parser: split into {ty, path}.rs
This commit is contained in:
parent
e81347c368
commit
3dbfbafe3e
3 changed files with 930 additions and 899 deletions
|
@ -1,5 +1,3 @@
|
|||
// ignore-tidy-filelength
|
||||
|
||||
mod expr;
|
||||
use expr::LhsExpr;
|
||||
mod pat;
|
||||
|
@ -7,20 +5,21 @@ mod item;
|
|||
pub use item::AliasKind;
|
||||
mod module;
|
||||
pub use module::{ModulePath, ModulePathSuccess};
|
||||
mod ty;
|
||||
mod path;
|
||||
pub use path::PathStyle;
|
||||
|
||||
use crate::ast::{self, AngleBracketedArgs, ParenthesizedArgs, AttrStyle, BareFnTy};
|
||||
use crate::ast::{AnonConst, Arg, Attribute, BindingMode};
|
||||
use crate::ast::{self, AttrStyle};
|
||||
use crate::ast::{Arg, Attribute, BindingMode};
|
||||
use crate::ast::{Block, BlockCheckMode, Expr, ExprKind, Stmt, StmtKind};
|
||||
use crate::ast::{FnDecl, FunctionRetTy};
|
||||
use crate::ast::{FnDecl};
|
||||
use crate::ast::{Ident, IsAsync, Local, Lifetime};
|
||||
use crate::ast::{MacStmtStyle, Mac_, MacDelimiter};
|
||||
use crate::ast::{MutTy, Mutability};
|
||||
use crate::ast::{PolyTraitRef, QSelf, PathSegment};
|
||||
use crate::ast::{Mutability};
|
||||
use crate::ast::StrStyle;
|
||||
use crate::ast::SelfKind;
|
||||
use crate::ast::{GenericBound, TraitBoundModifier, TraitObjectSyntax};
|
||||
use crate::ast::{GenericParam, GenericParamKind, GenericArg, WhereClause};
|
||||
use crate::ast::{Ty, TyKind, AssocTyConstraint, AssocTyConstraintKind, GenericBounds};
|
||||
use crate::ast::{GenericParam, GenericParamKind, WhereClause};
|
||||
use crate::ast::{Ty, TyKind, GenericBounds};
|
||||
use crate::ast::{Visibility, VisibilityKind, Unsafety, CrateSugar};
|
||||
use crate::ext::base::DummyResult;
|
||||
use crate::ext::hygiene::SyntaxContext;
|
||||
|
@ -54,29 +53,6 @@ bitflags::bitflags! {
|
|||
}
|
||||
}
|
||||
|
||||
/// Specifies how to parse a path.
|
||||
#[derive(Copy, Clone, PartialEq)]
|
||||
pub enum PathStyle {
|
||||
/// In some contexts, notably in expressions, paths with generic arguments are ambiguous
|
||||
/// with something else. For example, in expressions `segment < ....` can be interpreted
|
||||
/// as a comparison and `segment ( ....` can be interpreted as a function call.
|
||||
/// In all such contexts the non-path interpretation is preferred by default for practical
|
||||
/// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
|
||||
/// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
|
||||
Expr,
|
||||
/// In other contexts, notably in types, no ambiguity exists and paths can be written
|
||||
/// without the disambiguator, e.g., `x<y>` - unambiguously a path.
|
||||
/// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
|
||||
Type,
|
||||
/// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
|
||||
/// visibilities or attributes.
|
||||
/// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
|
||||
/// (paths in "mod" contexts have to be checked later for absence of generic arguments
|
||||
/// anyway, due to macros), but it is used to avoid weird suggestions about expected
|
||||
/// tokens when something goes wrong.
|
||||
Mod,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Debug)]
|
||||
crate enum SemiColonMode {
|
||||
Break,
|
||||
|
@ -357,16 +333,6 @@ impl TokenType {
|
|||
}
|
||||
}
|
||||
|
||||
/// Returns `true` if `IDENT t` can start a type -- `IDENT::a::b`, `IDENT<u8, u8>`,
|
||||
/// `IDENT<<u8 as Trait>::AssocTy>`.
|
||||
///
|
||||
/// Types can also be of the form `IDENT(u8, u8) -> u8`, however this assumes
|
||||
/// that `IDENT` is not the ident of a fn trait.
|
||||
fn can_continue_type_after_non_fn_ident(t: &Token) -> bool {
|
||||
t == &token::ModSep || t == &token::Lt ||
|
||||
t == &token::BinOp(token::Shl)
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
crate enum TokenExpectType {
|
||||
Expect,
|
||||
|
@ -976,50 +942,6 @@ impl<'a> Parser<'a> {
|
|||
self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
|
||||
}
|
||||
|
||||
/// Is the current token one of the keywords that signals a bare function type?
|
||||
fn token_is_bare_fn_keyword(&mut self) -> bool {
|
||||
self.check_keyword(kw::Fn) ||
|
||||
self.check_keyword(kw::Unsafe) ||
|
||||
self.check_keyword(kw::Extern)
|
||||
}
|
||||
|
||||
/// Parses a `TyKind::BareFn` type.
|
||||
fn parse_ty_bare_fn(&mut self, generic_params: Vec<GenericParam>) -> PResult<'a, TyKind> {
|
||||
/*
|
||||
|
||||
[unsafe] [extern "ABI"] fn (S) -> T
|
||||
^~~~^ ^~~~^ ^~^ ^
|
||||
| | | |
|
||||
| | | Return type
|
||||
| | Argument types
|
||||
| |
|
||||
| ABI
|
||||
Function Style
|
||||
*/
|
||||
|
||||
let unsafety = self.parse_unsafety();
|
||||
let abi = if self.eat_keyword(kw::Extern) {
|
||||
self.parse_opt_abi()?.unwrap_or(Abi::C)
|
||||
} else {
|
||||
Abi::Rust
|
||||
};
|
||||
|
||||
self.expect_keyword(kw::Fn)?;
|
||||
let (inputs, c_variadic) = self.parse_fn_args(false, true)?;
|
||||
let ret_ty = self.parse_ret_ty(false)?;
|
||||
let decl = P(FnDecl {
|
||||
inputs,
|
||||
output: ret_ty,
|
||||
c_variadic,
|
||||
});
|
||||
Ok(TyKind::BareFn(P(BareFnTy {
|
||||
abi,
|
||||
unsafety,
|
||||
generic_params,
|
||||
decl,
|
||||
})))
|
||||
}
|
||||
|
||||
/// Parses asyncness: `async` or nothing.
|
||||
fn parse_asyncness(&mut self) -> IsAsync {
|
||||
if self.eat_keyword(kw::Async) {
|
||||
|
@ -1041,236 +963,6 @@ impl<'a> Parser<'a> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Parses an optional return type `[ -> TY ]` in a function declaration.
|
||||
fn parse_ret_ty(&mut self, allow_plus: bool) -> PResult<'a, FunctionRetTy> {
|
||||
if self.eat(&token::RArrow) {
|
||||
Ok(FunctionRetTy::Ty(self.parse_ty_common(allow_plus, true, false)?))
|
||||
} else {
|
||||
Ok(FunctionRetTy::Default(self.token.span.shrink_to_lo()))
|
||||
}
|
||||
}
|
||||
|
||||
/// Parses a type.
|
||||
pub fn parse_ty(&mut self) -> PResult<'a, P<Ty>> {
|
||||
self.parse_ty_common(true, true, false)
|
||||
}
|
||||
|
||||
/// Parses a type in restricted contexts where `+` is not permitted.
|
||||
///
|
||||
/// Example 1: `&'a TYPE`
|
||||
/// `+` is prohibited to maintain operator priority (P(+) < P(&)).
|
||||
/// Example 2: `value1 as TYPE + value2`
|
||||
/// `+` is prohibited to avoid interactions with expression grammar.
|
||||
fn parse_ty_no_plus(&mut self) -> PResult<'a, P<Ty>> {
|
||||
self.parse_ty_common(false, true, false)
|
||||
}
|
||||
|
||||
fn parse_ty_common(&mut self, allow_plus: bool, allow_qpath_recovery: bool,
|
||||
allow_c_variadic: bool) -> PResult<'a, P<Ty>> {
|
||||
maybe_recover_from_interpolated_ty_qpath!(self, allow_qpath_recovery);
|
||||
maybe_whole!(self, NtTy, |x| x);
|
||||
|
||||
let lo = self.token.span;
|
||||
let mut impl_dyn_multi = false;
|
||||
let node = if self.eat(&token::OpenDelim(token::Paren)) {
|
||||
// `(TYPE)` is a parenthesized type.
|
||||
// `(TYPE,)` is a tuple with a single field of type TYPE.
|
||||
let mut ts = vec![];
|
||||
let mut last_comma = false;
|
||||
while self.token != token::CloseDelim(token::Paren) {
|
||||
ts.push(self.parse_ty()?);
|
||||
if self.eat(&token::Comma) {
|
||||
last_comma = true;
|
||||
} else {
|
||||
last_comma = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
let trailing_plus = self.prev_token_kind == PrevTokenKind::Plus;
|
||||
self.expect(&token::CloseDelim(token::Paren))?;
|
||||
|
||||
if ts.len() == 1 && !last_comma {
|
||||
let ty = ts.into_iter().nth(0).unwrap().into_inner();
|
||||
let maybe_bounds = allow_plus && self.token.is_like_plus();
|
||||
match ty.node {
|
||||
// `(TY_BOUND_NOPAREN) + BOUND + ...`.
|
||||
TyKind::Path(None, ref path) if maybe_bounds => {
|
||||
self.parse_remaining_bounds(Vec::new(), path.clone(), lo, true)?
|
||||
}
|
||||
TyKind::TraitObject(ref bounds, TraitObjectSyntax::None)
|
||||
if maybe_bounds && bounds.len() == 1 && !trailing_plus => {
|
||||
let path = match bounds[0] {
|
||||
GenericBound::Trait(ref pt, ..) => pt.trait_ref.path.clone(),
|
||||
GenericBound::Outlives(..) => self.bug("unexpected lifetime bound"),
|
||||
};
|
||||
self.parse_remaining_bounds(Vec::new(), path, lo, true)?
|
||||
}
|
||||
// `(TYPE)`
|
||||
_ => TyKind::Paren(P(ty))
|
||||
}
|
||||
} else {
|
||||
TyKind::Tup(ts)
|
||||
}
|
||||
} else if self.eat(&token::Not) {
|
||||
// Never type `!`
|
||||
TyKind::Never
|
||||
} else if self.eat(&token::BinOp(token::Star)) {
|
||||
// Raw pointer
|
||||
TyKind::Ptr(self.parse_ptr()?)
|
||||
} else if self.eat(&token::OpenDelim(token::Bracket)) {
|
||||
// Array or slice
|
||||
let t = self.parse_ty()?;
|
||||
// Parse optional `; EXPR` in `[TYPE; EXPR]`
|
||||
let t = match self.maybe_parse_fixed_length_of_vec()? {
|
||||
None => TyKind::Slice(t),
|
||||
Some(length) => TyKind::Array(t, AnonConst {
|
||||
id: ast::DUMMY_NODE_ID,
|
||||
value: length,
|
||||
}),
|
||||
};
|
||||
self.expect(&token::CloseDelim(token::Bracket))?;
|
||||
t
|
||||
} else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) {
|
||||
// Reference
|
||||
self.expect_and()?;
|
||||
self.parse_borrowed_pointee()?
|
||||
} else if self.eat_keyword_noexpect(kw::Typeof) {
|
||||
// `typeof(EXPR)`
|
||||
// In order to not be ambiguous, the type must be surrounded by parens.
|
||||
self.expect(&token::OpenDelim(token::Paren))?;
|
||||
let e = AnonConst {
|
||||
id: ast::DUMMY_NODE_ID,
|
||||
value: self.parse_expr()?,
|
||||
};
|
||||
self.expect(&token::CloseDelim(token::Paren))?;
|
||||
TyKind::Typeof(e)
|
||||
} else if self.eat_keyword(kw::Underscore) {
|
||||
// A type to be inferred `_`
|
||||
TyKind::Infer
|
||||
} else if self.token_is_bare_fn_keyword() {
|
||||
// Function pointer type
|
||||
self.parse_ty_bare_fn(Vec::new())?
|
||||
} else if self.check_keyword(kw::For) {
|
||||
// Function pointer type or bound list (trait object type) starting with a poly-trait.
|
||||
// `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T`
|
||||
// `for<'lt> Trait1<'lt> + Trait2 + 'a`
|
||||
let lo = self.token.span;
|
||||
let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
|
||||
if self.token_is_bare_fn_keyword() {
|
||||
self.parse_ty_bare_fn(lifetime_defs)?
|
||||
} else {
|
||||
let path = self.parse_path(PathStyle::Type)?;
|
||||
let parse_plus = allow_plus && self.check_plus();
|
||||
self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)?
|
||||
}
|
||||
} else if self.eat_keyword(kw::Impl) {
|
||||
// Always parse bounds greedily for better error recovery.
|
||||
let bounds = self.parse_generic_bounds(None)?;
|
||||
impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus;
|
||||
TyKind::ImplTrait(ast::DUMMY_NODE_ID, bounds)
|
||||
} else if self.check_keyword(kw::Dyn) &&
|
||||
(self.token.span.rust_2018() ||
|
||||
self.look_ahead(1, |t| t.can_begin_bound() &&
|
||||
!can_continue_type_after_non_fn_ident(t))) {
|
||||
self.bump(); // `dyn`
|
||||
// Always parse bounds greedily for better error recovery.
|
||||
let bounds = self.parse_generic_bounds(None)?;
|
||||
impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus;
|
||||
TyKind::TraitObject(bounds, TraitObjectSyntax::Dyn)
|
||||
} else if self.check(&token::Question) ||
|
||||
self.check_lifetime() && self.look_ahead(1, |t| t.is_like_plus()) {
|
||||
// Bound list (trait object type)
|
||||
TyKind::TraitObject(self.parse_generic_bounds_common(allow_plus, None)?,
|
||||
TraitObjectSyntax::None)
|
||||
} else if self.eat_lt() {
|
||||
// Qualified path
|
||||
let (qself, path) = self.parse_qpath(PathStyle::Type)?;
|
||||
TyKind::Path(Some(qself), path)
|
||||
} else if self.token.is_path_start() {
|
||||
// Simple path
|
||||
let path = self.parse_path(PathStyle::Type)?;
|
||||
if self.eat(&token::Not) {
|
||||
// Macro invocation in type position
|
||||
let (delim, tts) = self.expect_delimited_token_tree()?;
|
||||
let node = Mac_ {
|
||||
path,
|
||||
tts,
|
||||
delim,
|
||||
prior_type_ascription: self.last_type_ascription,
|
||||
};
|
||||
TyKind::Mac(respan(lo.to(self.prev_span), node))
|
||||
} else {
|
||||
// Just a type path or bound list (trait object type) starting with a trait.
|
||||
// `Type`
|
||||
// `Trait1 + Trait2 + 'a`
|
||||
if allow_plus && self.check_plus() {
|
||||
self.parse_remaining_bounds(Vec::new(), path, lo, true)?
|
||||
} else {
|
||||
TyKind::Path(None, path)
|
||||
}
|
||||
}
|
||||
} else if self.check(&token::DotDotDot) {
|
||||
if allow_c_variadic {
|
||||
self.eat(&token::DotDotDot);
|
||||
TyKind::CVarArgs
|
||||
} else {
|
||||
return Err(self.fatal(
|
||||
"only foreign functions are allowed to be C-variadic"
|
||||
));
|
||||
}
|
||||
} else {
|
||||
let msg = format!("expected type, found {}", self.this_token_descr());
|
||||
let mut err = self.fatal(&msg);
|
||||
err.span_label(self.token.span, "expected type");
|
||||
self.maybe_annotate_with_ascription(&mut err, true);
|
||||
return Err(err);
|
||||
};
|
||||
|
||||
let span = lo.to(self.prev_span);
|
||||
let ty = P(Ty { node, span, id: ast::DUMMY_NODE_ID });
|
||||
|
||||
// Try to recover from use of `+` with incorrect priority.
|
||||
self.maybe_report_ambiguous_plus(allow_plus, impl_dyn_multi, &ty);
|
||||
self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?;
|
||||
self.maybe_recover_from_bad_qpath(ty, allow_qpath_recovery)
|
||||
}
|
||||
|
||||
fn parse_remaining_bounds(&mut self, generic_params: Vec<GenericParam>, path: ast::Path,
|
||||
lo: Span, parse_plus: bool) -> PResult<'a, TyKind> {
|
||||
let poly_trait_ref = PolyTraitRef::new(generic_params, path, lo.to(self.prev_span));
|
||||
let mut bounds = vec![GenericBound::Trait(poly_trait_ref, TraitBoundModifier::None)];
|
||||
if parse_plus {
|
||||
self.eat_plus(); // `+`, or `+=` gets split and `+` is discarded
|
||||
bounds.append(&mut self.parse_generic_bounds(Some(self.prev_span))?);
|
||||
}
|
||||
Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::None))
|
||||
}
|
||||
|
||||
fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> {
|
||||
let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None };
|
||||
let mutbl = self.parse_mutability();
|
||||
let ty = self.parse_ty_no_plus()?;
|
||||
return Ok(TyKind::Rptr(opt_lifetime, MutTy { ty, mutbl }));
|
||||
}
|
||||
|
||||
fn parse_ptr(&mut self) -> PResult<'a, MutTy> {
|
||||
let mutbl = if self.eat_keyword(kw::Mut) {
|
||||
Mutability::Mutable
|
||||
} else if self.eat_keyword(kw::Const) {
|
||||
Mutability::Immutable
|
||||
} else {
|
||||
let span = self.prev_span;
|
||||
let msg = "expected mut or const in raw pointer type";
|
||||
self.struct_span_err(span, msg)
|
||||
.span_label(span, msg)
|
||||
.help("use `*mut T` or `*const T` as appropriate")
|
||||
.emit();
|
||||
Mutability::Immutable
|
||||
};
|
||||
let t = self.parse_ty_no_plus()?;
|
||||
Ok(MutTy { ty: t, mutbl })
|
||||
}
|
||||
|
||||
fn is_named_argument(&self) -> bool {
|
||||
let offset = match self.token.kind {
|
||||
token::Interpolated(ref nt) => match **nt {
|
||||
|
@ -1387,25 +1079,6 @@ impl<'a> Parser<'a> {
|
|||
})
|
||||
}
|
||||
|
||||
fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<'a, Option<P<ast::Expr>>> {
|
||||
if self.eat(&token::Semi) {
|
||||
Ok(Some(self.parse_expr()?))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_path_segment_ident(&mut self) -> PResult<'a, ast::Ident> {
|
||||
match self.token.kind {
|
||||
token::Ident(name, _) if name.is_path_segment_keyword() => {
|
||||
let span = self.token.span;
|
||||
self.bump();
|
||||
Ok(Ident::new(name, span))
|
||||
}
|
||||
_ => self.parse_ident(),
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_ident_or_underscore(&mut self) -> PResult<'a, ast::Ident> {
|
||||
match self.token.kind {
|
||||
token::Ident(name, false) if name == kw::Underscore => {
|
||||
|
@ -1417,188 +1090,6 @@ impl<'a> Parser<'a> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Parses a qualified path.
|
||||
/// Assumes that the leading `<` has been parsed already.
|
||||
///
|
||||
/// `qualified_path = <type [as trait_ref]>::path`
|
||||
///
|
||||
/// # Examples
|
||||
/// `<T>::default`
|
||||
/// `<T as U>::a`
|
||||
/// `<T as U>::F::a<S>` (without disambiguator)
|
||||
/// `<T as U>::F::a::<S>` (with disambiguator)
|
||||
fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, ast::Path)> {
|
||||
let lo = self.prev_span;
|
||||
let ty = self.parse_ty()?;
|
||||
|
||||
// `path` will contain the prefix of the path up to the `>`,
|
||||
// if any (e.g., `U` in the `<T as U>::*` examples
|
||||
// above). `path_span` has the span of that path, or an empty
|
||||
// span in the case of something like `<T>::Bar`.
|
||||
let (mut path, path_span);
|
||||
if self.eat_keyword(kw::As) {
|
||||
let path_lo = self.token.span;
|
||||
path = self.parse_path(PathStyle::Type)?;
|
||||
path_span = path_lo.to(self.prev_span);
|
||||
} else {
|
||||
path_span = self.token.span.to(self.token.span);
|
||||
path = ast::Path { segments: Vec::new(), span: path_span };
|
||||
}
|
||||
|
||||
// See doc comment for `unmatched_angle_bracket_count`.
|
||||
self.expect(&token::Gt)?;
|
||||
if self.unmatched_angle_bracket_count > 0 {
|
||||
self.unmatched_angle_bracket_count -= 1;
|
||||
debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
|
||||
}
|
||||
|
||||
self.expect(&token::ModSep)?;
|
||||
|
||||
let qself = QSelf { ty, path_span, position: path.segments.len() };
|
||||
self.parse_path_segments(&mut path.segments, style)?;
|
||||
|
||||
Ok((qself, ast::Path { segments: path.segments, span: lo.to(self.prev_span) }))
|
||||
}
|
||||
|
||||
/// Parses simple paths.
|
||||
///
|
||||
/// `path = [::] segment+`
|
||||
/// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
|
||||
///
|
||||
/// # Examples
|
||||
/// `a::b::C<D>` (without disambiguator)
|
||||
/// `a::b::C::<D>` (with disambiguator)
|
||||
/// `Fn(Args)` (without disambiguator)
|
||||
/// `Fn::(Args)` (with disambiguator)
|
||||
pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, ast::Path> {
|
||||
maybe_whole!(self, NtPath, |path| {
|
||||
if style == PathStyle::Mod &&
|
||||
path.segments.iter().any(|segment| segment.args.is_some()) {
|
||||
self.diagnostic().span_err(path.span, "unexpected generic arguments in path");
|
||||
}
|
||||
path
|
||||
});
|
||||
|
||||
let lo = self.meta_var_span.unwrap_or(self.token.span);
|
||||
let mut segments = Vec::new();
|
||||
let mod_sep_ctxt = self.token.span.ctxt();
|
||||
if self.eat(&token::ModSep) {
|
||||
segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
|
||||
}
|
||||
self.parse_path_segments(&mut segments, style)?;
|
||||
|
||||
Ok(ast::Path { segments, span: lo.to(self.prev_span) })
|
||||
}
|
||||
|
||||
/// Like `parse_path`, but also supports parsing `Word` meta items into paths for
|
||||
/// backwards-compatibility. This is used when parsing derive macro paths in `#[derive]`
|
||||
/// attributes.
|
||||
pub fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, ast::Path> {
|
||||
let meta_ident = match self.token.kind {
|
||||
token::Interpolated(ref nt) => match **nt {
|
||||
token::NtMeta(ref meta) => match meta.node {
|
||||
ast::MetaItemKind::Word => Some(meta.path.clone()),
|
||||
_ => None,
|
||||
},
|
||||
_ => None,
|
||||
},
|
||||
_ => None,
|
||||
};
|
||||
if let Some(path) = meta_ident {
|
||||
self.bump();
|
||||
return Ok(path);
|
||||
}
|
||||
self.parse_path(style)
|
||||
}
|
||||
|
||||
crate fn parse_path_segments(&mut self,
|
||||
segments: &mut Vec<PathSegment>,
|
||||
style: PathStyle)
|
||||
-> PResult<'a, ()> {
|
||||
loop {
|
||||
let segment = self.parse_path_segment(style)?;
|
||||
if style == PathStyle::Expr {
|
||||
// In order to check for trailing angle brackets, we must have finished
|
||||
// recursing (`parse_path_segment` can indirectly call this function),
|
||||
// that is, the next token must be the highlighted part of the below example:
|
||||
//
|
||||
// `Foo::<Bar as Baz<T>>::Qux`
|
||||
// ^ here
|
||||
//
|
||||
// As opposed to the below highlight (if we had only finished the first
|
||||
// recursion):
|
||||
//
|
||||
// `Foo::<Bar as Baz<T>>::Qux`
|
||||
// ^ here
|
||||
//
|
||||
// `PathStyle::Expr` is only provided at the root invocation and never in
|
||||
// `parse_path_segment` to recurse and therefore can be checked to maintain
|
||||
// this invariant.
|
||||
self.check_trailing_angle_brackets(&segment, token::ModSep);
|
||||
}
|
||||
segments.push(segment);
|
||||
|
||||
if self.is_import_coupler() || !self.eat(&token::ModSep) {
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> {
|
||||
let ident = self.parse_path_segment_ident()?;
|
||||
|
||||
let is_args_start = |token: &Token| match token.kind {
|
||||
token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren)
|
||||
| token::LArrow => true,
|
||||
_ => false,
|
||||
};
|
||||
let check_args_start = |this: &mut Self| {
|
||||
this.expected_tokens.extend_from_slice(
|
||||
&[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))]
|
||||
);
|
||||
is_args_start(&this.token)
|
||||
};
|
||||
|
||||
Ok(if style == PathStyle::Type && check_args_start(self) ||
|
||||
style != PathStyle::Mod && self.check(&token::ModSep)
|
||||
&& self.look_ahead(1, |t| is_args_start(t)) {
|
||||
// We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
|
||||
// it isn't, then we reset the unmatched angle bracket count as we're about to start
|
||||
// parsing a new path.
|
||||
if style == PathStyle::Expr {
|
||||
self.unmatched_angle_bracket_count = 0;
|
||||
self.max_angle_bracket_count = 0;
|
||||
}
|
||||
|
||||
// Generic arguments are found - `<`, `(`, `::<` or `::(`.
|
||||
self.eat(&token::ModSep);
|
||||
let lo = self.token.span;
|
||||
let args = if self.eat_lt() {
|
||||
// `<'a, T, A = U>`
|
||||
let (args, constraints) =
|
||||
self.parse_generic_args_with_leaning_angle_bracket_recovery(style, lo)?;
|
||||
self.expect_gt()?;
|
||||
let span = lo.to(self.prev_span);
|
||||
AngleBracketedArgs { args, constraints, span }.into()
|
||||
} else {
|
||||
// `(T, U) -> R`
|
||||
let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
|
||||
let span = lo.to(self.prev_span);
|
||||
let output = if self.eat(&token::RArrow) {
|
||||
Some(self.parse_ty_common(false, false, false)?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
ParenthesizedArgs { inputs, output, span }.into()
|
||||
};
|
||||
|
||||
PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
|
||||
} else {
|
||||
// Generic arguments are not found.
|
||||
PathSegment::from_ident(ident)
|
||||
})
|
||||
}
|
||||
|
||||
crate fn check_lifetime(&mut self) -> bool {
|
||||
self.expected_tokens.push(TokenType::Lifetime);
|
||||
self.token.is_lifetime()
|
||||
|
@ -2202,130 +1693,6 @@ impl<'a> Parser<'a> {
|
|||
}).emit();
|
||||
}
|
||||
|
||||
/// Parses bounds of a type parameter `BOUND + BOUND + ...`, possibly with trailing `+`.
|
||||
///
|
||||
/// ```
|
||||
/// BOUND = TY_BOUND | LT_BOUND
|
||||
/// LT_BOUND = LIFETIME (e.g., `'a`)
|
||||
/// TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN)
|
||||
/// TY_BOUND_NOPAREN = [?] [for<LT_PARAM_DEFS>] SIMPLE_PATH (e.g., `?for<'a: 'b> m::Trait<'a>`)
|
||||
/// ```
|
||||
fn parse_generic_bounds_common(&mut self,
|
||||
allow_plus: bool,
|
||||
colon_span: Option<Span>) -> PResult<'a, GenericBounds> {
|
||||
let mut bounds = Vec::new();
|
||||
let mut negative_bounds = Vec::new();
|
||||
let mut last_plus_span = None;
|
||||
let mut was_negative = false;
|
||||
loop {
|
||||
// This needs to be synchronized with `TokenKind::can_begin_bound`.
|
||||
let is_bound_start = self.check_path() || self.check_lifetime() ||
|
||||
self.check(&token::Not) || // used for error reporting only
|
||||
self.check(&token::Question) ||
|
||||
self.check_keyword(kw::For) ||
|
||||
self.check(&token::OpenDelim(token::Paren));
|
||||
if is_bound_start {
|
||||
let lo = self.token.span;
|
||||
let has_parens = self.eat(&token::OpenDelim(token::Paren));
|
||||
let inner_lo = self.token.span;
|
||||
let is_negative = self.eat(&token::Not);
|
||||
let question = if self.eat(&token::Question) { Some(self.prev_span) } else { None };
|
||||
if self.token.is_lifetime() {
|
||||
if let Some(question_span) = question {
|
||||
self.span_err(question_span,
|
||||
"`?` may only modify trait bounds, not lifetime bounds");
|
||||
}
|
||||
bounds.push(GenericBound::Outlives(self.expect_lifetime()));
|
||||
if has_parens {
|
||||
let inner_span = inner_lo.to(self.prev_span);
|
||||
self.expect(&token::CloseDelim(token::Paren))?;
|
||||
let mut err = self.struct_span_err(
|
||||
lo.to(self.prev_span),
|
||||
"parenthesized lifetime bounds are not supported"
|
||||
);
|
||||
if let Ok(snippet) = self.span_to_snippet(inner_span) {
|
||||
err.span_suggestion_short(
|
||||
lo.to(self.prev_span),
|
||||
"remove the parentheses",
|
||||
snippet.to_owned(),
|
||||
Applicability::MachineApplicable
|
||||
);
|
||||
}
|
||||
err.emit();
|
||||
}
|
||||
} else {
|
||||
let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
|
||||
let path = self.parse_path(PathStyle::Type)?;
|
||||
if has_parens {
|
||||
self.expect(&token::CloseDelim(token::Paren))?;
|
||||
}
|
||||
let poly_span = lo.to(self.prev_span);
|
||||
if is_negative {
|
||||
was_negative = true;
|
||||
if let Some(sp) = last_plus_span.or(colon_span) {
|
||||
negative_bounds.push(sp.to(poly_span));
|
||||
}
|
||||
} else {
|
||||
let poly_trait = PolyTraitRef::new(lifetime_defs, path, poly_span);
|
||||
let modifier = if question.is_some() {
|
||||
TraitBoundModifier::Maybe
|
||||
} else {
|
||||
TraitBoundModifier::None
|
||||
};
|
||||
bounds.push(GenericBound::Trait(poly_trait, modifier));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break
|
||||
}
|
||||
|
||||
if !allow_plus || !self.eat_plus() {
|
||||
break
|
||||
} else {
|
||||
last_plus_span = Some(self.prev_span);
|
||||
}
|
||||
}
|
||||
|
||||
if !negative_bounds.is_empty() || was_negative {
|
||||
let plural = negative_bounds.len() > 1;
|
||||
let last_span = negative_bounds.last().map(|sp| *sp);
|
||||
let mut err = self.struct_span_err(
|
||||
negative_bounds,
|
||||
"negative trait bounds are not supported",
|
||||
);
|
||||
if let Some(sp) = last_span {
|
||||
err.span_label(sp, "negative trait bounds are not supported");
|
||||
}
|
||||
if let Some(bound_list) = colon_span {
|
||||
let bound_list = bound_list.to(self.prev_span);
|
||||
let mut new_bound_list = String::new();
|
||||
if !bounds.is_empty() {
|
||||
let mut snippets = bounds.iter().map(|bound| bound.span())
|
||||
.map(|span| self.span_to_snippet(span));
|
||||
while let Some(Ok(snippet)) = snippets.next() {
|
||||
new_bound_list.push_str(" + ");
|
||||
new_bound_list.push_str(&snippet);
|
||||
}
|
||||
new_bound_list = new_bound_list.replacen(" +", ":", 1);
|
||||
}
|
||||
err.span_suggestion_hidden(
|
||||
bound_list,
|
||||
&format!("remove the trait bound{}", if plural { "s" } else { "" }),
|
||||
new_bound_list,
|
||||
Applicability::MachineApplicable,
|
||||
);
|
||||
}
|
||||
err.emit();
|
||||
}
|
||||
|
||||
return Ok(bounds);
|
||||
}
|
||||
|
||||
crate fn parse_generic_bounds(&mut self,
|
||||
colon_span: Option<Span>) -> PResult<'a, GenericBounds> {
|
||||
self.parse_generic_bounds_common(true, colon_span)
|
||||
}
|
||||
|
||||
/// Parses bounds of a lifetime parameter `BOUND + BOUND + BOUND`, possibly with trailing `+`.
|
||||
///
|
||||
/// ```
|
||||
|
@ -2475,250 +1842,6 @@ impl<'a> Parser<'a> {
|
|||
})
|
||||
}
|
||||
|
||||
/// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
|
||||
/// For the purposes of understanding the parsing logic of generic arguments, this function
|
||||
/// can be thought of being the same as just calling `self.parse_generic_args()` if the source
|
||||
/// had the correct amount of leading angle brackets.
|
||||
///
|
||||
/// ```ignore (diagnostics)
|
||||
/// bar::<<<<T as Foo>::Output>();
|
||||
/// ^^ help: remove extra angle brackets
|
||||
/// ```
|
||||
fn parse_generic_args_with_leaning_angle_bracket_recovery(
|
||||
&mut self,
|
||||
style: PathStyle,
|
||||
lo: Span,
|
||||
) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> {
|
||||
// We need to detect whether there are extra leading left angle brackets and produce an
|
||||
// appropriate error and suggestion. This cannot be implemented by looking ahead at
|
||||
// upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
|
||||
// then there won't be matching `>` tokens to find.
|
||||
//
|
||||
// To explain how this detection works, consider the following example:
|
||||
//
|
||||
// ```ignore (diagnostics)
|
||||
// bar::<<<<T as Foo>::Output>();
|
||||
// ^^ help: remove extra angle brackets
|
||||
// ```
|
||||
//
|
||||
// Parsing of the left angle brackets starts in this function. We start by parsing the
|
||||
// `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
|
||||
// `eat_lt`):
|
||||
//
|
||||
// *Upcoming tokens:* `<<<<T as Foo>::Output>;`
|
||||
// *Unmatched count:* 1
|
||||
// *`parse_path_segment` calls deep:* 0
|
||||
//
|
||||
// This has the effect of recursing as this function is called if a `<` character
|
||||
// is found within the expected generic arguments:
|
||||
//
|
||||
// *Upcoming tokens:* `<<<T as Foo>::Output>;`
|
||||
// *Unmatched count:* 2
|
||||
// *`parse_path_segment` calls deep:* 1
|
||||
//
|
||||
// Eventually we will have recursed until having consumed all of the `<` tokens and
|
||||
// this will be reflected in the count:
|
||||
//
|
||||
// *Upcoming tokens:* `T as Foo>::Output>;`
|
||||
// *Unmatched count:* 4
|
||||
// `parse_path_segment` calls deep:* 3
|
||||
//
|
||||
// The parser will continue until reaching the first `>` - this will decrement the
|
||||
// unmatched angle bracket count and return to the parent invocation of this function
|
||||
// having succeeded in parsing:
|
||||
//
|
||||
// *Upcoming tokens:* `::Output>;`
|
||||
// *Unmatched count:* 3
|
||||
// *`parse_path_segment` calls deep:* 2
|
||||
//
|
||||
// This will continue until the next `>` character which will also return successfully
|
||||
// to the parent invocation of this function and decrement the count:
|
||||
//
|
||||
// *Upcoming tokens:* `;`
|
||||
// *Unmatched count:* 2
|
||||
// *`parse_path_segment` calls deep:* 1
|
||||
//
|
||||
// At this point, this function will expect to find another matching `>` character but
|
||||
// won't be able to and will return an error. This will continue all the way up the
|
||||
// call stack until the first invocation:
|
||||
//
|
||||
// *Upcoming tokens:* `;`
|
||||
// *Unmatched count:* 2
|
||||
// *`parse_path_segment` calls deep:* 0
|
||||
//
|
||||
// In doing this, we have managed to work out how many unmatched leading left angle
|
||||
// brackets there are, but we cannot recover as the unmatched angle brackets have
|
||||
// already been consumed. To remedy this, we keep a snapshot of the parser state
|
||||
// before we do the above. We can then inspect whether we ended up with a parsing error
|
||||
// and unmatched left angle brackets and if so, restore the parser state before we
|
||||
// consumed any `<` characters to emit an error and consume the erroneous tokens to
|
||||
// recover by attempting to parse again.
|
||||
//
|
||||
// In practice, the recursion of this function is indirect and there will be other
|
||||
// locations that consume some `<` characters - as long as we update the count when
|
||||
// this happens, it isn't an issue.
|
||||
|
||||
let is_first_invocation = style == PathStyle::Expr;
|
||||
// Take a snapshot before attempting to parse - we can restore this later.
|
||||
let snapshot = if is_first_invocation {
|
||||
Some(self.clone())
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
|
||||
match self.parse_generic_args() {
|
||||
Ok(value) => Ok(value),
|
||||
Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
|
||||
// Cancel error from being unable to find `>`. We know the error
|
||||
// must have been this due to a non-zero unmatched angle bracket
|
||||
// count.
|
||||
e.cancel();
|
||||
|
||||
// Swap `self` with our backup of the parser state before attempting to parse
|
||||
// generic arguments.
|
||||
let snapshot = mem::replace(self, snapshot.unwrap());
|
||||
|
||||
debug!(
|
||||
"parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
|
||||
snapshot.count={:?}",
|
||||
snapshot.unmatched_angle_bracket_count,
|
||||
);
|
||||
|
||||
// Eat the unmatched angle brackets.
|
||||
for _ in 0..snapshot.unmatched_angle_bracket_count {
|
||||
self.eat_lt();
|
||||
}
|
||||
|
||||
// Make a span over ${unmatched angle bracket count} characters.
|
||||
let span = lo.with_hi(
|
||||
lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count)
|
||||
);
|
||||
let plural = snapshot.unmatched_angle_bracket_count > 1;
|
||||
self.diagnostic()
|
||||
.struct_span_err(
|
||||
span,
|
||||
&format!(
|
||||
"unmatched angle bracket{}",
|
||||
if plural { "s" } else { "" }
|
||||
),
|
||||
)
|
||||
.span_suggestion(
|
||||
span,
|
||||
&format!(
|
||||
"remove extra angle bracket{}",
|
||||
if plural { "s" } else { "" }
|
||||
),
|
||||
String::new(),
|
||||
Applicability::MachineApplicable,
|
||||
)
|
||||
.emit();
|
||||
|
||||
// Try again without unmatched angle bracket characters.
|
||||
self.parse_generic_args()
|
||||
},
|
||||
Err(e) => Err(e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Parses (possibly empty) list of lifetime and type arguments and associated type bindings,
|
||||
/// possibly including trailing comma.
|
||||
fn parse_generic_args(&mut self) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> {
|
||||
let mut args = Vec::new();
|
||||
let mut constraints = Vec::new();
|
||||
let mut misplaced_assoc_ty_constraints: Vec<Span> = Vec::new();
|
||||
let mut assoc_ty_constraints: Vec<Span> = Vec::new();
|
||||
|
||||
let args_lo = self.token.span;
|
||||
|
||||
loop {
|
||||
if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
|
||||
// Parse lifetime argument.
|
||||
args.push(GenericArg::Lifetime(self.expect_lifetime()));
|
||||
misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
|
||||
} else if self.check_ident() && self.look_ahead(1,
|
||||
|t| t == &token::Eq || t == &token::Colon) {
|
||||
// Parse associated type constraint.
|
||||
let lo = self.token.span;
|
||||
let ident = self.parse_ident()?;
|
||||
let kind = if self.eat(&token::Eq) {
|
||||
AssocTyConstraintKind::Equality {
|
||||
ty: self.parse_ty()?,
|
||||
}
|
||||
} else if self.eat(&token::Colon) {
|
||||
AssocTyConstraintKind::Bound {
|
||||
bounds: self.parse_generic_bounds(Some(self.prev_span))?,
|
||||
}
|
||||
} else {
|
||||
unreachable!();
|
||||
};
|
||||
let span = lo.to(self.prev_span);
|
||||
constraints.push(AssocTyConstraint {
|
||||
id: ast::DUMMY_NODE_ID,
|
||||
ident,
|
||||
kind,
|
||||
span,
|
||||
});
|
||||
assoc_ty_constraints.push(span);
|
||||
} else if self.check_const_arg() {
|
||||
// Parse const argument.
|
||||
let expr = if let token::OpenDelim(token::Brace) = self.token.kind {
|
||||
self.parse_block_expr(
|
||||
None, self.token.span, BlockCheckMode::Default, ThinVec::new()
|
||||
)?
|
||||
} else if self.token.is_ident() {
|
||||
// FIXME(const_generics): to distinguish between idents for types and consts,
|
||||
// we should introduce a GenericArg::Ident in the AST and distinguish when
|
||||
// lowering to the HIR. For now, idents for const args are not permitted.
|
||||
if self.token.is_keyword(kw::True) || self.token.is_keyword(kw::False) {
|
||||
self.parse_literal_maybe_minus()?
|
||||
} else {
|
||||
return Err(
|
||||
self.fatal("identifiers may currently not be used for const generics")
|
||||
);
|
||||
}
|
||||
} else {
|
||||
self.parse_literal_maybe_minus()?
|
||||
};
|
||||
let value = AnonConst {
|
||||
id: ast::DUMMY_NODE_ID,
|
||||
value: expr,
|
||||
};
|
||||
args.push(GenericArg::Const(value));
|
||||
misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
|
||||
} else if self.check_type() {
|
||||
// Parse type argument.
|
||||
args.push(GenericArg::Type(self.parse_ty()?));
|
||||
misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
|
||||
} else {
|
||||
break
|
||||
}
|
||||
|
||||
if !self.eat(&token::Comma) {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: we would like to report this in ast_validation instead, but we currently do not
|
||||
// preserve ordering of generic parameters with respect to associated type binding, so we
|
||||
// lose that information after parsing.
|
||||
if misplaced_assoc_ty_constraints.len() > 0 {
|
||||
let mut err = self.struct_span_err(
|
||||
args_lo.to(self.prev_span),
|
||||
"associated type bindings must be declared after generic parameters",
|
||||
);
|
||||
for span in misplaced_assoc_ty_constraints {
|
||||
err.span_label(
|
||||
span,
|
||||
"this associated type binding should be moved after the generic parameters",
|
||||
);
|
||||
}
|
||||
err.emit();
|
||||
}
|
||||
|
||||
Ok((args, constraints))
|
||||
}
|
||||
|
||||
/// Parses an optional where-clause and places it in `generics`.
|
||||
///
|
||||
/// ```ignore (only-for-syntax-highlight)
|
||||
|
@ -3087,19 +2210,6 @@ impl<'a> Parser<'a> {
|
|||
self.is_keyword_ahead(1, &[kw::Const]))
|
||||
}
|
||||
|
||||
fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec<GenericParam>> {
|
||||
if self.eat_keyword(kw::For) {
|
||||
self.expect_lt()?;
|
||||
let params = self.parse_generic_params()?;
|
||||
self.expect_gt()?;
|
||||
// We rely on AST validation to rule out invalid cases: There must not be type
|
||||
// parameters, and the lifetime parameters must not have bounds.
|
||||
Ok(params)
|
||||
} else {
|
||||
Ok(Vec::new())
|
||||
}
|
||||
}
|
||||
|
||||
/// Parses `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `crate` for `pub(crate)`,
|
||||
/// `pub(self)` for `pub(in self)` and `pub(super)` for `pub(in super)`.
|
||||
/// If the following element can't be a tuple (i.e., it's a function definition), then
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue