Abstract MatchCheckCtxt into a trait

This commit is contained in:
Nadrieril 2023-12-11 20:01:02 +01:00
parent 3ad76f9325
commit 3d7c4df326
8 changed files with 313 additions and 239 deletions

View file

@ -242,7 +242,7 @@
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`MatchCheckCtxt::ctors_for_ty`]. See
//! Computing the set of constructors for a type is done in [`MatchCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
@ -557,40 +557,39 @@ use std::fmt;
use rustc_arena::TypedArena;
use rustc_data_structures::{captures::Captures, stack::ensure_sufficient_stack};
use rustc_middle::ty::Ty;
use rustc_span::Span;
use crate::constructor::{Constructor, ConstructorSet};
use crate::cx::MatchCheckCtxt;
use crate::pat::{DeconstructedPat, WitnessPat};
use crate::MatchArm;
use crate::{MatchArm, MatchCx};
use self::ValidityConstraint::*;
#[derive(Copy, Clone)]
pub(crate) struct PatCtxt<'a, 'p, 'tcx> {
pub(crate) cx: &'a MatchCheckCtxt<'p, 'tcx>,
#[derive(Clone)]
pub(crate) struct PatCtxt<'a, 'p, Cx: MatchCx> {
pub(crate) cx: &'a Cx,
/// Type of the current column under investigation.
pub(crate) ty: Ty<'tcx>,
pub(crate) ty: Cx::Ty,
/// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
/// subpattern.
pub(crate) is_top_level: bool,
/// An arena to store the wildcards we produce during analysis.
pub(crate) wildcard_arena: &'a TypedArena<DeconstructedPat<'p, 'tcx>>,
pub(crate) wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
}
impl<'a, 'p, 'tcx> PatCtxt<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> PatCtxt<'a, 'p, Cx> {
/// A `PatCtxt` when code other than `is_useful` needs one.
pub(crate) fn new_dummy(
cx: &'a MatchCheckCtxt<'p, 'tcx>,
ty: Ty<'tcx>,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, 'tcx>>,
cx: &'a Cx,
ty: Cx::Ty,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
) -> Self {
PatCtxt { cx, ty, is_top_level: false, wildcard_arena }
}
}
impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> Copy for PatCtxt<'a, 'p, Cx> {}
impl<'a, 'p, Cx: MatchCx> fmt::Debug for PatCtxt<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
}
@ -602,7 +601,7 @@ impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
/// - in the matrix, track whether a given place (aka column) is known to contain a valid value or
/// not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ValidityConstraint {
pub(crate) enum ValidityConstraint {
ValidOnly,
MaybeInvalid,
/// Option for backwards compatibility: the place is not known to be valid but we allow omitting
@ -611,7 +610,7 @@ enum ValidityConstraint {
}
impl ValidityConstraint {
fn from_bool(is_valid_only: bool) -> Self {
pub(crate) fn from_bool(is_valid_only: bool) -> Self {
if is_valid_only { ValidOnly } else { MaybeInvalid }
}
@ -636,7 +635,7 @@ impl ValidityConstraint {
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
fn specialize(self, ctor: &Constructor<'_>) -> Self {
fn specialize<Cx: MatchCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
// Validity of `x: &T` does not imply validity of `*x: T`.
@ -661,15 +660,15 @@ impl fmt::Display for ValidityConstraint {
// The three lifetimes are:
// - 'a allocated by us
// - 'p coming from the input
// - 'tcx global compilation context
// - Cx global compilation context
#[derive(Clone)]
struct PatStack<'a, 'p, 'tcx> {
struct PatStack<'a, 'p, Cx: MatchCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
pats: SmallVec<[&'a DeconstructedPat<'p, 'tcx>; 2]>,
pats: SmallVec<[&'a DeconstructedPat<'p, Cx>; 2]>,
}
impl<'a, 'p, 'tcx> PatStack<'a, 'p, 'tcx> {
fn from_pattern(pat: &'a DeconstructedPat<'p, 'tcx>) -> Self {
impl<'a, 'p, Cx: MatchCx> PatStack<'a, 'p, Cx> {
fn from_pattern(pat: &'a DeconstructedPat<'p, Cx>) -> Self {
PatStack { pats: smallvec![pat] }
}
@ -681,17 +680,17 @@ impl<'a, 'p, 'tcx> PatStack<'a, 'p, 'tcx> {
self.pats.len()
}
fn head(&self) -> &'a DeconstructedPat<'p, 'tcx> {
fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
self.pats[0]
}
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>> + Captures<'b> {
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
self.pats.iter().copied()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = PatStack<'a, 'p, 'tcx>> + Captures<'b> {
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = PatStack<'a, 'p, Cx>> + Captures<'b> {
self.head().flatten_or_pat().into_iter().map(move |pat| {
let mut new = self.clone();
new.pats[0] = pat;
@ -703,9 +702,9 @@ impl<'a, 'p, 'tcx> PatStack<'a, 'p, 'tcx> {
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
pcx: &PatCtxt<'a, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
) -> PatStack<'a, 'p, 'tcx> {
pcx: &PatCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
) -> PatStack<'a, 'p, Cx> {
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = self.head().specialize(pcx, ctor);
@ -714,7 +713,7 @@ impl<'a, 'p, 'tcx> PatStack<'a, 'p, 'tcx> {
}
}
impl<'a, 'p, 'tcx> fmt::Debug for PatStack<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> fmt::Debug for PatStack<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
write!(f, "+")?;
@ -727,9 +726,9 @@ impl<'a, 'p, 'tcx> fmt::Debug for PatStack<'a, 'p, 'tcx> {
/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'a, 'p, 'tcx> {
struct MatrixRow<'a, 'p, Cx: MatchCx> {
// The patterns in the row.
pats: PatStack<'a, 'p, 'tcx>,
pats: PatStack<'a, 'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
is_under_guard: bool,
/// When we specialize, we remember which row of the original matrix produced a given row of the
@ -742,7 +741,7 @@ struct MatrixRow<'a, 'p, 'tcx> {
useful: bool,
}
impl<'a, 'p, 'tcx> MatrixRow<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> MatrixRow<'a, 'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
@ -751,17 +750,17 @@ impl<'a, 'p, 'tcx> MatrixRow<'a, 'p, 'tcx> {
self.pats.len()
}
fn head(&self) -> &'a DeconstructedPat<'p, 'tcx> {
fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
self.pats.head()
}
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>> + Captures<'b> {
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
self.pats.iter()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = MatrixRow<'a, 'p, 'tcx>> + Captures<'b> {
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = MatrixRow<'a, 'p, Cx>> + Captures<'b> {
self.pats.expand_or_pat().map(|patstack| MatrixRow {
pats: patstack,
parent_row: self.parent_row,
@ -774,10 +773,10 @@ impl<'a, 'p, 'tcx> MatrixRow<'a, 'p, 'tcx> {
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
pcx: &PatCtxt<'a, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
pcx: &PatCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
parent_row: usize,
) -> MatrixRow<'a, 'p, 'tcx> {
) -> MatrixRow<'a, 'p, Cx> {
MatrixRow {
pats: self.pats.pop_head_constructor(pcx, ctor),
parent_row,
@ -787,7 +786,7 @@ impl<'a, 'p, 'tcx> MatrixRow<'a, 'p, 'tcx> {
}
}
impl<'a, 'p, 'tcx> fmt::Debug for MatrixRow<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> fmt::Debug for MatrixRow<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
@ -804,22 +803,22 @@ impl<'a, 'p, 'tcx> fmt::Debug for MatrixRow<'a, 'p, 'tcx> {
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'a, 'p, 'tcx> {
struct Matrix<'a, 'p, Cx: MatchCx> {
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
rows: Vec<MatrixRow<'a, 'p, 'tcx>>,
rows: Vec<MatrixRow<'a, 'p, Cx>>,
/// Stores an extra fictitious row full of wildcards. Mostly used to keep track of the type of
/// each column. This must obey the same invariants as the real rows.
wildcard_row: PatStack<'a, 'p, 'tcx>,
wildcard_row: PatStack<'a, 'p, Cx>,
/// Track for each column/place whether it contains a known valid value.
place_validity: SmallVec<[ValidityConstraint; 2]>,
}
impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> Matrix<'a, 'p, Cx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
fn expand_and_push(&mut self, row: MatrixRow<'a, 'p, 'tcx>) {
fn expand_and_push(&mut self, row: MatrixRow<'a, 'p, Cx>) {
if !row.is_empty() && row.head().is_or_pat() {
// Expand nested or-patterns.
for new_row in row.expand_or_pat() {
@ -832,13 +831,13 @@ impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
/// Build a new matrix from an iterator of `MatchArm`s.
fn new(
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, 'tcx>>,
arms: &'a [MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
arms: &'a [MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
) -> Self {
let wild_pattern =
wildcard_arena.alloc(DeconstructedPat::wildcard(scrut_ty, Span::default()));
wildcard_arena.alloc(DeconstructedPat::wildcard(scrut_ty, Cx::Span::default()));
let wildcard_row = PatStack::from_pattern(wild_pattern);
let mut matrix = Matrix {
rows: Vec::with_capacity(arms.len()),
@ -857,7 +856,7 @@ impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
matrix
}
fn head_ty(&self) -> Option<Ty<'tcx>> {
fn head_ty(&self) -> Option<Cx::Ty> {
if self.column_count() == 0 {
return None;
}
@ -865,10 +864,10 @@ impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
let mut ty = self.wildcard_row.head().ty();
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
if MatchCheckCtxt::is_opaque(ty) {
if Cx::is_opaque_ty(ty) {
for pat in self.heads() {
let pat_ty = pat.ty();
if !MatchCheckCtxt::is_opaque(pat_ty) {
if !Cx::is_opaque_ty(pat_ty) {
ty = pat_ty;
break;
}
@ -882,15 +881,13 @@ impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
fn rows<'b>(
&'b self,
) -> impl Iterator<Item = &'b MatrixRow<'a, 'p, 'tcx>>
+ Clone
+ DoubleEndedIterator
+ ExactSizeIterator {
) -> impl Iterator<Item = &'b MatrixRow<'a, 'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter()
}
fn rows_mut<'b>(
&'b mut self,
) -> impl Iterator<Item = &'b mut MatrixRow<'a, 'p, 'tcx>> + DoubleEndedIterator + ExactSizeIterator
) -> impl Iterator<Item = &'b mut MatrixRow<'a, 'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter_mut()
}
@ -898,16 +895,16 @@ impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
/// Iterate over the first pattern of each row.
fn heads<'b>(
&'b self,
) -> impl Iterator<Item = &'b DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
) -> impl Iterator<Item = &'b DeconstructedPat<'p, Cx>> + Clone + Captures<'a> {
self.rows().map(|r| r.head())
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
fn specialize_constructor(
&self,
pcx: &PatCtxt<'a, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
) -> Matrix<'a, 'p, 'tcx> {
pcx: &PatCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
) -> Matrix<'a, 'p, Cx> {
let wildcard_row = self.wildcard_row.pop_head_constructor(pcx, ctor);
let new_validity = self.place_validity[0].specialize(ctor);
let new_place_validity = std::iter::repeat(new_validity)
@ -936,7 +933,7 @@ impl<'a, 'p, 'tcx> Matrix<'a, 'p, 'tcx> {
/// + _ + [_, _, tail @ ..] +
/// | ✓ | ? | // column validity
/// ```
impl<'a, 'p, 'tcx> fmt::Debug for Matrix<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: MatchCx> fmt::Debug for Matrix<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
@ -1027,17 +1024,17 @@ impl<'a, 'p, 'tcx> fmt::Debug for Matrix<'a, 'p, 'tcx> {
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug, Clone)]
struct WitnessStack<'tcx>(Vec<WitnessPat<'tcx>>);
struct WitnessStack<Cx: MatchCx>(Vec<WitnessPat<Cx>>);
impl<'tcx> WitnessStack<'tcx> {
impl<Cx: MatchCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> WitnessPat<'tcx> {
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
self.0.into_iter().next().unwrap()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<'tcx>) {
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
self.0.push(pat);
}
@ -1055,7 +1052,7 @@ impl<'tcx> WitnessStack<'tcx> {
/// pats: [(false, "foo"), _, true]
/// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
/// ```
fn apply_constructor(&mut self, pcx: &PatCtxt<'_, '_, 'tcx>, ctor: &Constructor<'tcx>) {
fn apply_constructor(&mut self, pcx: &PatCtxt<'_, '_, Cx>, ctor: &Constructor<Cx>) {
let len = self.0.len();
let arity = ctor.arity(pcx);
let fields = self.0.drain((len - arity)..).rev().collect();
@ -1074,9 +1071,9 @@ impl<'tcx> WitnessStack<'tcx> {
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug, Clone)]
struct WitnessMatrix<'tcx>(Vec<WitnessStack<'tcx>>);
struct WitnessMatrix<Cx: MatchCx>(Vec<WitnessStack<Cx>>);
impl<'tcx> WitnessMatrix<'tcx> {
impl<Cx: MatchCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(vec![])
@ -1091,12 +1088,12 @@ impl<'tcx> WitnessMatrix<'tcx> {
self.0.is_empty()
}
/// Asserts that there is a single column and returns the patterns in it.
fn single_column(self) -> Vec<WitnessPat<'tcx>> {
fn single_column(self) -> Vec<WitnessPat<Cx>> {
self.0.into_iter().map(|w| w.single_pattern()).collect()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<'tcx>) {
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
for witness in self.0.iter_mut() {
witness.push_pattern(pat.clone())
}
@ -1105,9 +1102,9 @@ impl<'tcx> WitnessMatrix<'tcx> {
/// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
fn apply_constructor(
&mut self,
pcx: &PatCtxt<'_, '_, 'tcx>,
missing_ctors: &[Constructor<'tcx>],
ctor: &Constructor<'tcx>,
pcx: &PatCtxt<'_, '_, Cx>,
missing_ctors: &[Constructor<Cx>],
ctor: &Constructor<Cx>,
report_individual_missing_ctors: bool,
) {
if self.is_empty() {
@ -1168,12 +1165,12 @@ impl<'tcx> WitnessMatrix<'tcx> {
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(cx, is_top_level, wildcard_arena), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, 'tcx>(
cx: &'a MatchCheckCtxt<'p, 'tcx>,
matrix: &mut Matrix<'a, 'p, 'tcx>,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, 'tcx>>,
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: MatchCx>(
cx: &'a Cx,
matrix: &mut Matrix<'a, 'p, Cx>,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
is_top_level: bool,
) -> WitnessMatrix<'tcx> {
) -> WitnessMatrix<Cx> {
debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));
let Some(ty) = matrix.head_ty() else {
@ -1278,7 +1275,7 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, 'tcx>(
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness {
pub enum Usefulness<Span> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
@ -1289,23 +1286,23 @@ pub enum Usefulness {
}
/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, 'tcx> {
pub struct UsefulnessReport<'p, Cx: MatchCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
pub arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness)>,
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<Cx::Span>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
/// exhaustiveness.
pub non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
}
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(cx, arms, wildcard_arena), level = "debug")]
pub(crate) fn compute_match_usefulness<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
wildcard_arena: &TypedArena<DeconstructedPat<'p, 'tcx>>,
) -> UsefulnessReport<'p, 'tcx> {
let scrut_validity = ValidityConstraint::from_bool(cx.known_valid_scrutinee);
pub(crate) fn compute_match_usefulness<'p, Cx: MatchCx>(
cx: &Cx,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
wildcard_arena: &TypedArena<DeconstructedPat<'p, Cx>>,
) -> UsefulnessReport<'p, Cx> {
let mut matrix = Matrix::new(wildcard_arena, arms, scrut_ty, scrut_validity);
let non_exhaustiveness_witnesses =
compute_exhaustiveness_and_usefulness(cx, &mut matrix, wildcard_arena, true);