1
Fork 0

Move literal parsing code into a separate file

Remove some dead code
This commit is contained in:
Vadim Petrochenkov 2019-05-11 02:31:34 +03:00
parent 8739668438
commit 3f064cae3d
13 changed files with 521 additions and 537 deletions

View file

@ -27,11 +27,9 @@ use crate::ThinVec;
use crate::tokenstream::{TokenStream, TokenTree, DelimSpan}; use crate::tokenstream::{TokenStream, TokenTree, DelimSpan};
use crate::GLOBALS; use crate::GLOBALS;
use errors::Handler;
use log::debug; use log::debug;
use syntax_pos::{FileName, Span}; use syntax_pos::{FileName, Span};
use std::ascii;
use std::iter; use std::iter;
use std::ops::DerefMut; use std::ops::DerefMut;
@ -620,103 +618,6 @@ impl NestedMetaItem {
} }
} }
impl Lit {
crate fn tokens(&self) -> TokenStream {
let token = match self.token {
token::Bool(symbol) => Token::Ident(Ident::with_empty_ctxt(symbol), false),
token => Token::Literal(token, self.suffix),
};
TokenTree::Token(self.span, token).into()
}
}
impl LitKind {
/// Attempts to recover a token from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn to_lit_token(&self) -> (token::Lit, Option<Symbol>) {
match *self {
LitKind::Str(string, ast::StrStyle::Cooked) => {
let escaped = string.as_str().escape_default().to_string();
(token::Lit::Str_(Symbol::intern(&escaped)), None)
}
LitKind::Str(string, ast::StrStyle::Raw(n)) => {
(token::Lit::StrRaw(string, n), None)
}
LitKind::ByteStr(ref bytes) => {
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
.map(Into::<char>::into).collect::<String>();
(token::Lit::ByteStr(Symbol::intern(&string)), None)
}
LitKind::Byte(byte) => {
let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
(token::Lit::Byte(Symbol::intern(&string)), None)
}
LitKind::Char(ch) => {
let string: String = ch.escape_default().map(Into::<char>::into).collect();
(token::Lit::Char(Symbol::intern(&string)), None)
}
LitKind::Int(n, ty) => {
let suffix = match ty {
ast::LitIntType::Unsigned(ty) => Some(Symbol::intern(ty.ty_to_string())),
ast::LitIntType::Signed(ty) => Some(Symbol::intern(ty.ty_to_string())),
ast::LitIntType::Unsuffixed => None,
};
(token::Lit::Integer(Symbol::intern(&n.to_string())), suffix)
}
LitKind::Float(symbol, ty) => {
(token::Lit::Float(symbol), Some(Symbol::intern(ty.ty_to_string())))
}
LitKind::FloatUnsuffixed(symbol) => (token::Lit::Float(symbol), None),
LitKind::Bool(value) => {
let kw = if value { keywords::True } else { keywords::False };
(token::Lit::Bool(kw.name()), None)
}
LitKind::Err(val) => (token::Lit::Err(val), None),
}
}
}
impl Lit {
/// Converts literal token with a suffix into an AST literal.
/// Works speculatively and may return `None` is diagnostic handler is not passed.
/// If diagnostic handler is passed, may return `Some`,
/// possibly after reporting non-fatal errors and recovery, or `None` for irrecoverable errors.
crate fn from_token(
token: &token::Token,
span: Span,
diag: Option<(Span, &Handler)>,
) -> Option<Lit> {
let (token, suffix) = match *token {
token::Ident(ident, false) if ident.name == keywords::True.name() ||
ident.name == keywords::False.name() =>
(token::Bool(ident.name), None),
token::Literal(token, suffix) =>
(token, suffix),
token::Interpolated(ref nt) => {
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
if let ast::ExprKind::Lit(lit) = &expr.node {
return Some(lit.clone());
}
}
return None;
}
_ => return None,
};
let node = LitKind::from_lit_token(token, suffix, diag)?;
Some(Lit { node, token, suffix, span })
}
/// Attempts to recover an AST literal from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn from_lit_kind(node: LitKind, span: Span) -> Lit {
let (token, suffix) = node.to_lit_token();
Lit { node, token, suffix, span }
}
}
pub trait HasAttrs: Sized { pub trait HasAttrs: Sized {
fn attrs(&self) -> &[ast::Attribute]; fn attrs(&self) -> &[ast::Attribute];
fn visit_attrs<F: FnOnce(&mut Vec<ast::Attribute>)>(&mut self, f: F); fn visit_attrs<F: FnOnce(&mut Vec<ast::Attribute>)>(&mut self, f: F);

View file

@ -25,16 +25,3 @@ pub fn expr_requires_semi_to_be_stmt(e: &ast::Expr) -> bool {
_ => true, _ => true,
} }
} }
/// this statement requires a semicolon after it.
/// note that in one case (`stmt_semi`), we've already
/// seen the semicolon, and thus don't need another.
pub fn stmt_ends_with_semi(stmt: &ast::StmtKind) -> bool {
match *stmt {
ast::StmtKind::Local(_) => true,
ast::StmtKind::Expr(ref e) => expr_requires_semi_to_be_stmt(e),
ast::StmtKind::Item(_) |
ast::StmtKind::Semi(..) |
ast::StmtKind::Mac(..) => false,
}
}

View file

@ -262,18 +262,6 @@ impl<'a> StringReader<'a> {
} }
} }
pub fn new(sess: &'a ParseSess,
source_file: Lrc<syntax_pos::SourceFile>,
override_span: Option<Span>) -> Self {
let mut sr = StringReader::new_raw(sess, source_file, override_span);
if sr.advance_token().is_err() {
sr.emit_fatal_errors();
FatalError.raise();
}
sr
}
pub fn new_or_buffered_errs(sess: &'a ParseSess, pub fn new_or_buffered_errs(sess: &'a ParseSess,
source_file: Lrc<syntax_pos::SourceFile>, source_file: Lrc<syntax_pos::SourceFile>,
override_span: Option<Span>) -> Result<Self, Vec<Diagnostic>> { override_span: Option<Span>) -> Result<Self, Vec<Diagnostic>> {
@ -1627,7 +1615,12 @@ mod tests {
teststr: String) teststr: String)
-> StringReader<'a> { -> StringReader<'a> {
let sf = sm.new_source_file(PathBuf::from(teststr.clone()).into(), teststr); let sf = sm.new_source_file(PathBuf::from(teststr.clone()).into(), teststr);
StringReader::new(sess, sf, None) let mut sr = StringReader::new_raw(sess, sf, None);
if sr.advance_token().is_err() {
sr.emit_fatal_errors();
FatalError.raise();
}
sr
} }
#[test] #[test]

View file

@ -0,0 +1,487 @@
//! Code related to parsing literals.
use crate::ast::{self, Ident, Lit, LitKind};
use crate::parse::parser::Parser;
use crate::parse::PResult;
use crate::parse::token::{self, Token};
use crate::parse::unescape::{unescape_str, unescape_char, unescape_byte_str, unescape_byte};
use crate::print::pprust;
use crate::symbol::{keywords, Symbol};
use crate::tokenstream::{TokenStream, TokenTree};
use errors::{Applicability, Handler};
use log::debug;
use rustc_data_structures::sync::Lrc;
use syntax_pos::Span;
use std::ascii;
macro_rules! err {
($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
match $opt_diag {
Some(($span, $diag)) => { $($body)* }
None => return None,
}
}
}
impl LitKind {
/// Converts literal token with a suffix into a semantic literal.
/// Works speculatively and may return `None` is diagnostic handler is not passed.
/// If diagnostic handler is passed, always returns `Some`,
/// possibly after reporting non-fatal errors and recovery.
fn from_lit_token(
lit: token::Lit,
suf: Option<Symbol>,
diag: Option<(Span, &Handler)>
) -> Option<LitKind> {
if suf.is_some() && !lit.may_have_suffix() {
err!(diag, |span, diag| {
expect_no_suffix(span, diag, &format!("a {}", lit.literal_name()), suf)
});
}
Some(match lit {
token::Bool(i) => {
assert!(i == keywords::True.name() || i == keywords::False.name());
LitKind::Bool(i == keywords::True.name())
}
token::Byte(i) => {
match unescape_byte(&i.as_str()) {
Ok(c) => LitKind::Byte(c),
Err(_) => LitKind::Err(i),
}
},
token::Char(i) => {
match unescape_char(&i.as_str()) {
Ok(c) => LitKind::Char(c),
Err(_) => LitKind::Err(i),
}
},
token::Err(i) => LitKind::Err(i),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer(s) => return integer_lit(&s.as_str(), suf, diag),
token::Float(s) => return float_lit(&s.as_str(), suf, diag),
token::Str_(mut sym) => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the Token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the Token.
let mut has_error = false;
let s = &sym.as_str();
if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
let mut buf = String::with_capacity(s.len());
unescape_str(s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
}
});
if has_error {
return Some(LitKind::Err(sym));
}
sym = Symbol::intern(&buf)
}
LitKind::Str(sym, ast::StrStyle::Cooked)
}
token::StrRaw(mut sym, n) => {
// Ditto.
let s = &sym.as_str();
if s.contains('\r') {
sym = Symbol::intern(&raw_str_lit(s));
}
LitKind::Str(sym, ast::StrStyle::Raw(n))
}
token::ByteStr(i) => {
let s = &i.as_str();
let mut buf = Vec::with_capacity(s.len());
let mut has_error = false;
unescape_byte_str(s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
}
});
if has_error {
return Some(LitKind::Err(i));
}
buf.shrink_to_fit();
LitKind::ByteStr(Lrc::new(buf))
}
token::ByteStrRaw(i, _) => {
LitKind::ByteStr(Lrc::new(i.to_string().into_bytes()))
}
})
}
/// Attempts to recover a token from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn to_lit_token(&self) -> (token::Lit, Option<Symbol>) {
match *self {
LitKind::Str(string, ast::StrStyle::Cooked) => {
let escaped = string.as_str().escape_default().to_string();
(token::Lit::Str_(Symbol::intern(&escaped)), None)
}
LitKind::Str(string, ast::StrStyle::Raw(n)) => {
(token::Lit::StrRaw(string, n), None)
}
LitKind::ByteStr(ref bytes) => {
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
.map(Into::<char>::into).collect::<String>();
(token::Lit::ByteStr(Symbol::intern(&string)), None)
}
LitKind::Byte(byte) => {
let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
(token::Lit::Byte(Symbol::intern(&string)), None)
}
LitKind::Char(ch) => {
let string: String = ch.escape_default().map(Into::<char>::into).collect();
(token::Lit::Char(Symbol::intern(&string)), None)
}
LitKind::Int(n, ty) => {
let suffix = match ty {
ast::LitIntType::Unsigned(ty) => Some(Symbol::intern(ty.ty_to_string())),
ast::LitIntType::Signed(ty) => Some(Symbol::intern(ty.ty_to_string())),
ast::LitIntType::Unsuffixed => None,
};
(token::Lit::Integer(Symbol::intern(&n.to_string())), suffix)
}
LitKind::Float(symbol, ty) => {
(token::Lit::Float(symbol), Some(Symbol::intern(ty.ty_to_string())))
}
LitKind::FloatUnsuffixed(symbol) => (token::Lit::Float(symbol), None),
LitKind::Bool(value) => {
let kw = if value { keywords::True } else { keywords::False };
(token::Lit::Bool(kw.name()), None)
}
LitKind::Err(val) => (token::Lit::Err(val), None),
}
}
}
impl Lit {
/// Converts literal token with a suffix into an AST literal.
/// Works speculatively and may return `None` is diagnostic handler is not passed.
/// If diagnostic handler is passed, may return `Some`,
/// possibly after reporting non-fatal errors and recovery, or `None` for irrecoverable errors.
crate fn from_token(
token: &token::Token,
span: Span,
diag: Option<(Span, &Handler)>,
) -> Option<Lit> {
let (token, suffix) = match *token {
token::Ident(ident, false) if ident.name == keywords::True.name() ||
ident.name == keywords::False.name() =>
(token::Bool(ident.name), None),
token::Literal(token, suffix) =>
(token, suffix),
token::Interpolated(ref nt) => {
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
if let ast::ExprKind::Lit(lit) = &expr.node {
return Some(lit.clone());
}
}
return None;
}
_ => return None,
};
let node = LitKind::from_lit_token(token, suffix, diag)?;
Some(Lit { node, token, suffix, span })
}
/// Attempts to recover an AST literal from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn from_lit_kind(node: LitKind, span: Span) -> Lit {
let (token, suffix) = node.to_lit_token();
Lit { node, token, suffix, span }
}
/// Losslessly convert an AST literal into a token stream.
crate fn tokens(&self) -> TokenStream {
let token = match self.token {
token::Bool(symbol) => Token::Ident(Ident::with_empty_ctxt(symbol), false),
token => Token::Literal(token, self.suffix),
};
TokenTree::Token(self.span, token).into()
}
}
impl<'a> Parser<'a> {
/// Matches `lit = true | false | token_lit`.
crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
let diag = Some((self.span, &self.sess.span_diagnostic));
if let Some(lit) = Lit::from_token(&self.token, self.span, diag) {
self.bump();
return Ok(lit);
} else if self.token == token::Dot {
// Recover `.4` as `0.4`.
let recovered = self.look_ahead(1, |t| {
if let token::Literal(token::Integer(val), suf) = *t {
let next_span = self.look_ahead_span(1);
if self.span.hi() == next_span.lo() {
let sym = String::from("0.") + &val.as_str();
let token = token::Literal(token::Float(Symbol::intern(&sym)), suf);
return Some((token, self.span.to(next_span)));
}
}
None
});
if let Some((token, span)) = recovered {
self.diagnostic()
.struct_span_err(span, "float literals must have an integer part")
.span_suggestion(
span,
"must have an integer part",
pprust::token_to_string(&token),
Applicability::MachineApplicable,
)
.emit();
let diag = Some((span, &self.sess.span_diagnostic));
if let Some(lit) = Lit::from_token(&token, span, diag) {
self.bump();
self.bump();
return Ok(lit);
}
}
}
Err(self.span_fatal(self.span, &format!("unexpected token: {}", self.this_token_descr())))
}
}
crate fn expect_no_suffix(sp: Span, diag: &Handler, kind: &str, suffix: Option<ast::Name>) {
match suffix {
None => {/* everything ok */}
Some(suf) => {
let text = suf.as_str();
if text.is_empty() {
diag.span_bug(sp, "found empty literal suffix in Some")
}
let mut err = if kind == "a tuple index" &&
["i32", "u32", "isize", "usize"].contains(&text.to_string().as_str())
{
// #59553: warn instead of reject out of hand to allow the fix to percolate
// through the ecosystem when people fix their macros
let mut err = diag.struct_span_warn(
sp,
&format!("suffixes on {} are invalid", kind),
);
err.note(&format!(
"`{}` is *temporarily* accepted on tuple index fields as it was \
incorrectly accepted on stable for a few releases",
text,
));
err.help(
"on proc macros, you'll want to use `syn::Index::from` or \
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
to tuple field access",
);
err.note(
"for more context, see https://github.com/rust-lang/rust/issues/60210",
);
err
} else {
diag.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
};
err.span_label(sp, format!("invalid suffix `{}`", text));
err.emit();
}
}
}
/// Parses a string representing a raw string literal into its final form. The
/// only operation this does is convert embedded CRLF into a single LF.
fn raw_str_lit(lit: &str) -> String {
debug!("raw_str_lit: given {}", lit.escape_default());
let mut res = String::with_capacity(lit.len());
let mut chars = lit.chars().peekable();
while let Some(c) = chars.next() {
if c == '\r' {
if *chars.peek().unwrap() != '\n' {
panic!("lexer accepted bare CR");
}
chars.next();
res.push('\n');
} else {
res.push(c);
}
}
res.shrink_to_fit();
res
}
// check if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return Some(LitKind::FloatUnsuffixed(data)),
};
Some(match &*suffix.as_str() {
"f32" => LitKind::Float(data, ast::FloatTy::F32),
"f64" => LitKind::Float(data, ast::FloatTy::F64),
suf => {
err!(diag, |span, diag| {
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
// if it looks like a width, lets try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
});
LitKind::FloatUnsuffixed(data)
}
})
}
fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
debug!("float_lit: {:?}, {:?}", s, suffix);
// FIXME #2252: bounds checking float literals is deferred until trans
// Strip underscores without allocating a new String unless necessary.
let s2;
let s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
} else {
s
};
filtered_float_lit(Symbol::intern(s), suffix, diag)
}
fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
// s can only be ascii, byte indexing is fine
// Strip underscores without allocating a new String unless necessary.
let s2;
let mut s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
} else {
s
};
debug!("integer_lit: {}, {:?}", s, suffix);
let mut base = 10;
let orig = s;
let mut ty = ast::LitIntType::Unsuffixed;
if s.starts_with('0') && s.len() > 1 {
match s.as_bytes()[1] {
b'x' => base = 16,
b'o' => base = 8,
b'b' => base = 2,
_ => { }
}
}
// 1f64 and 2f32 etc. are valid float literals.
if let Some(suf) = suffix {
if looks_like_width_suffix(&['f'], &suf.as_str()) {
let err = match base {
16 => Some("hexadecimal float literal is not supported"),
8 => Some("octal float literal is not supported"),
2 => Some("binary float literal is not supported"),
_ => None,
};
if let Some(err) = err {
err!(diag, |span, diag| {
diag.struct_span_err(span, err)
.span_label(span, "not supported")
.emit();
});
}
return filtered_float_lit(Symbol::intern(s), Some(suf), diag)
}
}
if base != 10 {
s = &s[2..];
}
if let Some(suf) = suffix {
if suf.as_str().is_empty() {
err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
}
ty = match &*suf.as_str() {
"isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
"i16" => ast::LitIntType::Signed(ast::IntTy::I16),
"i32" => ast::LitIntType::Signed(ast::IntTy::I32),
"i64" => ast::LitIntType::Signed(ast::IntTy::I64),
"i128" => ast::LitIntType::Signed(ast::IntTy::I128),
"usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize),
"u8" => ast::LitIntType::Unsigned(ast::UintTy::U8),
"u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
"u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
"u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
"u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
suf => {
// i<digits> and u<digits> look like widths, so lets
// give an error message along those lines
err!(diag, |span, diag| {
if looks_like_width_suffix(&['i', 'u'], suf) {
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for numeric literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types \
(`u32`, `isize`, etc)")
.emit();
}
});
ty
}
}
}
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
Some(match u128::from_str_radix(s, base) {
Ok(r) => LitKind::Int(r, ty),
Err(_) => {
// small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these cases have errors in the lexer: we don't want to emit
// two errors, and we especially don't want to emit this error since
// it isn't necessarily true.
let already_errored = base < 10 &&
s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if !already_errored {
err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
}
LitKind::Int(0, ty)
}
})
}

View file

@ -1,11 +1,10 @@
//! The main parser interface. //! The main parser interface.
use crate::ast::{self, CrateConfig, LitKind, NodeId}; use crate::ast::{self, CrateConfig, NodeId};
use crate::early_buffered_lints::{BufferedEarlyLint, BufferedEarlyLintId}; use crate::early_buffered_lints::{BufferedEarlyLint, BufferedEarlyLintId};
use crate::source_map::{SourceMap, FilePathMapping}; use crate::source_map::{SourceMap, FilePathMapping};
use crate::feature_gate::UnstableFeatures; use crate::feature_gate::UnstableFeatures;
use crate::parse::parser::Parser; use crate::parse::parser::Parser;
use crate::symbol::{keywords, Symbol};
use crate::syntax::parse::parser::emit_unclosed_delims; use crate::syntax::parse::parser::emit_unclosed_delims;
use crate::tokenstream::{TokenStream, TokenTree}; use crate::tokenstream::{TokenStream, TokenTree};
use crate::diagnostics::plugin::ErrorMap; use crate::diagnostics::plugin::ErrorMap;
@ -14,7 +13,6 @@ use crate::print::pprust::token_to_string;
use errors::{Applicability, FatalError, Level, Handler, ColorConfig, Diagnostic, DiagnosticBuilder}; use errors::{Applicability, FatalError, Level, Handler, ColorConfig, Diagnostic, DiagnosticBuilder};
use rustc_data_structures::sync::{Lrc, Lock}; use rustc_data_structures::sync::{Lrc, Lock};
use syntax_pos::{Span, SourceFile, FileName, MultiSpan}; use syntax_pos::{Span, SourceFile, FileName, MultiSpan};
use log::debug;
use rustc_data_structures::fx::{FxHashSet, FxHashMap}; use rustc_data_structures::fx::{FxHashSet, FxHashMap};
use std::borrow::Cow; use std::borrow::Cow;
@ -25,18 +23,15 @@ pub type PResult<'a, T> = Result<T, DiagnosticBuilder<'a>>;
#[macro_use] #[macro_use]
pub mod parser; pub mod parser;
pub mod attr;
pub mod lexer; pub mod lexer;
pub mod token; pub mod token;
pub mod attr;
pub mod diagnostics;
pub mod classify; crate mod classify;
crate mod diagnostics;
pub(crate) mod unescape; crate mod literal;
use unescape::{unescape_str, unescape_char, unescape_byte_str, unescape_byte}; crate mod unescape;
crate mod unescape_error_reporting;
pub(crate) mod unescape_error_reporting;
/// Info about a parsing session. /// Info about a parsing session.
pub struct ParseSess { pub struct ParseSess {
@ -334,339 +329,6 @@ pub fn stream_to_parser(sess: &ParseSess, stream: TokenStream) -> Parser<'_> {
Parser::new(sess, stream, None, true, false) Parser::new(sess, stream, None, true, false)
} }
/// Parses a string representing a raw string literal into its final form. The
/// only operation this does is convert embedded CRLF into a single LF.
fn raw_str_lit(lit: &str) -> String {
debug!("raw_str_lit: given {}", lit.escape_default());
let mut res = String::with_capacity(lit.len());
let mut chars = lit.chars().peekable();
while let Some(c) = chars.next() {
if c == '\r' {
if *chars.peek().unwrap() != '\n' {
panic!("lexer accepted bare CR");
}
chars.next();
res.push('\n');
} else {
res.push(c);
}
}
res.shrink_to_fit();
res
}
// check if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}
macro_rules! err {
($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
match $opt_diag {
Some(($span, $diag)) => { $($body)* }
None => return None,
}
}
}
crate fn expect_no_suffix(sp: Span, diag: &Handler, kind: &str, suffix: Option<ast::Name>) {
match suffix {
None => {/* everything ok */}
Some(suf) => {
let text = suf.as_str();
if text.is_empty() {
diag.span_bug(sp, "found empty literal suffix in Some")
}
let mut err = if kind == "a tuple index" &&
["i32", "u32", "isize", "usize"].contains(&text.to_string().as_str())
{
// #59553: warn instead of reject out of hand to allow the fix to percolate
// through the ecosystem when people fix their macros
let mut err = diag.struct_span_warn(
sp,
&format!("suffixes on {} are invalid", kind),
);
err.note(&format!(
"`{}` is *temporarily* accepted on tuple index fields as it was \
incorrectly accepted on stable for a few releases",
text,
));
err.help(
"on proc macros, you'll want to use `syn::Index::from` or \
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
to tuple field access",
);
err.note(
"for more context, see https://github.com/rust-lang/rust/issues/60210",
);
err
} else {
diag.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
};
err.span_label(sp, format!("invalid suffix `{}`", text));
err.emit();
}
}
}
impl LitKind {
/// Converts literal token with a suffix into a semantic literal.
/// Works speculatively and may return `None` is diagnostic handler is not passed.
/// If diagnostic handler is passed, always returns `Some`,
/// possibly after reporting non-fatal errors and recovery.
crate fn from_lit_token(
lit: token::Lit,
suf: Option<Symbol>,
diag: Option<(Span, &Handler)>
) -> Option<LitKind> {
if suf.is_some() && !lit.may_have_suffix() {
err!(diag, |span, diag| {
expect_no_suffix(span, diag, &format!("a {}", lit.literal_name()), suf)
});
}
Some(match lit {
token::Bool(i) => {
assert!(i == keywords::True.name() || i == keywords::False.name());
LitKind::Bool(i == keywords::True.name())
}
token::Byte(i) => {
match unescape_byte(&i.as_str()) {
Ok(c) => LitKind::Byte(c),
Err(_) => LitKind::Err(i),
}
},
token::Char(i) => {
match unescape_char(&i.as_str()) {
Ok(c) => LitKind::Char(c),
Err(_) => LitKind::Err(i),
}
},
token::Err(i) => LitKind::Err(i),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer(s) => return integer_lit(&s.as_str(), suf, diag),
token::Float(s) => return float_lit(&s.as_str(), suf, diag),
token::Str_(mut sym) => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the Token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the Token.
let mut has_error = false;
let s = &sym.as_str();
if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
let mut buf = String::with_capacity(s.len());
unescape_str(s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
}
});
if has_error {
return Some(LitKind::Err(sym));
}
sym = Symbol::intern(&buf)
}
LitKind::Str(sym, ast::StrStyle::Cooked)
}
token::StrRaw(mut sym, n) => {
// Ditto.
let s = &sym.as_str();
if s.contains('\r') {
sym = Symbol::intern(&raw_str_lit(s));
}
LitKind::Str(sym, ast::StrStyle::Raw(n))
}
token::ByteStr(i) => {
let s = &i.as_str();
let mut buf = Vec::with_capacity(s.len());
let mut has_error = false;
unescape_byte_str(s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
}
});
if has_error {
return Some(LitKind::Err(i));
}
buf.shrink_to_fit();
LitKind::ByteStr(Lrc::new(buf))
}
token::ByteStrRaw(i, _) => {
LitKind::ByteStr(Lrc::new(i.to_string().into_bytes()))
}
})
}
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return Some(LitKind::FloatUnsuffixed(data)),
};
Some(match &*suffix.as_str() {
"f32" => LitKind::Float(data, ast::FloatTy::F32),
"f64" => LitKind::Float(data, ast::FloatTy::F64),
suf => {
err!(diag, |span, diag| {
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
// if it looks like a width, lets try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
});
LitKind::FloatUnsuffixed(data)
}
})
}
fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
debug!("float_lit: {:?}, {:?}", s, suffix);
// FIXME #2252: bounds checking float literals is deferred until trans
// Strip underscores without allocating a new String unless necessary.
let s2;
let s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
} else {
s
};
filtered_float_lit(Symbol::intern(s), suffix, diag)
}
fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
// s can only be ascii, byte indexing is fine
// Strip underscores without allocating a new String unless necessary.
let s2;
let mut s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
} else {
s
};
debug!("integer_lit: {}, {:?}", s, suffix);
let mut base = 10;
let orig = s;
let mut ty = ast::LitIntType::Unsuffixed;
if s.starts_with('0') && s.len() > 1 {
match s.as_bytes()[1] {
b'x' => base = 16,
b'o' => base = 8,
b'b' => base = 2,
_ => { }
}
}
// 1f64 and 2f32 etc. are valid float literals.
if let Some(suf) = suffix {
if looks_like_width_suffix(&['f'], &suf.as_str()) {
let err = match base {
16 => Some("hexadecimal float literal is not supported"),
8 => Some("octal float literal is not supported"),
2 => Some("binary float literal is not supported"),
_ => None,
};
if let Some(err) = err {
err!(diag, |span, diag| {
diag.struct_span_err(span, err)
.span_label(span, "not supported")
.emit();
});
}
return filtered_float_lit(Symbol::intern(s), Some(suf), diag)
}
}
if base != 10 {
s = &s[2..];
}
if let Some(suf) = suffix {
if suf.as_str().is_empty() {
err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
}
ty = match &*suf.as_str() {
"isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
"i16" => ast::LitIntType::Signed(ast::IntTy::I16),
"i32" => ast::LitIntType::Signed(ast::IntTy::I32),
"i64" => ast::LitIntType::Signed(ast::IntTy::I64),
"i128" => ast::LitIntType::Signed(ast::IntTy::I128),
"usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize),
"u8" => ast::LitIntType::Unsigned(ast::UintTy::U8),
"u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
"u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
"u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
"u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
suf => {
// i<digits> and u<digits> look like widths, so lets
// give an error message along those lines
err!(diag, |span, diag| {
if looks_like_width_suffix(&['i', 'u'], suf) {
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for numeric literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types \
(`u32`, `isize`, etc)")
.emit();
}
});
ty
}
}
}
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
Some(match u128::from_str_radix(s, base) {
Ok(r) => LitKind::Int(r, ty),
Err(_) => {
// small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these cases have errors in the lexer: we don't want to emit
// two errors, and we especially don't want to emit this error since
// it isn't necessarily true.
let already_errored = base < 10 &&
s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if !already_errored {
err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
}
LitKind::Int(0, ty)
}
})
}
/// A sequence separator. /// A sequence separator.
pub struct SeqSep { pub struct SeqSep {
/// The seperator token. /// The seperator token.

View file

@ -15,7 +15,7 @@ use crate::ast::{ForeignItem, ForeignItemKind, FunctionRetTy};
use crate::ast::{GenericParam, GenericParamKind}; use crate::ast::{GenericParam, GenericParamKind};
use crate::ast::GenericArg; use crate::ast::GenericArg;
use crate::ast::{Ident, ImplItem, IsAsync, IsAuto, Item, ItemKind}; use crate::ast::{Ident, ImplItem, IsAsync, IsAuto, Item, ItemKind};
use crate::ast::{Label, Lifetime, Lit}; use crate::ast::{Label, Lifetime};
use crate::ast::{Local, LocalSource}; use crate::ast::{Local, LocalSource};
use crate::ast::MacStmtStyle; use crate::ast::MacStmtStyle;
use crate::ast::{Mac, Mac_, MacDelimiter}; use crate::ast::{Mac, Mac_, MacDelimiter};
@ -35,7 +35,7 @@ use crate::ast::{RangeEnd, RangeSyntax};
use crate::{ast, attr}; use crate::{ast, attr};
use crate::ext::base::DummyResult; use crate::ext::base::DummyResult;
use crate::source_map::{self, SourceMap, Spanned, respan}; use crate::source_map::{self, SourceMap, Spanned, respan};
use crate::parse::{self, SeqSep, classify, token}; use crate::parse::{SeqSep, classify, literal, token};
use crate::parse::lexer::{TokenAndSpan, UnmatchedBrace}; use crate::parse::lexer::{TokenAndSpan, UnmatchedBrace};
use crate::parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use crate::parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration};
use crate::parse::token::DelimToken; use crate::parse::token::DelimToken;
@ -613,7 +613,7 @@ impl<'a> Parser<'a> {
}) })
} }
fn this_token_descr(&self) -> String { crate fn this_token_descr(&self) -> String {
if let Some(prefix) = self.token_descr() { if let Some(prefix) = self.token_descr() {
format!("{} `{}`", prefix, self.this_token_to_string()) format!("{} `{}`", prefix, self.this_token_to_string())
} else { } else {
@ -621,11 +621,6 @@ impl<'a> Parser<'a> {
} }
} }
fn unexpected_last<T>(&self, t: &token::Token) -> PResult<'a, T> {
let token_str = pprust::token_to_string(t);
Err(self.span_fatal(self.prev_span, &format!("unexpected token: `{}`", token_str)))
}
crate fn unexpected<T>(&mut self) -> PResult<'a, T> { crate fn unexpected<T>(&mut self) -> PResult<'a, T> {
match self.expect_one_of(&[], &[]) { match self.expect_one_of(&[], &[]) {
Err(e) => Err(e), Err(e) => Err(e),
@ -1109,7 +1104,7 @@ impl<'a> Parser<'a> {
} }
fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) { fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
parse::expect_no_suffix(sp, &self.sess.span_diagnostic, kind, suffix) literal::expect_no_suffix(sp, &self.sess.span_diagnostic, kind, suffix)
} }
/// Attempts to consume a `<`. If `<<` is seen, replaces it with a single /// Attempts to consume a `<`. If `<<` is seen, replaces it with a single
@ -1387,7 +1382,7 @@ impl<'a> Parser<'a> {
}) })
} }
fn look_ahead_span(&self, dist: usize) -> Span { crate fn look_ahead_span(&self, dist: usize) -> Span {
if dist == 0 { if dist == 0 {
return self.span return self.span
} }
@ -2030,47 +2025,6 @@ impl<'a> Parser<'a> {
} }
} }
/// Matches `lit = true | false | token_lit`.
crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
let diag = Some((self.span, &self.sess.span_diagnostic));
if let Some(lit) = Lit::from_token(&self.token, self.span, diag) {
self.bump();
return Ok(lit);
} else if self.token == token::Dot {
// Recover `.4` as `0.4`.
let recovered = self.look_ahead(1, |t| {
if let token::Literal(token::Integer(val), suf) = *t {
let next_span = self.look_ahead_span(1);
if self.span.hi() == next_span.lo() {
let sym = String::from("0.") + &val.as_str();
let token = token::Literal(token::Float(Symbol::intern(&sym)), suf);
return Some((token, self.span.to(next_span)));
}
}
None
});
if let Some((token, span)) = recovered {
self.diagnostic()
.struct_span_err(span, "float literals must have an integer part")
.span_suggestion(
span,
"must have an integer part",
pprust::token_to_string(&token),
Applicability::MachineApplicable,
)
.emit();
let diag = Some((span, &self.sess.span_diagnostic));
if let Some(lit) = Lit::from_token(&token, span, diag) {
self.bump();
self.bump();
return Ok(lit);
}
}
}
self.unexpected_last(&self.token)
}
/// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`). /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
crate fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> { crate fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
maybe_whole_expr!(self); maybe_whole_expr!(self);

View file

@ -1,8 +1,8 @@
error: unexpected token: `!` error: unexpected token: `!`
--> $DIR/attr-eq-token-tree.rs:3:11 --> $DIR/attr-eq-token-tree.rs:3:13
| |
LL | #[my_attr = !] LL | #[my_attr = !]
| ^ | ^
error: aborting due to previous error error: aborting due to previous error

View file

@ -1,8 +1,8 @@
error: unexpected token: `,` error: unexpected token: `,`
--> $DIR/exclusive_range_pattern_syntax_collision.rs:5:15 --> $DIR/exclusive_range_pattern_syntax_collision.rs:5:17
| |
LL | [_, 99.., _] => {}, LL | [_, 99.., _] => {},
| ^^ | ^
error: aborting due to previous error error: aborting due to previous error

View file

@ -1,8 +1,8 @@
error: unexpected token: `]` error: unexpected token: `]`
--> $DIR/exclusive_range_pattern_syntax_collision2.rs:5:15 --> $DIR/exclusive_range_pattern_syntax_collision2.rs:5:17
| |
LL | [_, 99..] => {}, LL | [_, 99..] => {},
| ^^ | ^
error: aborting due to previous error error: aborting due to previous error

View file

@ -1,8 +1,8 @@
error: unexpected token: `$` error: unexpected token: `$`
--> $DIR/macro-attribute.rs:1:7 --> $DIR/macro-attribute.rs:1:9
| |
LL | #[doc = $not_there] LL | #[doc = $not_there]
| ^ | ^
error: aborting due to previous error error: aborting due to previous error

View file

@ -7,19 +7,19 @@ LL | check!(0u8);
= help: instead of using a suffixed literal (1u8, 1.0f32, etc.), use an unsuffixed version (1, 1.0, etc.). = help: instead of using a suffixed literal (1u8, 1.0f32, etc.), use an unsuffixed version (1, 1.0, etc.).
error: unexpected token: `-0` error: unexpected token: `-0`
--> $DIR/malformed-interpolated.rs:5:19 --> $DIR/malformed-interpolated.rs:5:21
| |
LL | #[my_attr = $expr] LL | #[my_attr = $expr]
| ^ | ^^^^^
... ...
LL | check!(-0); // ERROR, see above LL | check!(-0); // ERROR, see above
| ----------- in this macro invocation | ----------- in this macro invocation
error: unexpected token: `0 + 0` error: unexpected token: `0 + 0`
--> $DIR/malformed-interpolated.rs:5:19 --> $DIR/malformed-interpolated.rs:5:21
| |
LL | #[my_attr = $expr] LL | #[my_attr = $expr]
| ^ | ^^^^^
... ...
LL | check!(0 + 0); // ERROR, see above LL | check!(0 + 0); // ERROR, see above
| -------------- in this macro invocation | -------------- in this macro invocation

View file

@ -1,8 +1,8 @@
error: unexpected token: `]` error: unexpected token: `]`
--> $DIR/attr-bad-meta-2.rs:1:8 --> $DIR/attr-bad-meta-2.rs:1:9
| |
LL | #[path =] LL | #[path =]
| ^ | ^
error: aborting due to previous error error: aborting due to previous error

View file

@ -1,8 +1,8 @@
error: unexpected token: `)` error: unexpected token: `)`
--> $DIR/pat-tuple-5.rs:3:14 --> $DIR/pat-tuple-5.rs:3:16
| |
LL | (pat ..) => {} LL | (pat ..) => {}
| ^^ | ^
error: aborting due to previous error error: aborting due to previous error