs {
|
||||
fn mk_args_from_iter<I, T>(self, args: I) -> T::Output
|
||||
where
|
||||
I: Iterator<Item = T>,
|
||||
T: CollectAndApply<Self::GenericArg, Self::GenericArgs>,
|
||||
{
|
||||
self.mk_args_from_iter(args)
|
||||
}
|
||||
|
||||
|
@ -224,6 +238,14 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
|
|||
self.arena.alloc(step)
|
||||
}
|
||||
|
||||
fn mk_type_list_from_iter<I, T>(self, args: I) -> T::Output
|
||||
where
|
||||
I: Iterator<Item = T>,
|
||||
T: CollectAndApply<Self::Ty, Self::Tys>,
|
||||
{
|
||||
self.mk_type_list_from_iter(args)
|
||||
}
|
||||
|
||||
fn parent(self, def_id: Self::DefId) -> Self::DefId {
|
||||
self.parent(def_id)
|
||||
}
|
||||
|
@ -231,6 +253,12 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
|
|||
fn recursion_limit(self) -> usize {
|
||||
self.recursion_limit().0
|
||||
}
|
||||
|
||||
type Features = &'tcx rustc_feature::Features;
|
||||
|
||||
fn features(self) -> Self::Features {
|
||||
self.features()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> rustc_type_ir::inherent::Abi<TyCtxt<'tcx>> for abi::Abi {
|
||||
|
@ -249,6 +277,12 @@ impl<'tcx> rustc_type_ir::inherent::Safety<TyCtxt<'tcx>> for hir::Safety {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'tcx> rustc_type_ir::inherent::Features<TyCtxt<'tcx>> for &'tcx rustc_feature::Features {
|
||||
fn generic_const_exprs(self) -> bool {
|
||||
self.generic_const_exprs
|
||||
}
|
||||
}
|
||||
|
||||
type InternedSet<'tcx, T> = ShardedHashMap<InternedInSet<'tcx, T>, ()>;
|
||||
|
||||
pub struct CtxtInterners<'tcx> {
|
||||
|
|
|
@ -1,89 +1,26 @@
|
|||
use crate::ty::print::{with_forced_trimmed_paths, FmtPrinter, PrettyPrinter};
|
||||
use crate::ty::{self, BoundRegionKind, Region, Ty, TyCtxt};
|
||||
use crate::ty::{self, Ty, TyCtxt};
|
||||
|
||||
use rustc_errors::pluralize;
|
||||
use rustc_hir as hir;
|
||||
use rustc_hir::def::{CtorOf, DefKind};
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_macros::{TypeFoldable, TypeVisitable};
|
||||
use rustc_span::symbol::Symbol;
|
||||
use rustc_target::spec::abi;
|
||||
use rustc_macros::extension;
|
||||
pub use rustc_type_ir::error::ExpectedFound;
|
||||
|
||||
use std::borrow::Cow;
|
||||
use std::hash::{DefaultHasher, Hash, Hasher};
|
||||
use std::path::PathBuf;
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
|
||||
pub struct ExpectedFound<T> {
|
||||
pub expected: T,
|
||||
pub found: T,
|
||||
}
|
||||
pub type TypeError<'tcx> = rustc_type_ir::error::TypeError<TyCtxt<'tcx>>;
|
||||
|
||||
impl<T> ExpectedFound<T> {
|
||||
pub fn new(a_is_expected: bool, a: T, b: T) -> Self {
|
||||
if a_is_expected {
|
||||
ExpectedFound { expected: a, found: b }
|
||||
} else {
|
||||
ExpectedFound { expected: b, found: a }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Data structures used in type unification
|
||||
#[derive(Copy, Clone, Debug, TypeVisitable, PartialEq, Eq)]
|
||||
#[rustc_pass_by_value]
|
||||
pub enum TypeError<'tcx> {
|
||||
Mismatch,
|
||||
ConstnessMismatch(ExpectedFound<ty::BoundConstness>),
|
||||
PolarityMismatch(ExpectedFound<ty::PredicatePolarity>),
|
||||
SafetyMismatch(ExpectedFound<hir::Safety>),
|
||||
AbiMismatch(ExpectedFound<abi::Abi>),
|
||||
Mutability,
|
||||
ArgumentMutability(usize),
|
||||
TupleSize(ExpectedFound<usize>),
|
||||
FixedArraySize(ExpectedFound<u64>),
|
||||
ArgCount,
|
||||
FieldMisMatch(Symbol, Symbol),
|
||||
|
||||
RegionsDoesNotOutlive(Region<'tcx>, Region<'tcx>),
|
||||
RegionsInsufficientlyPolymorphic(BoundRegionKind, Region<'tcx>),
|
||||
RegionsPlaceholderMismatch,
|
||||
|
||||
Sorts(ExpectedFound<Ty<'tcx>>),
|
||||
ArgumentSorts(ExpectedFound<Ty<'tcx>>, usize),
|
||||
Traits(ExpectedFound<DefId>),
|
||||
VariadicMismatch(ExpectedFound<bool>),
|
||||
|
||||
/// Instantiating a type variable with the given type would have
|
||||
/// created a cycle (because it appears somewhere within that
|
||||
/// type).
|
||||
CyclicTy(Ty<'tcx>),
|
||||
CyclicConst(ty::Const<'tcx>),
|
||||
ProjectionMismatched(ExpectedFound<DefId>),
|
||||
ExistentialMismatch(ExpectedFound<&'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>>),
|
||||
ConstMismatch(ExpectedFound<ty::Const<'tcx>>),
|
||||
|
||||
IntrinsicCast,
|
||||
/// Safe `#[target_feature]` functions are not assignable to safe function pointers.
|
||||
TargetFeatureCast(DefId),
|
||||
}
|
||||
|
||||
impl TypeError<'_> {
|
||||
pub fn involves_regions(self) -> bool {
|
||||
match self {
|
||||
TypeError::RegionsDoesNotOutlive(_, _)
|
||||
| TypeError::RegionsInsufficientlyPolymorphic(_, _)
|
||||
| TypeError::RegionsPlaceholderMismatch => true,
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Explains the source of a type err in a short, human readable way. This is meant to be placed
|
||||
/// in parentheses after some larger message. You should also invoke `note_and_explain_type_err()`
|
||||
/// afterwards to present additional details, particularly when it comes to lifetime-related
|
||||
/// errors.
|
||||
/// Explains the source of a type err in a short, human readable way.
|
||||
/// This is meant to be placed in parentheses after some larger message.
|
||||
/// You should also invoke `note_and_explain_type_err()` afterwards
|
||||
/// to present additional details, particularly when it comes to lifetime-
|
||||
/// related errors.
|
||||
#[extension(pub trait TypeErrorToStringExt<'tcx>)]
|
||||
impl<'tcx> TypeError<'tcx> {
|
||||
pub fn to_string(self, tcx: TyCtxt<'tcx>) -> Cow<'static, str> {
|
||||
use self::TypeError::*;
|
||||
fn to_string(self, tcx: TyCtxt<'tcx>) -> Cow<'static, str> {
|
||||
fn report_maybe_different(expected: &str, found: &str) -> String {
|
||||
// A naive approach to making sure that we're not reporting silly errors such as:
|
||||
// (expected closure, found closure).
|
||||
|
@ -95,24 +32,26 @@ impl<'tcx> TypeError<'tcx> {
|
|||
}
|
||||
|
||||
match self {
|
||||
CyclicTy(_) => "cyclic type of infinite size".into(),
|
||||
CyclicConst(_) => "encountered a self-referencing constant".into(),
|
||||
Mismatch => "types differ".into(),
|
||||
ConstnessMismatch(values) => {
|
||||
TypeError::CyclicTy(_) => "cyclic type of infinite size".into(),
|
||||
TypeError::CyclicConst(_) => "encountered a self-referencing constant".into(),
|
||||
TypeError::Mismatch => "types differ".into(),
|
||||
TypeError::ConstnessMismatch(values) => {
|
||||
format!("expected {} bound, found {} bound", values.expected, values.found).into()
|
||||
}
|
||||
PolarityMismatch(values) => {
|
||||
TypeError::PolarityMismatch(values) => {
|
||||
format!("expected {} polarity, found {} polarity", values.expected, values.found)
|
||||
.into()
|
||||
}
|
||||
SafetyMismatch(values) => {
|
||||
TypeError::SafetyMismatch(values) => {
|
||||
format!("expected {} fn, found {} fn", values.expected, values.found).into()
|
||||
}
|
||||
AbiMismatch(values) => {
|
||||
TypeError::AbiMismatch(values) => {
|
||||
format!("expected {} fn, found {} fn", values.expected, values.found).into()
|
||||
}
|
||||
ArgumentMutability(_) | Mutability => "types differ in mutability".into(),
|
||||
TupleSize(values) => format!(
|
||||
TypeError::ArgumentMutability(_) | TypeError::Mutability => {
|
||||
"types differ in mutability".into()
|
||||
}
|
||||
TypeError::TupleSize(values) => format!(
|
||||
"expected a tuple with {} element{}, found one with {} element{}",
|
||||
values.expected,
|
||||
pluralize!(values.expected),
|
||||
|
@ -120,7 +59,7 @@ impl<'tcx> TypeError<'tcx> {
|
|||
pluralize!(values.found)
|
||||
)
|
||||
.into(),
|
||||
FixedArraySize(values) => format!(
|
||||
TypeError::FixedArraySize(values) => format!(
|
||||
"expected an array with a fixed size of {} element{}, found one with {} element{}",
|
||||
values.expected,
|
||||
pluralize!(values.expected),
|
||||
|
@ -128,20 +67,21 @@ impl<'tcx> TypeError<'tcx> {
|
|||
pluralize!(values.found)
|
||||
)
|
||||
.into(),
|
||||
ArgCount => "incorrect number of function parameters".into(),
|
||||
FieldMisMatch(adt, field) => format!("field type mismatch: {adt}.{field}").into(),
|
||||
RegionsDoesNotOutlive(..) => "lifetime mismatch".into(),
|
||||
TypeError::ArgCount => "incorrect number of function parameters".into(),
|
||||
TypeError::RegionsDoesNotOutlive(..) => "lifetime mismatch".into(),
|
||||
// Actually naming the region here is a bit confusing because context is lacking
|
||||
RegionsInsufficientlyPolymorphic(..) => {
|
||||
TypeError::RegionsInsufficientlyPolymorphic(..) => {
|
||||
"one type is more general than the other".into()
|
||||
}
|
||||
RegionsPlaceholderMismatch => "one type is more general than the other".into(),
|
||||
ArgumentSorts(values, _) | Sorts(values) => {
|
||||
TypeError::RegionsPlaceholderMismatch => {
|
||||
"one type is more general than the other".into()
|
||||
}
|
||||
TypeError::ArgumentSorts(values, _) | TypeError::Sorts(values) => {
|
||||
let expected = values.expected.sort_string(tcx);
|
||||
let found = values.found.sort_string(tcx);
|
||||
report_maybe_different(&expected, &found).into()
|
||||
}
|
||||
Traits(values) => {
|
||||
TypeError::Traits(values) => {
|
||||
let (mut expected, mut found) = with_forced_trimmed_paths!((
|
||||
tcx.def_path_str(values.expected),
|
||||
tcx.def_path_str(values.found),
|
||||
|
@ -153,59 +93,34 @@ impl<'tcx> TypeError<'tcx> {
|
|||
report_maybe_different(&format!("trait `{expected}`"), &format!("trait `{found}`"))
|
||||
.into()
|
||||
}
|
||||
VariadicMismatch(ref values) => format!(
|
||||
TypeError::VariadicMismatch(ref values) => format!(
|
||||
"expected {} fn, found {} function",
|
||||
if values.expected { "variadic" } else { "non-variadic" },
|
||||
if values.found { "variadic" } else { "non-variadic" }
|
||||
)
|
||||
.into(),
|
||||
ProjectionMismatched(ref values) => format!(
|
||||
TypeError::ProjectionMismatched(ref values) => format!(
|
||||
"expected `{}`, found `{}`",
|
||||
tcx.def_path_str(values.expected),
|
||||
tcx.def_path_str(values.found)
|
||||
)
|
||||
.into(),
|
||||
ExistentialMismatch(ref values) => report_maybe_different(
|
||||
TypeError::ExistentialMismatch(ref values) => report_maybe_different(
|
||||
&format!("trait `{}`", values.expected),
|
||||
&format!("trait `{}`", values.found),
|
||||
)
|
||||
.into(),
|
||||
ConstMismatch(ref values) => {
|
||||
TypeError::ConstMismatch(ref values) => {
|
||||
format!("expected `{}`, found `{}`", values.expected, values.found).into()
|
||||
}
|
||||
IntrinsicCast => "cannot coerce intrinsics to function pointers".into(),
|
||||
TargetFeatureCast(_) => {
|
||||
TypeError::IntrinsicCast => "cannot coerce intrinsics to function pointers".into(),
|
||||
TypeError::TargetFeatureCast(_) => {
|
||||
"cannot coerce functions with `#[target_feature]` to safe function pointers".into()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> TypeError<'tcx> {
|
||||
pub fn must_include_note(self) -> bool {
|
||||
use self::TypeError::*;
|
||||
match self {
|
||||
CyclicTy(_) | CyclicConst(_) | SafetyMismatch(_) | ConstnessMismatch(_)
|
||||
| PolarityMismatch(_) | Mismatch | AbiMismatch(_) | FixedArraySize(_)
|
||||
| ArgumentSorts(..) | Sorts(_) | VariadicMismatch(_) | TargetFeatureCast(_) => false,
|
||||
|
||||
Mutability
|
||||
| ArgumentMutability(_)
|
||||
| TupleSize(_)
|
||||
| ArgCount
|
||||
| FieldMisMatch(..)
|
||||
| RegionsDoesNotOutlive(..)
|
||||
| RegionsInsufficientlyPolymorphic(..)
|
||||
| RegionsPlaceholderMismatch
|
||||
| Traits(_)
|
||||
| ProjectionMismatched(_)
|
||||
| ExistentialMismatch(_)
|
||||
| ConstMismatch(_)
|
||||
| IntrinsicCast => true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Ty<'tcx> {
|
||||
pub fn sort_string(self, tcx: TyCtxt<'tcx>) -> Cow<'static, str> {
|
||||
match *self.kind() {
|
||||
|
|
|
@ -60,6 +60,7 @@ use rustc_span::symbol::{kw, sym, Ident, Symbol};
|
|||
use rustc_span::{ExpnId, ExpnKind, Span};
|
||||
use rustc_target::abi::{Align, FieldIdx, Integer, IntegerType, VariantIdx};
|
||||
pub use rustc_target::abi::{ReprFlags, ReprOptions};
|
||||
pub use rustc_type_ir::relate::VarianceDiagInfo;
|
||||
pub use rustc_type_ir::{DebugWithInfcx, InferCtxtLike, WithInfcx};
|
||||
use tracing::{debug, instrument};
|
||||
pub use vtable::*;
|
||||
|
@ -114,7 +115,7 @@ pub use self::rvalue_scopes::RvalueScopes;
|
|||
pub use self::sty::{
|
||||
AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
|
||||
CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst,
|
||||
ParamTy, PolyFnSig, TyKind, TypeAndMut, UpvarArgs, VarianceDiagInfo,
|
||||
ParamTy, PolyFnSig, TyKind, TypeAndMut, UpvarArgs,
|
||||
};
|
||||
pub use self::trait_def::TraitDef;
|
||||
pub use self::typeck_results::{
|
||||
|
@ -122,7 +123,6 @@ pub use self::typeck_results::{
|
|||
TypeckResults, UserType, UserTypeAnnotationIndex,
|
||||
};
|
||||
|
||||
pub mod _match;
|
||||
pub mod abstract_const;
|
||||
pub mod adjustment;
|
||||
pub mod cast;
|
||||
|
@ -313,38 +313,6 @@ impl Visibility {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
|
||||
pub enum BoundConstness {
|
||||
/// `Type: Trait`
|
||||
NotConst,
|
||||
/// `Type: const Trait`
|
||||
Const,
|
||||
/// `Type: ~const Trait`
|
||||
///
|
||||
/// Requires resolving to const only when we are in a const context.
|
||||
ConstIfConst,
|
||||
}
|
||||
|
||||
impl BoundConstness {
|
||||
pub fn as_str(self) -> &'static str {
|
||||
match self {
|
||||
Self::NotConst => "",
|
||||
Self::Const => "const",
|
||||
Self::ConstIfConst => "~const",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for BoundConstness {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
match self {
|
||||
Self::NotConst => f.write_str("normal"),
|
||||
Self::Const => f.write_str("const"),
|
||||
Self::ConstIfConst => f.write_str("~const"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
|
||||
#[derive(TypeFoldable, TypeVisitable)]
|
||||
pub struct ClosureSizeProfileData<'tcx> {
|
||||
|
|
|
@ -1,383 +1,54 @@
|
|||
//! Generalized type relating mechanism.
|
||||
//!
|
||||
//! A type relation `R` relates a pair of values `(A, B)`. `A and B` are usually
|
||||
//! types or regions but can be other things. Examples of type relations are
|
||||
//! subtyping, type equality, etc.
|
||||
use std::iter;
|
||||
|
||||
use rustc_hir as hir;
|
||||
use rustc_target::spec::abi;
|
||||
pub use rustc_type_ir::relate::*;
|
||||
|
||||
use crate::ty::error::{ExpectedFound, TypeError};
|
||||
use crate::ty::{
|
||||
self, ExistentialPredicate, ExistentialPredicateStableCmpExt as _, GenericArg, GenericArgKind,
|
||||
GenericArgsRef, ImplSubject, Term, TermKind, Ty, TyCtxt, TypeFoldable,
|
||||
};
|
||||
use rustc_hir as hir;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_macros::TypeVisitable;
|
||||
use rustc_target::spec::abi;
|
||||
use std::iter;
|
||||
use tracing::{debug, instrument};
|
||||
use crate::ty::predicate::ExistentialPredicateStableCmpExt as _;
|
||||
use crate::ty::{self as ty, Ty, TyCtxt};
|
||||
|
||||
use super::Pattern;
|
||||
pub type RelateResult<'tcx, T> = rustc_type_ir::relate::RelateResult<TyCtxt<'tcx>, T>;
|
||||
|
||||
pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
|
||||
|
||||
pub trait TypeRelation<'tcx>: Sized {
|
||||
fn tcx(&self) -> TyCtxt<'tcx>;
|
||||
|
||||
/// Returns a static string we can use for printouts.
|
||||
fn tag(&self) -> &'static str;
|
||||
|
||||
/// Generic relation routine suitable for most anything.
|
||||
fn relate<T: Relate<'tcx>>(&mut self, a: T, b: T) -> RelateResult<'tcx, T> {
|
||||
Relate::relate(self, a, b)
|
||||
}
|
||||
|
||||
/// Relate the two args for the given item. The default
|
||||
/// is to look up the variance for the item and proceed
|
||||
/// accordingly.
|
||||
fn relate_item_args(
|
||||
&mut self,
|
||||
item_def_id: DefId,
|
||||
a_arg: GenericArgsRef<'tcx>,
|
||||
b_arg: GenericArgsRef<'tcx>,
|
||||
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
|
||||
debug!(
|
||||
"relate_item_args(item_def_id={:?}, a_arg={:?}, b_arg={:?})",
|
||||
item_def_id, a_arg, b_arg
|
||||
);
|
||||
|
||||
let tcx = self.tcx();
|
||||
let opt_variances = tcx.variances_of(item_def_id);
|
||||
relate_args_with_variances(self, item_def_id, opt_variances, a_arg, b_arg, true)
|
||||
}
|
||||
|
||||
/// Switch variance for the purpose of relating `a` and `b`.
|
||||
fn relate_with_variance<T: Relate<'tcx>>(
|
||||
&mut self,
|
||||
variance: ty::Variance,
|
||||
info: ty::VarianceDiagInfo<'tcx>,
|
||||
a: T,
|
||||
b: T,
|
||||
) -> RelateResult<'tcx, T>;
|
||||
|
||||
// Overridable relations. You shouldn't typically call these
|
||||
// directly, instead call `relate()`, which in turn calls
|
||||
// these. This is both more uniform but also allows us to add
|
||||
// additional hooks for other types in the future if needed
|
||||
// without making older code, which called `relate`, obsolete.
|
||||
|
||||
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>;
|
||||
|
||||
fn regions(
|
||||
&mut self,
|
||||
a: ty::Region<'tcx>,
|
||||
b: ty::Region<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Region<'tcx>>;
|
||||
|
||||
fn consts(
|
||||
&mut self,
|
||||
a: ty::Const<'tcx>,
|
||||
b: ty::Const<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Const<'tcx>>;
|
||||
|
||||
fn binders<T>(
|
||||
&mut self,
|
||||
a: ty::Binder<'tcx, T>,
|
||||
b: ty::Binder<'tcx, T>,
|
||||
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
|
||||
where
|
||||
T: Relate<'tcx>;
|
||||
/// Whether aliases should be related structurally or not. Used
|
||||
/// to adjust the behavior of generalization and combine.
|
||||
///
|
||||
/// This should always be `No` unless in a few special-cases when
|
||||
/// instantiating canonical responses and in the new solver. Each
|
||||
/// such case should have a comment explaining why it is used.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub enum StructurallyRelateAliases {
|
||||
Yes,
|
||||
No,
|
||||
}
|
||||
|
||||
pub trait Relate<'tcx>: TypeFoldable<TyCtxt<'tcx>> + PartialEq + Copy {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: Self,
|
||||
b: Self,
|
||||
) -> RelateResult<'tcx, Self>;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Relate impls
|
||||
|
||||
#[inline]
|
||||
pub fn relate_args_invariantly<'tcx, R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a_arg: GenericArgsRef<'tcx>,
|
||||
b_arg: GenericArgsRef<'tcx>,
|
||||
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
|
||||
relation.tcx().mk_args_from_iter(iter::zip(a_arg, b_arg).map(|(a, b)| {
|
||||
relation.relate_with_variance(ty::Invariant, ty::VarianceDiagInfo::default(), a, b)
|
||||
}))
|
||||
}
|
||||
|
||||
pub fn relate_args_with_variances<'tcx, R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
ty_def_id: DefId,
|
||||
variances: &[ty::Variance],
|
||||
a_arg: GenericArgsRef<'tcx>,
|
||||
b_arg: GenericArgsRef<'tcx>,
|
||||
fetch_ty_for_diag: bool,
|
||||
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
|
||||
let tcx = relation.tcx();
|
||||
|
||||
let mut cached_ty = None;
|
||||
let params = iter::zip(a_arg, b_arg).enumerate().map(|(i, (a, b))| {
|
||||
let variance = variances[i];
|
||||
let variance_info = if variance == ty::Invariant && fetch_ty_for_diag {
|
||||
let ty =
|
||||
*cached_ty.get_or_insert_with(|| tcx.type_of(ty_def_id).instantiate(tcx, a_arg));
|
||||
ty::VarianceDiagInfo::Invariant { ty, param_index: i.try_into().unwrap() }
|
||||
} else {
|
||||
ty::VarianceDiagInfo::default()
|
||||
};
|
||||
relation.relate_with_variance(variance, variance_info, a, b)
|
||||
});
|
||||
|
||||
tcx.mk_args_from_iter(params)
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::FnSig<'tcx>,
|
||||
b: ty::FnSig<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::FnSig<'tcx>> {
|
||||
let tcx = relation.tcx();
|
||||
|
||||
if a.c_variadic != b.c_variadic {
|
||||
return Err(TypeError::VariadicMismatch(expected_found(a.c_variadic, b.c_variadic)));
|
||||
}
|
||||
let safety = relation.relate(a.safety, b.safety)?;
|
||||
let abi = relation.relate(a.abi, b.abi)?;
|
||||
|
||||
if a.inputs().len() != b.inputs().len() {
|
||||
return Err(TypeError::ArgCount);
|
||||
}
|
||||
|
||||
let inputs_and_output = iter::zip(a.inputs(), b.inputs())
|
||||
.map(|(&a, &b)| ((a, b), false))
|
||||
.chain(iter::once(((a.output(), b.output()), true)))
|
||||
.map(|((a, b), is_output)| {
|
||||
if is_output {
|
||||
relation.relate(a, b)
|
||||
} else {
|
||||
relation.relate_with_variance(
|
||||
ty::Contravariant,
|
||||
ty::VarianceDiagInfo::default(),
|
||||
a,
|
||||
b,
|
||||
)
|
||||
}
|
||||
})
|
||||
.enumerate()
|
||||
.map(|(i, r)| match r {
|
||||
Err(TypeError::Sorts(exp_found) | TypeError::ArgumentSorts(exp_found, _)) => {
|
||||
Err(TypeError::ArgumentSorts(exp_found, i))
|
||||
}
|
||||
Err(TypeError::Mutability | TypeError::ArgumentMutability(_)) => {
|
||||
Err(TypeError::ArgumentMutability(i))
|
||||
}
|
||||
r => r,
|
||||
});
|
||||
Ok(ty::FnSig {
|
||||
inputs_and_output: tcx.mk_type_list_from_iter(inputs_and_output)?,
|
||||
c_variadic: a.c_variadic,
|
||||
safety,
|
||||
abi,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::BoundConstness {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
_relation: &mut R,
|
||||
a: ty::BoundConstness,
|
||||
b: ty::BoundConstness,
|
||||
) -> RelateResult<'tcx, ty::BoundConstness> {
|
||||
if a != b { Err(TypeError::ConstnessMismatch(expected_found(a, b))) } else { Ok(a) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for hir::Safety {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
_relation: &mut R,
|
||||
a: hir::Safety,
|
||||
b: hir::Safety,
|
||||
) -> RelateResult<'tcx, hir::Safety> {
|
||||
if a != b { Err(TypeError::SafetyMismatch(expected_found(a, b))) } else { Ok(a) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for abi::Abi {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
_relation: &mut R,
|
||||
a: abi::Abi,
|
||||
b: abi::Abi,
|
||||
) -> RelateResult<'tcx, abi::Abi> {
|
||||
if a == b { Ok(a) } else { Err(TypeError::AbiMismatch(expected_found(a, b))) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::AliasTy<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::AliasTy<'tcx>,
|
||||
b: ty::AliasTy<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::AliasTy<'tcx>> {
|
||||
if a.def_id != b.def_id {
|
||||
Err(TypeError::ProjectionMismatched(expected_found(a.def_id, b.def_id)))
|
||||
} else {
|
||||
let args = match a.kind(relation.tcx()) {
|
||||
ty::Opaque => relate_args_with_variances(
|
||||
relation,
|
||||
a.def_id,
|
||||
relation.tcx().variances_of(a.def_id),
|
||||
a.args,
|
||||
b.args,
|
||||
false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
|
||||
)?,
|
||||
ty::Projection | ty::Weak | ty::Inherent => {
|
||||
relate_args_invariantly(relation, a.args, b.args)?
|
||||
}
|
||||
};
|
||||
Ok(ty::AliasTy::new(relation.tcx(), a.def_id, args))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::AliasTerm<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::AliasTerm<'tcx>,
|
||||
b: ty::AliasTerm<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::AliasTerm<'tcx>> {
|
||||
if a.def_id != b.def_id {
|
||||
Err(TypeError::ProjectionMismatched(expected_found(a.def_id, b.def_id)))
|
||||
} else {
|
||||
let args = match a.kind(relation.tcx()) {
|
||||
ty::AliasTermKind::OpaqueTy => relate_args_with_variances(
|
||||
relation,
|
||||
a.def_id,
|
||||
relation.tcx().variances_of(a.def_id),
|
||||
a.args,
|
||||
b.args,
|
||||
false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
|
||||
)?,
|
||||
ty::AliasTermKind::ProjectionTy
|
||||
| ty::AliasTermKind::WeakTy
|
||||
| ty::AliasTermKind::InherentTy
|
||||
| ty::AliasTermKind::UnevaluatedConst
|
||||
| ty::AliasTermKind::ProjectionConst => {
|
||||
relate_args_invariantly(relation, a.args, b.args)?
|
||||
}
|
||||
};
|
||||
Ok(ty::AliasTerm::new(relation.tcx(), a.def_id, args))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::ExistentialProjection<'tcx>,
|
||||
b: ty::ExistentialProjection<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::ExistentialProjection<'tcx>> {
|
||||
if a.def_id != b.def_id {
|
||||
Err(TypeError::ProjectionMismatched(expected_found(a.def_id, b.def_id)))
|
||||
} else {
|
||||
let term = relation.relate_with_variance(
|
||||
ty::Invariant,
|
||||
ty::VarianceDiagInfo::default(),
|
||||
a.term,
|
||||
b.term,
|
||||
)?;
|
||||
let args = relation.relate_with_variance(
|
||||
ty::Invariant,
|
||||
ty::VarianceDiagInfo::default(),
|
||||
a.args,
|
||||
b.args,
|
||||
)?;
|
||||
Ok(ty::ExistentialProjection { def_id: a.def_id, args, term })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::TraitRef<'tcx>,
|
||||
b: ty::TraitRef<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::TraitRef<'tcx>> {
|
||||
// Different traits cannot be related.
|
||||
if a.def_id != b.def_id {
|
||||
Err(TypeError::Traits(expected_found(a.def_id, b.def_id)))
|
||||
} else {
|
||||
let args = relate_args_invariantly(relation, a.args, b.args)?;
|
||||
Ok(ty::TraitRef::new(relation.tcx(), a.def_id, args))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::ExistentialTraitRef<'tcx>,
|
||||
b: ty::ExistentialTraitRef<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>> {
|
||||
// Different traits cannot be related.
|
||||
if a.def_id != b.def_id {
|
||||
Err(TypeError::Traits(expected_found(a.def_id, b.def_id)))
|
||||
} else {
|
||||
let args = relate_args_invariantly(relation, a.args, b.args)?;
|
||||
Ok(ty::ExistentialTraitRef { def_id: a.def_id, args })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Copy, Debug, Clone, TypeFoldable, TypeVisitable)]
|
||||
struct CoroutineWitness<'tcx>(&'tcx ty::List<Ty<'tcx>>);
|
||||
|
||||
impl<'tcx> Relate<'tcx> for CoroutineWitness<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: CoroutineWitness<'tcx>,
|
||||
b: CoroutineWitness<'tcx>,
|
||||
) -> RelateResult<'tcx, CoroutineWitness<'tcx>> {
|
||||
assert_eq!(a.0.len(), b.0.len());
|
||||
let tcx = relation.tcx();
|
||||
let types =
|
||||
tcx.mk_type_list_from_iter(iter::zip(a.0, b.0).map(|(a, b)| relation.relate(a, b)))?;
|
||||
Ok(CoroutineWitness(types))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ImplSubject<'tcx> {
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::ImplSubject<'tcx> {
|
||||
#[inline]
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: ImplSubject<'tcx>,
|
||||
b: ImplSubject<'tcx>,
|
||||
) -> RelateResult<'tcx, ImplSubject<'tcx>> {
|
||||
a: ty::ImplSubject<'tcx>,
|
||||
b: ty::ImplSubject<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::ImplSubject<'tcx>> {
|
||||
match (a, b) {
|
||||
(ImplSubject::Trait(trait_ref_a), ImplSubject::Trait(trait_ref_b)) => {
|
||||
(ty::ImplSubject::Trait(trait_ref_a), ty::ImplSubject::Trait(trait_ref_b)) => {
|
||||
let trait_ref = ty::TraitRef::relate(relation, trait_ref_a, trait_ref_b)?;
|
||||
Ok(ImplSubject::Trait(trait_ref))
|
||||
Ok(ty::ImplSubject::Trait(trait_ref))
|
||||
}
|
||||
(ImplSubject::Inherent(ty_a), ImplSubject::Inherent(ty_b)) => {
|
||||
(ty::ImplSubject::Inherent(ty_a), ty::ImplSubject::Inherent(ty_b)) => {
|
||||
let ty = Ty::relate(relation, ty_a, ty_b)?;
|
||||
Ok(ImplSubject::Inherent(ty))
|
||||
Ok(ty::ImplSubject::Inherent(ty))
|
||||
}
|
||||
(ImplSubject::Trait(_), ImplSubject::Inherent(_))
|
||||
| (ImplSubject::Inherent(_), ImplSubject::Trait(_)) => {
|
||||
(ty::ImplSubject::Trait(_), ty::ImplSubject::Inherent(_))
|
||||
| (ty::ImplSubject::Inherent(_), ty::ImplSubject::Trait(_)) => {
|
||||
bug!("can not relate TraitRef and Ty");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for Ty<'tcx> {
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for Ty<'tcx> {
|
||||
#[inline]
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: Ty<'tcx>,
|
||||
b: Ty<'tcx>,
|
||||
|
@ -386,9 +57,9 @@ impl<'tcx> Relate<'tcx> for Ty<'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for Pattern<'tcx> {
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Pattern<'tcx> {
|
||||
#[inline]
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: Self,
|
||||
b: Self,
|
||||
|
@ -416,276 +87,8 @@ impl<'tcx> Relate<'tcx> for Pattern<'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Relates `a` and `b` structurally, calling the relation for all nested values.
|
||||
/// Any semantic equality, e.g. of projections, and inference variables have to be
|
||||
/// handled by the caller.
|
||||
#[instrument(level = "trace", skip(relation), ret)]
|
||||
pub fn structurally_relate_tys<'tcx, R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: Ty<'tcx>,
|
||||
b: Ty<'tcx>,
|
||||
) -> RelateResult<'tcx, Ty<'tcx>> {
|
||||
let tcx = relation.tcx();
|
||||
match (a.kind(), b.kind()) {
|
||||
(&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
|
||||
// The caller should handle these cases!
|
||||
bug!("var types encountered in structurally_relate_tys")
|
||||
}
|
||||
|
||||
(ty::Bound(..), _) | (_, ty::Bound(..)) => {
|
||||
bug!("bound types encountered in structurally_relate_tys")
|
||||
}
|
||||
|
||||
(&ty::Error(guar), _) | (_, &ty::Error(guar)) => Ok(Ty::new_error(tcx, guar)),
|
||||
|
||||
(&ty::Never, _)
|
||||
| (&ty::Char, _)
|
||||
| (&ty::Bool, _)
|
||||
| (&ty::Int(_), _)
|
||||
| (&ty::Uint(_), _)
|
||||
| (&ty::Float(_), _)
|
||||
| (&ty::Str, _)
|
||||
if a == b =>
|
||||
{
|
||||
Ok(a)
|
||||
}
|
||||
|
||||
(ty::Param(a_p), ty::Param(b_p)) if a_p.index == b_p.index => {
|
||||
debug_assert_eq!(a_p.name, b_p.name, "param types with same index differ in name");
|
||||
Ok(a)
|
||||
}
|
||||
|
||||
(ty::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => Ok(a),
|
||||
|
||||
(&ty::Adt(a_def, a_args), &ty::Adt(b_def, b_args)) if a_def == b_def => {
|
||||
let args = relation.relate_item_args(a_def.did(), a_args, b_args)?;
|
||||
Ok(Ty::new_adt(tcx, a_def, args))
|
||||
}
|
||||
|
||||
(&ty::Foreign(a_id), &ty::Foreign(b_id)) if a_id == b_id => Ok(Ty::new_foreign(tcx, a_id)),
|
||||
|
||||
(&ty::Dynamic(a_obj, a_region, a_repr), &ty::Dynamic(b_obj, b_region, b_repr))
|
||||
if a_repr == b_repr =>
|
||||
{
|
||||
Ok(Ty::new_dynamic(
|
||||
tcx,
|
||||
relation.relate(a_obj, b_obj)?,
|
||||
relation.relate(a_region, b_region)?,
|
||||
a_repr,
|
||||
))
|
||||
}
|
||||
|
||||
(&ty::Coroutine(a_id, a_args), &ty::Coroutine(b_id, b_args)) if a_id == b_id => {
|
||||
// All Coroutine types with the same id represent
|
||||
// the (anonymous) type of the same coroutine expression. So
|
||||
// all of their regions should be equated.
|
||||
let args = relate_args_invariantly(relation, a_args, b_args)?;
|
||||
Ok(Ty::new_coroutine(tcx, a_id, args))
|
||||
}
|
||||
|
||||
(&ty::CoroutineWitness(a_id, a_args), &ty::CoroutineWitness(b_id, b_args))
|
||||
if a_id == b_id =>
|
||||
{
|
||||
// All CoroutineWitness types with the same id represent
|
||||
// the (anonymous) type of the same coroutine expression. So
|
||||
// all of their regions should be equated.
|
||||
let args = relate_args_invariantly(relation, a_args, b_args)?;
|
||||
Ok(Ty::new_coroutine_witness(tcx, a_id, args))
|
||||
}
|
||||
|
||||
(&ty::Closure(a_id, a_args), &ty::Closure(b_id, b_args)) if a_id == b_id => {
|
||||
// All Closure types with the same id represent
|
||||
// the (anonymous) type of the same closure expression. So
|
||||
// all of their regions should be equated.
|
||||
let args = relate_args_invariantly(relation, a_args, b_args)?;
|
||||
Ok(Ty::new_closure(tcx, a_id, args))
|
||||
}
|
||||
|
||||
(&ty::CoroutineClosure(a_id, a_args), &ty::CoroutineClosure(b_id, b_args))
|
||||
if a_id == b_id =>
|
||||
{
|
||||
let args = relate_args_invariantly(relation, a_args, b_args)?;
|
||||
Ok(Ty::new_coroutine_closure(tcx, a_id, args))
|
||||
}
|
||||
|
||||
(&ty::RawPtr(a_ty, a_mutbl), &ty::RawPtr(b_ty, b_mutbl)) => {
|
||||
if a_mutbl != b_mutbl {
|
||||
return Err(TypeError::Mutability);
|
||||
}
|
||||
|
||||
let (variance, info) = match a_mutbl {
|
||||
hir::Mutability::Not => (ty::Covariant, ty::VarianceDiagInfo::None),
|
||||
hir::Mutability::Mut => {
|
||||
(ty::Invariant, ty::VarianceDiagInfo::Invariant { ty: a, param_index: 0 })
|
||||
}
|
||||
};
|
||||
|
||||
let ty = relation.relate_with_variance(variance, info, a_ty, b_ty)?;
|
||||
|
||||
Ok(Ty::new_ptr(tcx, ty, a_mutbl))
|
||||
}
|
||||
|
||||
(&ty::Ref(a_r, a_ty, a_mutbl), &ty::Ref(b_r, b_ty, b_mutbl)) => {
|
||||
if a_mutbl != b_mutbl {
|
||||
return Err(TypeError::Mutability);
|
||||
}
|
||||
|
||||
let (variance, info) = match a_mutbl {
|
||||
hir::Mutability::Not => (ty::Covariant, ty::VarianceDiagInfo::None),
|
||||
hir::Mutability::Mut => {
|
||||
(ty::Invariant, ty::VarianceDiagInfo::Invariant { ty: a, param_index: 0 })
|
||||
}
|
||||
};
|
||||
|
||||
let r = relation.relate(a_r, b_r)?;
|
||||
let ty = relation.relate_with_variance(variance, info, a_ty, b_ty)?;
|
||||
|
||||
Ok(Ty::new_ref(tcx, r, ty, a_mutbl))
|
||||
}
|
||||
|
||||
(&ty::Array(a_t, sz_a), &ty::Array(b_t, sz_b)) => {
|
||||
let t = relation.relate(a_t, b_t)?;
|
||||
match relation.relate(sz_a, sz_b) {
|
||||
Ok(sz) => Ok(Ty::new_array_with_const_len(tcx, t, sz)),
|
||||
Err(err) => {
|
||||
// Check whether the lengths are both concrete/known values,
|
||||
// but are unequal, for better diagnostics.
|
||||
let sz_a = sz_a.try_to_target_usize(tcx);
|
||||
let sz_b = sz_b.try_to_target_usize(tcx);
|
||||
|
||||
match (sz_a, sz_b) {
|
||||
(Some(sz_a_val), Some(sz_b_val)) if sz_a_val != sz_b_val => {
|
||||
Err(TypeError::FixedArraySize(expected_found(sz_a_val, sz_b_val)))
|
||||
}
|
||||
_ => Err(err),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
(&ty::Slice(a_t), &ty::Slice(b_t)) => {
|
||||
let t = relation.relate(a_t, b_t)?;
|
||||
Ok(Ty::new_slice(tcx, t))
|
||||
}
|
||||
|
||||
(&ty::Tuple(as_), &ty::Tuple(bs)) => {
|
||||
if as_.len() == bs.len() {
|
||||
Ok(Ty::new_tup_from_iter(
|
||||
tcx,
|
||||
iter::zip(as_, bs).map(|(a, b)| relation.relate(a, b)),
|
||||
)?)
|
||||
} else if !(as_.is_empty() || bs.is_empty()) {
|
||||
Err(TypeError::TupleSize(expected_found(as_.len(), bs.len())))
|
||||
} else {
|
||||
Err(TypeError::Sorts(expected_found(a, b)))
|
||||
}
|
||||
}
|
||||
|
||||
(&ty::FnDef(a_def_id, a_args), &ty::FnDef(b_def_id, b_args)) if a_def_id == b_def_id => {
|
||||
let args = relation.relate_item_args(a_def_id, a_args, b_args)?;
|
||||
Ok(Ty::new_fn_def(tcx, a_def_id, args))
|
||||
}
|
||||
|
||||
(&ty::FnPtr(a_fty), &ty::FnPtr(b_fty)) => {
|
||||
let fty = relation.relate(a_fty, b_fty)?;
|
||||
Ok(Ty::new_fn_ptr(tcx, fty))
|
||||
}
|
||||
|
||||
// Alias tend to mostly already be handled downstream due to normalization.
|
||||
(&ty::Alias(a_kind, a_data), &ty::Alias(b_kind, b_data)) => {
|
||||
let alias_ty = relation.relate(a_data, b_data)?;
|
||||
assert_eq!(a_kind, b_kind);
|
||||
Ok(Ty::new_alias(tcx, a_kind, alias_ty))
|
||||
}
|
||||
|
||||
(&ty::Pat(a_ty, a_pat), &ty::Pat(b_ty, b_pat)) => {
|
||||
let ty = relation.relate(a_ty, b_ty)?;
|
||||
let pat = relation.relate(a_pat, b_pat)?;
|
||||
Ok(Ty::new_pat(tcx, ty, pat))
|
||||
}
|
||||
|
||||
_ => Err(TypeError::Sorts(expected_found(a, b))),
|
||||
}
|
||||
}
|
||||
|
||||
/// Relates `a` and `b` structurally, calling the relation for all nested values.
|
||||
/// Any semantic equality, e.g. of unevaluated consts, and inference variables have
|
||||
/// to be handled by the caller.
|
||||
///
|
||||
/// FIXME: This is not totally structual, which probably should be fixed.
|
||||
/// See the HACKs below.
|
||||
pub fn structurally_relate_consts<'tcx, R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
mut a: ty::Const<'tcx>,
|
||||
mut b: ty::Const<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Const<'tcx>> {
|
||||
debug!("{}.structurally_relate_consts(a = {:?}, b = {:?})", relation.tag(), a, b);
|
||||
let tcx = relation.tcx();
|
||||
|
||||
if tcx.features().generic_const_exprs {
|
||||
a = tcx.expand_abstract_consts(a);
|
||||
b = tcx.expand_abstract_consts(b);
|
||||
}
|
||||
|
||||
debug!("{}.structurally_relate_consts(normed_a = {:?}, normed_b = {:?})", relation.tag(), a, b);
|
||||
|
||||
// Currently, the values that can be unified are primitive types,
|
||||
// and those that derive both `PartialEq` and `Eq`, corresponding
|
||||
// to structural-match types.
|
||||
let is_match = match (a.kind(), b.kind()) {
|
||||
(ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
|
||||
// The caller should handle these cases!
|
||||
bug!("var types encountered in structurally_relate_consts: {:?} {:?}", a, b)
|
||||
}
|
||||
|
||||
(ty::ConstKind::Error(_), _) => return Ok(a),
|
||||
(_, ty::ConstKind::Error(_)) => return Ok(b),
|
||||
|
||||
(ty::ConstKind::Param(a_p), ty::ConstKind::Param(b_p)) if a_p.index == b_p.index => {
|
||||
debug_assert_eq!(a_p.name, b_p.name, "param types with same index differ in name");
|
||||
true
|
||||
}
|
||||
(ty::ConstKind::Placeholder(p1), ty::ConstKind::Placeholder(p2)) => p1 == p2,
|
||||
(ty::ConstKind::Value(_, a_val), ty::ConstKind::Value(_, b_val)) => a_val == b_val,
|
||||
|
||||
// While this is slightly incorrect, it shouldn't matter for `min_const_generics`
|
||||
// and is the better alternative to waiting until `generic_const_exprs` can
|
||||
// be stabilized.
|
||||
(ty::ConstKind::Unevaluated(au), ty::ConstKind::Unevaluated(bu)) if au.def == bu.def => {
|
||||
if cfg!(debug_assertions) {
|
||||
let a_ty = tcx.type_of(au.def).instantiate(tcx, au.args);
|
||||
let b_ty = tcx.type_of(bu.def).instantiate(tcx, bu.args);
|
||||
assert_eq!(a_ty, b_ty);
|
||||
}
|
||||
|
||||
let args = relation.relate_with_variance(
|
||||
ty::Variance::Invariant,
|
||||
ty::VarianceDiagInfo::default(),
|
||||
au.args,
|
||||
bu.args,
|
||||
)?;
|
||||
return Ok(ty::Const::new_unevaluated(tcx, ty::UnevaluatedConst { def: au.def, args }));
|
||||
}
|
||||
(ty::ConstKind::Expr(ae), ty::ConstKind::Expr(be)) => {
|
||||
match (ae.kind, be.kind) {
|
||||
(ty::ExprKind::Binop(a_binop), ty::ExprKind::Binop(b_binop))
|
||||
if a_binop == b_binop => {}
|
||||
(ty::ExprKind::UnOp(a_unop), ty::ExprKind::UnOp(b_unop)) if a_unop == b_unop => {}
|
||||
(ty::ExprKind::FunctionCall, ty::ExprKind::FunctionCall) => {}
|
||||
(ty::ExprKind::Cast(a_kind), ty::ExprKind::Cast(b_kind)) if a_kind == b_kind => {}
|
||||
_ => return Err(TypeError::ConstMismatch(expected_found(a, b))),
|
||||
}
|
||||
|
||||
let args = relation.relate(ae.args(), be.args())?;
|
||||
return Ok(ty::Const::new_expr(tcx, ty::Expr::new(ae.kind, args)));
|
||||
}
|
||||
_ => false,
|
||||
};
|
||||
if is_match { Ok(a) } else { Err(TypeError::ConstMismatch(expected_found(a, b))) }
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: Self,
|
||||
b: Self,
|
||||
|
@ -703,44 +106,65 @@ impl<'tcx> Relate<'tcx> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
|
|||
b_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
|
||||
b_v.dedup();
|
||||
if a_v.len() != b_v.len() {
|
||||
return Err(TypeError::ExistentialMismatch(expected_found(a, b)));
|
||||
return Err(TypeError::ExistentialMismatch(ExpectedFound::new(true, a, b)));
|
||||
}
|
||||
|
||||
let v = iter::zip(a_v, b_v).map(|(ep_a, ep_b)| {
|
||||
match (ep_a.skip_binder(), ep_b.skip_binder()) {
|
||||
(ExistentialPredicate::Trait(a), ExistentialPredicate::Trait(b)) => Ok(ep_a
|
||||
.rebind(ExistentialPredicate::Trait(
|
||||
relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
|
||||
))),
|
||||
(ExistentialPredicate::Projection(a), ExistentialPredicate::Projection(b)) => {
|
||||
Ok(ep_a.rebind(ExistentialPredicate::Projection(
|
||||
(ty::ExistentialPredicate::Trait(a), ty::ExistentialPredicate::Trait(b)) => {
|
||||
Ok(ep_a.rebind(ty::ExistentialPredicate::Trait(
|
||||
relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
|
||||
)))
|
||||
}
|
||||
(ExistentialPredicate::AutoTrait(a), ExistentialPredicate::AutoTrait(b))
|
||||
if a == b =>
|
||||
{
|
||||
Ok(ep_a.rebind(ExistentialPredicate::AutoTrait(a)))
|
||||
}
|
||||
_ => Err(TypeError::ExistentialMismatch(expected_found(a, b))),
|
||||
(
|
||||
ty::ExistentialPredicate::Projection(a),
|
||||
ty::ExistentialPredicate::Projection(b),
|
||||
) => Ok(ep_a.rebind(ty::ExistentialPredicate::Projection(
|
||||
relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
|
||||
))),
|
||||
(
|
||||
ty::ExistentialPredicate::AutoTrait(a),
|
||||
ty::ExistentialPredicate::AutoTrait(b),
|
||||
) if a == b => Ok(ep_a.rebind(ty::ExistentialPredicate::AutoTrait(a))),
|
||||
_ => Err(TypeError::ExistentialMismatch(ExpectedFound::new(true, a, b))),
|
||||
}
|
||||
});
|
||||
tcx.mk_poly_existential_predicates_from_iter(v)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for GenericArgsRef<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for hir::Safety {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
_relation: &mut R,
|
||||
a: hir::Safety,
|
||||
b: hir::Safety,
|
||||
) -> RelateResult<'tcx, hir::Safety> {
|
||||
if a != b { Err(TypeError::SafetyMismatch(ExpectedFound::new(true, a, b))) } else { Ok(a) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for abi::Abi {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
_relation: &mut R,
|
||||
a: abi::Abi,
|
||||
b: abi::Abi,
|
||||
) -> RelateResult<'tcx, abi::Abi> {
|
||||
if a == b { Ok(a) } else { Err(TypeError::AbiMismatch(ExpectedFound::new(true, a, b))) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::GenericArgsRef<'tcx> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: GenericArgsRef<'tcx>,
|
||||
b: GenericArgsRef<'tcx>,
|
||||
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
|
||||
a: ty::GenericArgsRef<'tcx>,
|
||||
b: ty::GenericArgsRef<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
|
||||
relate_args_invariantly(relation, a, b)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::Region<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Region<'tcx> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: ty::Region<'tcx>,
|
||||
b: ty::Region<'tcx>,
|
||||
|
@ -749,8 +173,8 @@ impl<'tcx> Relate<'tcx> for ty::Region<'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::Const<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Const<'tcx> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: ty::Const<'tcx>,
|
||||
b: ty::Const<'tcx>,
|
||||
|
@ -759,85 +183,70 @@ impl<'tcx> Relate<'tcx> for ty::Const<'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder<'tcx, T> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Expr<'tcx> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: ty::Binder<'tcx, T>,
|
||||
b: ty::Binder<'tcx, T>,
|
||||
) -> RelateResult<'tcx, ty::Binder<'tcx, T>> {
|
||||
relation.binders(a, b)
|
||||
ae: ty::Expr<'tcx>,
|
||||
be: ty::Expr<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::Expr<'tcx>> {
|
||||
// FIXME(generic_const_exprs): is it possible to relate two consts which are not identical
|
||||
// exprs? Should we care about that?
|
||||
// FIXME(generic_const_exprs): relating the `ty()`s is a little weird since it is supposed to
|
||||
// ICE If they mismatch. Unfortunately `ConstKind::Expr` is a little special and can be thought
|
||||
// of as being generic over the argument types, however this is implicit so these types don't get
|
||||
// related when we relate the args of the item this const arg is for.
|
||||
match (ae.kind, be.kind) {
|
||||
(ty::ExprKind::Binop(a_binop), ty::ExprKind::Binop(b_binop)) if a_binop == b_binop => {}
|
||||
(ty::ExprKind::UnOp(a_unop), ty::ExprKind::UnOp(b_unop)) if a_unop == b_unop => {}
|
||||
(ty::ExprKind::FunctionCall, ty::ExprKind::FunctionCall) => {}
|
||||
(ty::ExprKind::Cast(a_kind), ty::ExprKind::Cast(b_kind)) if a_kind == b_kind => {}
|
||||
_ => return Err(TypeError::Mismatch),
|
||||
}
|
||||
|
||||
let args = relation.relate(ae.args(), be.args())?;
|
||||
Ok(ty::Expr::new(ae.kind, args))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for GenericArg<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::GenericArg<'tcx> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: GenericArg<'tcx>,
|
||||
b: GenericArg<'tcx>,
|
||||
) -> RelateResult<'tcx, GenericArg<'tcx>> {
|
||||
a: ty::GenericArg<'tcx>,
|
||||
b: ty::GenericArg<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::GenericArg<'tcx>> {
|
||||
match (a.unpack(), b.unpack()) {
|
||||
(GenericArgKind::Lifetime(a_lt), GenericArgKind::Lifetime(b_lt)) => {
|
||||
(ty::GenericArgKind::Lifetime(a_lt), ty::GenericArgKind::Lifetime(b_lt)) => {
|
||||
Ok(relation.relate(a_lt, b_lt)?.into())
|
||||
}
|
||||
(GenericArgKind::Type(a_ty), GenericArgKind::Type(b_ty)) => {
|
||||
(ty::GenericArgKind::Type(a_ty), ty::GenericArgKind::Type(b_ty)) => {
|
||||
Ok(relation.relate(a_ty, b_ty)?.into())
|
||||
}
|
||||
(GenericArgKind::Const(a_ct), GenericArgKind::Const(b_ct)) => {
|
||||
(ty::GenericArgKind::Const(a_ct), ty::GenericArgKind::Const(b_ct)) => {
|
||||
Ok(relation.relate(a_ct, b_ct)?.into())
|
||||
}
|
||||
(GenericArgKind::Lifetime(unpacked), x) => {
|
||||
(ty::GenericArgKind::Lifetime(unpacked), x) => {
|
||||
bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
|
||||
}
|
||||
(GenericArgKind::Type(unpacked), x) => {
|
||||
(ty::GenericArgKind::Type(unpacked), x) => {
|
||||
bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
|
||||
}
|
||||
(GenericArgKind::Const(unpacked), x) => {
|
||||
(ty::GenericArgKind::Const(unpacked), x) => {
|
||||
bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::PredicatePolarity {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
_relation: &mut R,
|
||||
a: ty::PredicatePolarity,
|
||||
b: ty::PredicatePolarity,
|
||||
) -> RelateResult<'tcx, ty::PredicatePolarity> {
|
||||
if a != b { Err(TypeError::PolarityMismatch(expected_found(a, b))) } else { Ok(a) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for ty::TraitPredicate<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
relation: &mut R,
|
||||
a: ty::TraitPredicate<'tcx>,
|
||||
b: ty::TraitPredicate<'tcx>,
|
||||
) -> RelateResult<'tcx, ty::TraitPredicate<'tcx>> {
|
||||
Ok(ty::TraitPredicate {
|
||||
trait_ref: relation.relate(a.trait_ref, b.trait_ref)?,
|
||||
polarity: relation.relate(a.polarity, b.polarity)?,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> Relate<'tcx> for Term<'tcx> {
|
||||
fn relate<R: TypeRelation<'tcx>>(
|
||||
impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Term<'tcx> {
|
||||
fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
|
||||
relation: &mut R,
|
||||
a: Self,
|
||||
b: Self,
|
||||
) -> RelateResult<'tcx, Self> {
|
||||
Ok(match (a.unpack(), b.unpack()) {
|
||||
(TermKind::Ty(a), TermKind::Ty(b)) => relation.relate(a, b)?.into(),
|
||||
(TermKind::Const(a), TermKind::Const(b)) => relation.relate(a, b)?.into(),
|
||||
(ty::TermKind::Ty(a), ty::TermKind::Ty(b)) => relation.relate(a, b)?.into(),
|
||||
(ty::TermKind::Const(a), ty::TermKind::Const(b)) => relation.relate(a, b)?.into(),
|
||||
_ => return Err(TypeError::Mismatch),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Error handling
|
||||
|
||||
pub fn expected_found<T>(a: T, b: T) -> ExpectedFound<T> {
|
||||
ExpectedFound::new(true, a, b)
|
||||
}
|
||||
|
|
|
@ -296,7 +296,6 @@ TrivialTypeTraversalImpls! {
|
|||
::rustc_target::abi::FieldIdx,
|
||||
::rustc_target::abi::VariantIdx,
|
||||
crate::middle::region::Scope,
|
||||
crate::ty::FloatTy,
|
||||
::rustc_ast::InlineAsmOptions,
|
||||
::rustc_ast::InlineAsmTemplatePiece,
|
||||
::rustc_ast::NodeId,
|
||||
|
@ -316,7 +315,7 @@ TrivialTypeTraversalImpls! {
|
|||
crate::traits::Reveal,
|
||||
crate::ty::adjustment::AutoBorrowMutability,
|
||||
crate::ty::AdtKind,
|
||||
crate::ty::BoundConstness,
|
||||
crate::ty::BoundRegion,
|
||||
// Including `BoundRegionKind` is a *bit* dubious, but direct
|
||||
// references to bound region appear in `ty::Error`, and aren't
|
||||
// really meant to be folded. In general, we can only fold a fully
|
||||
|
@ -324,16 +323,11 @@ TrivialTypeTraversalImpls! {
|
|||
crate::ty::BoundRegionKind,
|
||||
crate::ty::AssocItem,
|
||||
crate::ty::AssocKind,
|
||||
crate::ty::AliasTyKind,
|
||||
crate::ty::Placeholder<crate::ty::BoundRegion>,
|
||||
crate::ty::Placeholder<crate::ty::BoundTy>,
|
||||
crate::ty::Placeholder<ty::BoundVar>,
|
||||
crate::ty::LateParamRegion,
|
||||
crate::ty::InferTy,
|
||||
crate::ty::IntVarValue,
|
||||
crate::ty::adjustment::PointerCoercion,
|
||||
crate::ty::RegionVid,
|
||||
crate::ty::Variance,
|
||||
::rustc_span::Span,
|
||||
::rustc_span::symbol::Ident,
|
||||
::rustc_errors::ErrorGuaranteed,
|
||||
|
|
|
@ -810,6 +810,31 @@ impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
|
|||
Ty::new_alias(interner, kind, alias_ty)
|
||||
}
|
||||
|
||||
fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
|
||||
Ty::new_error(interner, guar)
|
||||
}
|
||||
|
||||
fn new_adt(
|
||||
interner: TyCtxt<'tcx>,
|
||||
adt_def: ty::AdtDef<'tcx>,
|
||||
args: ty::GenericArgsRef<'tcx>,
|
||||
) -> Self {
|
||||
Ty::new_adt(interner, adt_def, args)
|
||||
}
|
||||
|
||||
fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self {
|
||||
Ty::new_foreign(interner, def_id)
|
||||
}
|
||||
|
||||
fn new_dynamic(
|
||||
interner: TyCtxt<'tcx>,
|
||||
preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
|
||||
region: ty::Region<'tcx>,
|
||||
kind: ty::DynKind,
|
||||
) -> Self {
|
||||
Ty::new_dynamic(interner, preds, region, kind)
|
||||
}
|
||||
|
||||
fn new_coroutine(
|
||||
interner: TyCtxt<'tcx>,
|
||||
def_id: DefId,
|
||||
|
@ -818,6 +843,51 @@ impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
|
|||
Ty::new_coroutine(interner, def_id, args)
|
||||
}
|
||||
|
||||
fn new_coroutine_closure(
|
||||
interner: TyCtxt<'tcx>,
|
||||
def_id: DefId,
|
||||
args: ty::GenericArgsRef<'tcx>,
|
||||
) -> Self {
|
||||
Ty::new_coroutine_closure(interner, def_id, args)
|
||||
}
|
||||
|
||||
fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
|
||||
Ty::new_closure(interner, def_id, args)
|
||||
}
|
||||
|
||||
fn new_coroutine_witness(
|
||||
interner: TyCtxt<'tcx>,
|
||||
def_id: DefId,
|
||||
args: ty::GenericArgsRef<'tcx>,
|
||||
) -> Self {
|
||||
Ty::new_coroutine_witness(interner, def_id, args)
|
||||
}
|
||||
|
||||
fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self {
|
||||
Ty::new_ptr(interner, ty, mutbl)
|
||||
}
|
||||
|
||||
fn new_ref(
|
||||
interner: TyCtxt<'tcx>,
|
||||
region: ty::Region<'tcx>,
|
||||
ty: Self,
|
||||
mutbl: hir::Mutability,
|
||||
) -> Self {
|
||||
Ty::new_ref(interner, region, ty, mutbl)
|
||||
}
|
||||
|
||||
fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self {
|
||||
Ty::new_array_with_const_len(interner, ty, len)
|
||||
}
|
||||
|
||||
fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self {
|
||||
Ty::new_slice(interner, ty)
|
||||
}
|
||||
|
||||
fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self {
|
||||
Ty::new_tup(interner, tys)
|
||||
}
|
||||
|
||||
fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output
|
||||
where
|
||||
It: Iterator<Item = T>,
|
||||
|
@ -844,6 +914,18 @@ impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
|
|||
) -> Self {
|
||||
Ty::from_coroutine_closure_kind(interner, kind)
|
||||
}
|
||||
|
||||
fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
|
||||
Ty::new_fn_def(interner, def_id, args)
|
||||
}
|
||||
|
||||
fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self {
|
||||
Ty::new_fn_ptr(interner, sig)
|
||||
}
|
||||
|
||||
fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self {
|
||||
Ty::new_pat(interner, ty, pat)
|
||||
}
|
||||
}
|
||||
|
||||
/// Type utilities
|
||||
|
@ -1812,43 +1894,6 @@ impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx
|
|||
}
|
||||
}
|
||||
|
||||
/// Extra information about why we ended up with a particular variance.
|
||||
/// This is only used to add more information to error messages, and
|
||||
/// has no effect on soundness. While choosing the 'wrong' `VarianceDiagInfo`
|
||||
/// may lead to confusing notes in error messages, it will never cause
|
||||
/// a miscompilation or unsoundness.
|
||||
///
|
||||
/// When in doubt, use `VarianceDiagInfo::default()`
|
||||
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
|
||||
pub enum VarianceDiagInfo<'tcx> {
|
||||
/// No additional information - this is the default.
|
||||
/// We will not add any additional information to error messages.
|
||||
#[default]
|
||||
None,
|
||||
/// We switched our variance because a generic argument occurs inside
|
||||
/// the invariant generic argument of another type.
|
||||
Invariant {
|
||||
/// The generic type containing the generic parameter
|
||||
/// that changes the variance (e.g. `*mut T`, `MyStruct<T>`)
|
||||
ty: Ty<'tcx>,
|
||||
/// The index of the generic parameter being used
|
||||
/// (e.g. `0` for `*mut T`, `1` for `MyStruct<'CovariantParam, 'InvariantParam>`)
|
||||
param_index: u32,
|
||||
},
|
||||
}
|
||||
|
||||
impl<'tcx> VarianceDiagInfo<'tcx> {
|
||||
/// Mirrors `Variance::xform` - used to 'combine' the existing
|
||||
/// and new `VarianceDiagInfo`s when our variance changes.
|
||||
pub fn xform(self, other: VarianceDiagInfo<'tcx>) -> VarianceDiagInfo<'tcx> {
|
||||
// For now, just use the first `VarianceDiagInfo::Invariant` that we see
|
||||
match self {
|
||||
VarianceDiagInfo::None => other,
|
||||
VarianceDiagInfo::Invariant { .. } => self,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Some types are used a lot. Make sure they don't unintentionally get bigger.
|
||||
#[cfg(target_pointer_width = "64")]
|
||||
mod size_asserts {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue