Rollup merge of #135900 - compiler-errors:derive-wf, r=lcnr

Manually walk into WF obligations in `BestObligation` proof tree visitor

When we encounter a `WellFormed` obligation in the `BestObligation` proof tree visitor, ignore the proof tree and call `wf::unnormalized_obligations` to derive well-formed obligations with the correct cause codes. This is to avoid having to replicate the somewhat delicate logic that `wf.rs` does to set up its obligation causes... Don't see a better way to do this.

vibes?? r? lcnr
This commit is contained in:
Matthias Krüger 2025-02-01 01:19:19 +01:00 committed by GitHub
commit 3c4b9122ec
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 654 additions and 584 deletions

View file

@ -1,7 +1,7 @@
use std::ops::Deref;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::DefId;
use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
use rustc_infer::infer::canonical::query_response::make_query_region_constraints;
use rustc_infer::infer::canonical::{
Canonical, CanonicalExt as _, CanonicalQueryInput, CanonicalVarInfo, CanonicalVarValues,
@ -98,9 +98,10 @@ impl<'tcx> rustc_next_trait_solver::delegate::SolverDelegate for SolverDelegate<
param_env: ty::ParamEnv<'tcx>,
arg: ty::GenericArg<'tcx>,
) -> Option<Vec<Goal<'tcx, ty::Predicate<'tcx>>>> {
crate::traits::wf::unnormalized_obligations(&self.0, param_env, arg).map(|obligations| {
obligations.into_iter().map(|obligation| obligation.into()).collect()
})
crate::traits::wf::unnormalized_obligations(&self.0, param_env, arg, DUMMY_SP, CRATE_DEF_ID)
.map(|obligations| {
obligations.into_iter().map(|obligation| obligation.into()).collect()
})
}
fn clone_opaque_types_for_query_response(&self) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {

View file

@ -1,25 +1,21 @@
use std::marker::PhantomData;
use std::mem;
use std::ops::ControlFlow;
use rustc_data_structures::thinvec::ExtractIf;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::solve::{CandidateSource, GoalSource, MaybeCause};
use rustc_infer::traits::{
self, FromSolverError, MismatchedProjectionTypes, Obligation, ObligationCause,
ObligationCauseCode, PredicateObligation, PredicateObligations, SelectionError, TraitEngine,
FromSolverError, PredicateObligation, PredicateObligations, TraitEngine,
};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::{self, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_next_trait_solver::solve::{GenerateProofTree, HasChanged, SolverDelegateEvalExt as _};
use tracing::{instrument, trace};
use tracing::instrument;
use self::derive_errors::*;
use super::Certainty;
use super::delegate::SolverDelegate;
use super::inspect::{self, ProofTreeInferCtxtExt, ProofTreeVisitor};
use crate::traits::{FulfillmentError, FulfillmentErrorCode, ScrubbedTraitError};
use crate::traits::{FulfillmentError, ScrubbedTraitError};
mod derive_errors;
/// A trait engine using the new trait solver.
///
@ -244,483 +240,3 @@ impl<'tcx> FromSolverError<'tcx, NextSolverError<'tcx>> for ScrubbedTraitError<'
}
}
}
fn fulfillment_error_for_no_solution<'tcx>(
infcx: &InferCtxt<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
let obligation = find_best_leaf_obligation(infcx, &root_obligation, false);
let code = match obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(_)) => {
FulfillmentErrorCode::Project(
// FIXME: This could be a `Sorts` if the term is a type
MismatchedProjectionTypes { err: TypeError::Mismatch },
)
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, expected_ty)) => {
let ct_ty = match ct.kind() {
ty::ConstKind::Unevaluated(uv) => {
infcx.tcx.type_of(uv.def).instantiate(infcx.tcx, uv.args)
}
ty::ConstKind::Param(param_ct) => param_ct.find_ty_from_env(obligation.param_env),
ty::ConstKind::Value(cv) => cv.ty,
kind => span_bug!(
obligation.cause.span,
"ConstArgHasWrongType failed but we don't know how to compute type for {kind:?}"
),
};
FulfillmentErrorCode::Select(SelectionError::ConstArgHasWrongType {
ct,
ct_ty,
expected_ty,
})
}
ty::PredicateKind::NormalizesTo(..) => {
FulfillmentErrorCode::Project(MismatchedProjectionTypes { err: TypeError::Mismatch })
}
ty::PredicateKind::AliasRelate(_, _, _) => {
FulfillmentErrorCode::Project(MismatchedProjectionTypes { err: TypeError::Mismatch })
}
ty::PredicateKind::Subtype(pred) => {
let (a, b) = infcx.enter_forall_and_leak_universe(
obligation.predicate.kind().rebind((pred.a, pred.b)),
);
let expected_found = ExpectedFound::new(a, b);
FulfillmentErrorCode::Subtype(expected_found, TypeError::Sorts(expected_found))
}
ty::PredicateKind::Coerce(pred) => {
let (a, b) = infcx.enter_forall_and_leak_universe(
obligation.predicate.kind().rebind((pred.a, pred.b)),
);
let expected_found = ExpectedFound::new(b, a);
FulfillmentErrorCode::Subtype(expected_found, TypeError::Sorts(expected_found))
}
ty::PredicateKind::Clause(_)
| ty::PredicateKind::DynCompatible(_)
| ty::PredicateKind::Ambiguous => {
FulfillmentErrorCode::Select(SelectionError::Unimplemented)
}
ty::PredicateKind::ConstEquate(..) => {
bug!("unexpected goal: {obligation:?}")
}
};
FulfillmentError { obligation, code, root_obligation }
}
fn fulfillment_error_for_stalled<'tcx>(
infcx: &InferCtxt<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
let (code, refine_obligation) = infcx.probe(|_| {
match <&SolverDelegate<'tcx>>::from(infcx)
.evaluate_root_goal(root_obligation.clone().into(), GenerateProofTree::No)
.0
{
Ok((_, Certainty::Maybe(MaybeCause::Ambiguity))) => {
(FulfillmentErrorCode::Ambiguity { overflow: None }, true)
}
Ok((_, Certainty::Maybe(MaybeCause::Overflow { suggest_increasing_limit }))) => (
FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) },
// Don't look into overflows because we treat overflows weirdly anyways.
// We discard the inference constraints from overflowing goals, so
// recomputing the goal again during `find_best_leaf_obligation` may apply
// inference guidance that makes other goals go from ambig -> pass, for example.
//
// FIXME: We should probably just look into overflows here.
false,
),
Ok((_, Certainty::Yes)) => {
bug!("did not expect successful goal when collecting ambiguity errors")
}
Err(_) => {
bug!("did not expect selection error when collecting ambiguity errors")
}
}
});
FulfillmentError {
obligation: if refine_obligation {
find_best_leaf_obligation(infcx, &root_obligation, true)
} else {
root_obligation.clone()
},
code,
root_obligation,
}
}
fn fulfillment_error_for_overflow<'tcx>(
infcx: &InferCtxt<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
FulfillmentError {
obligation: find_best_leaf_obligation(infcx, &root_obligation, true),
code: FulfillmentErrorCode::Ambiguity { overflow: Some(true) },
root_obligation,
}
}
fn find_best_leaf_obligation<'tcx>(
infcx: &InferCtxt<'tcx>,
obligation: &PredicateObligation<'tcx>,
consider_ambiguities: bool,
) -> PredicateObligation<'tcx> {
let obligation = infcx.resolve_vars_if_possible(obligation.clone());
// FIXME: we use a probe here as the `BestObligation` visitor does not
// check whether it uses candidates which get shadowed by where-bounds.
//
// We should probably fix the visitor to not do so instead, as this also
// means the leaf obligation may be incorrect.
infcx
.fudge_inference_if_ok(|| {
infcx
.visit_proof_tree(obligation.clone().into(), &mut BestObligation {
obligation: obligation.clone(),
consider_ambiguities,
})
.break_value()
.ok_or(())
})
.unwrap_or(obligation)
}
struct BestObligation<'tcx> {
obligation: PredicateObligation<'tcx>,
consider_ambiguities: bool,
}
impl<'tcx> BestObligation<'tcx> {
fn with_derived_obligation(
&mut self,
derived_obligation: PredicateObligation<'tcx>,
and_then: impl FnOnce(&mut Self) -> <Self as ProofTreeVisitor<'tcx>>::Result,
) -> <Self as ProofTreeVisitor<'tcx>>::Result {
let old_obligation = std::mem::replace(&mut self.obligation, derived_obligation);
let res = and_then(self);
self.obligation = old_obligation;
res
}
/// Filter out the candidates that aren't interesting to visit for the
/// purposes of reporting errors. For ambiguities, we only consider
/// candidates that may hold. For errors, we only consider candidates that
/// *don't* hold and which have impl-where clauses that also don't hold.
fn non_trivial_candidates<'a>(
&self,
goal: &'a inspect::InspectGoal<'a, 'tcx>,
) -> Vec<inspect::InspectCandidate<'a, 'tcx>> {
let mut candidates = goal.candidates();
match self.consider_ambiguities {
true => {
// If we have an ambiguous obligation, we must consider *all* candidates
// that hold, or else we may guide inference causing other goals to go
// from ambig -> pass/fail.
candidates.retain(|candidate| candidate.result().is_ok());
}
false => {
// If we have >1 candidate, one may still be due to "boring" reasons, like
// an alias-relate that failed to hold when deeply evaluated. We really
// don't care about reasons like this.
if candidates.len() > 1 {
candidates.retain(|candidate| {
goal.infcx().probe(|_| {
candidate.instantiate_nested_goals(self.span()).iter().any(
|nested_goal| {
matches!(
nested_goal.source(),
GoalSource::ImplWhereBound
| GoalSource::AliasBoundConstCondition
| GoalSource::InstantiateHigherRanked
| GoalSource::AliasWellFormed
) && match self.consider_ambiguities {
true => {
matches!(
nested_goal.result(),
Ok(Certainty::Maybe(MaybeCause::Ambiguity))
)
}
false => matches!(nested_goal.result(), Err(_)),
}
},
)
})
});
}
// Prefer a non-rigid candidate if there is one.
if candidates.len() > 1 {
candidates.retain(|candidate| {
!matches!(candidate.kind(), inspect::ProbeKind::RigidAlias { .. })
});
}
}
}
candidates
}
}
impl<'tcx> ProofTreeVisitor<'tcx> for BestObligation<'tcx> {
type Result = ControlFlow<PredicateObligation<'tcx>>;
fn span(&self) -> rustc_span::Span {
self.obligation.cause.span
}
#[instrument(level = "trace", skip(self, goal), fields(goal = ?goal.goal()))]
fn visit_goal(&mut self, goal: &inspect::InspectGoal<'_, 'tcx>) -> Self::Result {
let candidates = self.non_trivial_candidates(goal);
trace!(candidates = ?candidates.iter().map(|c| c.kind()).collect::<Vec<_>>());
let [candidate] = candidates.as_slice() else {
return ControlFlow::Break(self.obligation.clone());
};
// Don't walk into impls that have `do_not_recommend`.
if let inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(impl_def_id),
result: _,
} = candidate.kind()
&& goal.infcx().tcx.do_not_recommend_impl(impl_def_id)
{
return ControlFlow::Break(self.obligation.clone());
}
let tcx = goal.infcx().tcx;
// FIXME: Also, what about considering >1 layer up the stack? May be necessary
// for normalizes-to.
let pred_kind = goal.goal().predicate.kind();
let child_mode = match pred_kind.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
ChildMode::Trait(pred_kind.rebind(pred))
}
ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(pred)) => {
ChildMode::Host(pred_kind.rebind(pred))
}
ty::PredicateKind::NormalizesTo(normalizes_to)
if matches!(
normalizes_to.alias.kind(tcx),
ty::AliasTermKind::ProjectionTy | ty::AliasTermKind::ProjectionConst
) =>
{
ChildMode::Trait(pred_kind.rebind(ty::TraitPredicate {
trait_ref: normalizes_to.alias.trait_ref(tcx),
polarity: ty::PredicatePolarity::Positive,
}))
}
_ => ChildMode::PassThrough,
};
let nested_goals = candidate.instantiate_nested_goals(self.span());
// If the candidate requires some `T: FnPtr` bound which does not hold should not be treated as
// an actual candidate, instead we should treat them as if the impl was never considered to
// have potentially applied. As if `impl<A, R> Trait for for<..> fn(..A) -> R` was written
// instead of `impl<T: FnPtr> Trait for T`.
//
// We do this as a separate loop so that we do not choose to tell the user about some nested
// goal before we encounter a `T: FnPtr` nested goal.
for nested_goal in &nested_goals {
if let Some(fn_ptr_trait) = tcx.lang_items().fn_ptr_trait()
&& let Some(poly_trait_pred) = nested_goal.goal().predicate.as_trait_clause()
&& poly_trait_pred.def_id() == fn_ptr_trait
&& let Err(NoSolution) = nested_goal.result()
{
return ControlFlow::Break(self.obligation.clone());
}
}
let mut impl_where_bound_count = 0;
for nested_goal in nested_goals {
trace!(nested_goal = ?(nested_goal.goal(), nested_goal.source(), nested_goal.result()));
let make_obligation = |cause| Obligation {
cause,
param_env: nested_goal.goal().param_env,
predicate: nested_goal.goal().predicate,
recursion_depth: self.obligation.recursion_depth + 1,
};
let obligation;
match (child_mode, nested_goal.source()) {
(ChildMode::Trait(_) | ChildMode::Host(_), GoalSource::Misc) => {
continue;
}
(ChildMode::Trait(parent_trait_pred), GoalSource::ImplWhereBound) => {
obligation = make_obligation(derive_cause(
tcx,
candidate.kind(),
self.obligation.cause.clone(),
impl_where_bound_count,
parent_trait_pred,
));
impl_where_bound_count += 1;
}
(
ChildMode::Host(parent_host_pred),
GoalSource::ImplWhereBound | GoalSource::AliasBoundConstCondition,
) => {
obligation = make_obligation(derive_host_cause(
tcx,
candidate.kind(),
self.obligation.cause.clone(),
impl_where_bound_count,
parent_host_pred,
));
impl_where_bound_count += 1;
}
// Skip over a higher-ranked predicate.
(_, GoalSource::InstantiateHigherRanked) => {
obligation = self.obligation.clone();
}
(ChildMode::PassThrough, _)
| (_, GoalSource::AliasWellFormed | GoalSource::AliasBoundConstCondition) => {
obligation = make_obligation(self.obligation.cause.clone());
}
}
// Skip nested goals that aren't the *reason* for our goal's failure.
match self.consider_ambiguities {
true if matches!(
nested_goal.result(),
Ok(Certainty::Maybe(MaybeCause::Ambiguity))
) => {}
false if matches!(nested_goal.result(), Err(_)) => {}
_ => continue,
}
self.with_derived_obligation(obligation, |this| nested_goal.visit_with(this))?;
}
// alias-relate may fail because the lhs or rhs can't be normalized,
// and therefore is treated as rigid.
if let Some(ty::PredicateKind::AliasRelate(lhs, rhs, _)) = pred_kind.no_bound_vars() {
if let Some(obligation) = goal
.infcx()
.visit_proof_tree_at_depth(
goal.goal().with(goal.infcx().tcx, ty::ClauseKind::WellFormed(lhs.into())),
goal.depth() + 1,
self,
)
.break_value()
{
return ControlFlow::Break(obligation);
} else if let Some(obligation) = goal
.infcx()
.visit_proof_tree_at_depth(
goal.goal().with(goal.infcx().tcx, ty::ClauseKind::WellFormed(rhs.into())),
goal.depth() + 1,
self,
)
.break_value()
{
return ControlFlow::Break(obligation);
}
}
ControlFlow::Break(self.obligation.clone())
}
}
#[derive(Debug, Copy, Clone)]
enum ChildMode<'tcx> {
// Try to derive an `ObligationCause::{ImplDerived,BuiltinDerived}`,
// and skip all `GoalSource::Misc`, which represent useless obligations
// such as alias-eq which may not hold.
Trait(ty::PolyTraitPredicate<'tcx>),
// Try to derive an `ObligationCause::{ImplDerived,BuiltinDerived}`,
// and skip all `GoalSource::Misc`, which represent useless obligations
// such as alias-eq which may not hold.
Host(ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>),
// Skip trying to derive an `ObligationCause` from this obligation, and
// report *all* sub-obligations as if they came directly from the parent
// obligation.
PassThrough,
}
fn derive_cause<'tcx>(
tcx: TyCtxt<'tcx>,
candidate_kind: inspect::ProbeKind<TyCtxt<'tcx>>,
mut cause: ObligationCause<'tcx>,
idx: usize,
parent_trait_pred: ty::PolyTraitPredicate<'tcx>,
) -> ObligationCause<'tcx> {
match candidate_kind {
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(impl_def_id),
result: _,
} => {
if let Some((_, span)) =
tcx.predicates_of(impl_def_id).instantiate_identity(tcx).iter().nth(idx)
{
cause = cause.derived_cause(parent_trait_pred, |derived| {
ObligationCauseCode::ImplDerived(Box::new(traits::ImplDerivedCause {
derived,
impl_or_alias_def_id: impl_def_id,
impl_def_predicate_index: Some(idx),
span,
}))
})
}
}
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::BuiltinImpl(..),
result: _,
} => {
cause = cause.derived_cause(parent_trait_pred, ObligationCauseCode::BuiltinDerived);
}
_ => {}
};
cause
}
fn derive_host_cause<'tcx>(
tcx: TyCtxt<'tcx>,
candidate_kind: inspect::ProbeKind<TyCtxt<'tcx>>,
mut cause: ObligationCause<'tcx>,
idx: usize,
parent_host_pred: ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>,
) -> ObligationCause<'tcx> {
match candidate_kind {
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(impl_def_id),
result: _,
} => {
if let Some((_, span)) = tcx
.predicates_of(impl_def_id)
.instantiate_identity(tcx)
.into_iter()
.chain(tcx.const_conditions(impl_def_id).instantiate_identity(tcx).into_iter().map(
|(trait_ref, span)| {
(
trait_ref.to_host_effect_clause(
tcx,
parent_host_pred.skip_binder().constness,
),
span,
)
},
))
.nth(idx)
{
cause =
cause.derived_host_cause(parent_host_pred, |derived| {
ObligationCauseCode::ImplDerivedHost(Box::new(
traits::ImplDerivedHostCause { derived, impl_def_id, span },
))
})
}
}
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::BuiltinImpl(..),
result: _,
} => {
cause =
cause.derived_host_cause(parent_host_pred, ObligationCauseCode::BuiltinDerivedHost);
}
_ => {}
};
cause
}

View file

@ -0,0 +1,527 @@
use std::ops::ControlFlow;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::solve::{CandidateSource, GoalSource, MaybeCause};
use rustc_infer::traits::{
self, MismatchedProjectionTypes, Obligation, ObligationCause, ObligationCauseCode,
PredicateObligation, SelectionError,
};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::{self, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_next_trait_solver::solve::{GenerateProofTree, SolverDelegateEvalExt as _};
use rustc_type_ir::solve::{Goal, NoSolution};
use tracing::{instrument, trace};
use crate::solve::Certainty;
use crate::solve::delegate::SolverDelegate;
use crate::solve::inspect::{self, ProofTreeInferCtxtExt, ProofTreeVisitor};
use crate::traits::{FulfillmentError, FulfillmentErrorCode, wf};
pub(super) fn fulfillment_error_for_no_solution<'tcx>(
infcx: &InferCtxt<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
let obligation = find_best_leaf_obligation(infcx, &root_obligation, false);
let code = match obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(_)) => {
FulfillmentErrorCode::Project(
// FIXME: This could be a `Sorts` if the term is a type
MismatchedProjectionTypes { err: TypeError::Mismatch },
)
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, expected_ty)) => {
let ct_ty = match ct.kind() {
ty::ConstKind::Unevaluated(uv) => {
infcx.tcx.type_of(uv.def).instantiate(infcx.tcx, uv.args)
}
ty::ConstKind::Param(param_ct) => param_ct.find_ty_from_env(obligation.param_env),
ty::ConstKind::Value(cv) => cv.ty,
kind => span_bug!(
obligation.cause.span,
"ConstArgHasWrongType failed but we don't know how to compute type for {kind:?}"
),
};
FulfillmentErrorCode::Select(SelectionError::ConstArgHasWrongType {
ct,
ct_ty,
expected_ty,
})
}
ty::PredicateKind::NormalizesTo(..) => {
FulfillmentErrorCode::Project(MismatchedProjectionTypes { err: TypeError::Mismatch })
}
ty::PredicateKind::AliasRelate(_, _, _) => {
FulfillmentErrorCode::Project(MismatchedProjectionTypes { err: TypeError::Mismatch })
}
ty::PredicateKind::Subtype(pred) => {
let (a, b) = infcx.enter_forall_and_leak_universe(
obligation.predicate.kind().rebind((pred.a, pred.b)),
);
let expected_found = ExpectedFound::new(a, b);
FulfillmentErrorCode::Subtype(expected_found, TypeError::Sorts(expected_found))
}
ty::PredicateKind::Coerce(pred) => {
let (a, b) = infcx.enter_forall_and_leak_universe(
obligation.predicate.kind().rebind((pred.a, pred.b)),
);
let expected_found = ExpectedFound::new(b, a);
FulfillmentErrorCode::Subtype(expected_found, TypeError::Sorts(expected_found))
}
ty::PredicateKind::Clause(_)
| ty::PredicateKind::DynCompatible(_)
| ty::PredicateKind::Ambiguous => {
FulfillmentErrorCode::Select(SelectionError::Unimplemented)
}
ty::PredicateKind::ConstEquate(..) => {
bug!("unexpected goal: {obligation:?}")
}
};
FulfillmentError { obligation, code, root_obligation }
}
pub(super) fn fulfillment_error_for_stalled<'tcx>(
infcx: &InferCtxt<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
let (code, refine_obligation) = infcx.probe(|_| {
match <&SolverDelegate<'tcx>>::from(infcx)
.evaluate_root_goal(root_obligation.clone().into(), GenerateProofTree::No)
.0
{
Ok((_, Certainty::Maybe(MaybeCause::Ambiguity))) => {
(FulfillmentErrorCode::Ambiguity { overflow: None }, true)
}
Ok((_, Certainty::Maybe(MaybeCause::Overflow { suggest_increasing_limit }))) => (
FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) },
// Don't look into overflows because we treat overflows weirdly anyways.
// We discard the inference constraints from overflowing goals, so
// recomputing the goal again during `find_best_leaf_obligation` may apply
// inference guidance that makes other goals go from ambig -> pass, for example.
//
// FIXME: We should probably just look into overflows here.
false,
),
Ok((_, Certainty::Yes)) => {
bug!("did not expect successful goal when collecting ambiguity errors")
}
Err(_) => {
bug!("did not expect selection error when collecting ambiguity errors")
}
}
});
FulfillmentError {
obligation: if refine_obligation {
find_best_leaf_obligation(infcx, &root_obligation, true)
} else {
root_obligation.clone()
},
code,
root_obligation,
}
}
pub(super) fn fulfillment_error_for_overflow<'tcx>(
infcx: &InferCtxt<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
FulfillmentError {
obligation: find_best_leaf_obligation(infcx, &root_obligation, true),
code: FulfillmentErrorCode::Ambiguity { overflow: Some(true) },
root_obligation,
}
}
fn find_best_leaf_obligation<'tcx>(
infcx: &InferCtxt<'tcx>,
obligation: &PredicateObligation<'tcx>,
consider_ambiguities: bool,
) -> PredicateObligation<'tcx> {
let obligation = infcx.resolve_vars_if_possible(obligation.clone());
// FIXME: we use a probe here as the `BestObligation` visitor does not
// check whether it uses candidates which get shadowed by where-bounds.
//
// We should probably fix the visitor to not do so instead, as this also
// means the leaf obligation may be incorrect.
infcx
.fudge_inference_if_ok(|| {
infcx
.visit_proof_tree(obligation.clone().into(), &mut BestObligation {
obligation: obligation.clone(),
consider_ambiguities,
})
.break_value()
.ok_or(())
})
.unwrap_or(obligation)
}
struct BestObligation<'tcx> {
obligation: PredicateObligation<'tcx>,
consider_ambiguities: bool,
}
impl<'tcx> BestObligation<'tcx> {
fn with_derived_obligation(
&mut self,
derived_obligation: PredicateObligation<'tcx>,
and_then: impl FnOnce(&mut Self) -> <Self as ProofTreeVisitor<'tcx>>::Result,
) -> <Self as ProofTreeVisitor<'tcx>>::Result {
let old_obligation = std::mem::replace(&mut self.obligation, derived_obligation);
let res = and_then(self);
self.obligation = old_obligation;
res
}
/// Filter out the candidates that aren't interesting to visit for the
/// purposes of reporting errors. For ambiguities, we only consider
/// candidates that may hold. For errors, we only consider candidates that
/// *don't* hold and which have impl-where clauses that also don't hold.
fn non_trivial_candidates<'a>(
&self,
goal: &'a inspect::InspectGoal<'a, 'tcx>,
) -> Vec<inspect::InspectCandidate<'a, 'tcx>> {
let mut candidates = goal.candidates();
match self.consider_ambiguities {
true => {
// If we have an ambiguous obligation, we must consider *all* candidates
// that hold, or else we may guide inference causing other goals to go
// from ambig -> pass/fail.
candidates.retain(|candidate| candidate.result().is_ok());
}
false => {
// If we have >1 candidate, one may still be due to "boring" reasons, like
// an alias-relate that failed to hold when deeply evaluated. We really
// don't care about reasons like this.
if candidates.len() > 1 {
candidates.retain(|candidate| {
goal.infcx().probe(|_| {
candidate.instantiate_nested_goals(self.span()).iter().any(
|nested_goal| {
matches!(
nested_goal.source(),
GoalSource::ImplWhereBound
| GoalSource::AliasBoundConstCondition
| GoalSource::InstantiateHigherRanked
| GoalSource::AliasWellFormed
) && match (self.consider_ambiguities, nested_goal.result()) {
(true, Ok(Certainty::Maybe(MaybeCause::Ambiguity)))
| (false, Err(_)) => true,
_ => false,
}
},
)
})
});
}
// Prefer a non-rigid candidate if there is one.
if candidates.len() > 1 {
candidates.retain(|candidate| {
!matches!(candidate.kind(), inspect::ProbeKind::RigidAlias { .. })
});
}
}
}
candidates
}
/// HACK: We walk the nested obligations for a well-formed arg manually,
/// since there's nontrivial logic in `wf.rs` to set up an obligation cause.
/// Ideally we'd be able to track this better.
fn visit_well_formed_goal(
&mut self,
candidate: &inspect::InspectCandidate<'_, 'tcx>,
arg: ty::GenericArg<'tcx>,
) -> ControlFlow<PredicateObligation<'tcx>> {
let infcx = candidate.goal().infcx();
let param_env = candidate.goal().goal().param_env;
let body_id = self.obligation.cause.body_id;
for obligation in wf::unnormalized_obligations(infcx, param_env, arg, self.span(), body_id)
.into_iter()
.flatten()
{
let nested_goal = candidate.instantiate_proof_tree_for_nested_goal(
GoalSource::Misc,
Goal::new(infcx.tcx, obligation.param_env, obligation.predicate),
self.span(),
);
// Skip nested goals that aren't the *reason* for our goal's failure.
match (self.consider_ambiguities, nested_goal.result()) {
(true, Ok(Certainty::Maybe(MaybeCause::Ambiguity))) | (false, Err(_)) => {}
_ => continue,
}
self.with_derived_obligation(obligation, |this| nested_goal.visit_with(this))?;
}
ControlFlow::Break(self.obligation.clone())
}
}
impl<'tcx> ProofTreeVisitor<'tcx> for BestObligation<'tcx> {
type Result = ControlFlow<PredicateObligation<'tcx>>;
fn span(&self) -> rustc_span::Span {
self.obligation.cause.span
}
#[instrument(level = "trace", skip(self, goal), fields(goal = ?goal.goal()))]
fn visit_goal(&mut self, goal: &inspect::InspectGoal<'_, 'tcx>) -> Self::Result {
let candidates = self.non_trivial_candidates(goal);
trace!(candidates = ?candidates.iter().map(|c| c.kind()).collect::<Vec<_>>());
let [candidate] = candidates.as_slice() else {
return ControlFlow::Break(self.obligation.clone());
};
// Don't walk into impls that have `do_not_recommend`.
if let inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(impl_def_id),
result: _,
} = candidate.kind()
&& goal.infcx().tcx.do_not_recommend_impl(impl_def_id)
{
return ControlFlow::Break(self.obligation.clone());
}
let tcx = goal.infcx().tcx;
// FIXME: Also, what about considering >1 layer up the stack? May be necessary
// for normalizes-to.
let pred_kind = goal.goal().predicate.kind();
let child_mode = match pred_kind.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
ChildMode::Trait(pred_kind.rebind(pred))
}
ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(pred)) => {
ChildMode::Host(pred_kind.rebind(pred))
}
ty::PredicateKind::NormalizesTo(normalizes_to)
if matches!(
normalizes_to.alias.kind(tcx),
ty::AliasTermKind::ProjectionTy | ty::AliasTermKind::ProjectionConst
) =>
{
ChildMode::Trait(pred_kind.rebind(ty::TraitPredicate {
trait_ref: normalizes_to.alias.trait_ref(tcx),
polarity: ty::PredicatePolarity::Positive,
}))
}
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
return self.visit_well_formed_goal(candidate, arg);
}
_ => ChildMode::PassThrough,
};
let nested_goals = candidate.instantiate_nested_goals(self.span());
// If the candidate requires some `T: FnPtr` bound which does not hold should not be treated as
// an actual candidate, instead we should treat them as if the impl was never considered to
// have potentially applied. As if `impl<A, R> Trait for for<..> fn(..A) -> R` was written
// instead of `impl<T: FnPtr> Trait for T`.
//
// We do this as a separate loop so that we do not choose to tell the user about some nested
// goal before we encounter a `T: FnPtr` nested goal.
for nested_goal in &nested_goals {
if let Some(fn_ptr_trait) = tcx.lang_items().fn_ptr_trait()
&& let Some(poly_trait_pred) = nested_goal.goal().predicate.as_trait_clause()
&& poly_trait_pred.def_id() == fn_ptr_trait
&& let Err(NoSolution) = nested_goal.result()
{
return ControlFlow::Break(self.obligation.clone());
}
}
let mut impl_where_bound_count = 0;
for nested_goal in nested_goals {
trace!(nested_goal = ?(nested_goal.goal(), nested_goal.source(), nested_goal.result()));
let make_obligation = |cause| Obligation {
cause,
param_env: nested_goal.goal().param_env,
predicate: nested_goal.goal().predicate,
recursion_depth: self.obligation.recursion_depth + 1,
};
let obligation;
match (child_mode, nested_goal.source()) {
(ChildMode::Trait(_) | ChildMode::Host(_), GoalSource::Misc) => {
continue;
}
(ChildMode::Trait(parent_trait_pred), GoalSource::ImplWhereBound) => {
obligation = make_obligation(derive_cause(
tcx,
candidate.kind(),
self.obligation.cause.clone(),
impl_where_bound_count,
parent_trait_pred,
));
impl_where_bound_count += 1;
}
(
ChildMode::Host(parent_host_pred),
GoalSource::ImplWhereBound | GoalSource::AliasBoundConstCondition,
) => {
obligation = make_obligation(derive_host_cause(
tcx,
candidate.kind(),
self.obligation.cause.clone(),
impl_where_bound_count,
parent_host_pred,
));
impl_where_bound_count += 1;
}
// Skip over a higher-ranked predicate.
(_, GoalSource::InstantiateHigherRanked) => {
obligation = self.obligation.clone();
}
(ChildMode::PassThrough, _)
| (_, GoalSource::AliasWellFormed | GoalSource::AliasBoundConstCondition) => {
obligation = make_obligation(self.obligation.cause.clone());
}
}
// Skip nested goals that aren't the *reason* for our goal's failure.
match (self.consider_ambiguities, nested_goal.result()) {
(true, Ok(Certainty::Maybe(MaybeCause::Ambiguity))) | (false, Err(_)) => {}
_ => continue,
}
self.with_derived_obligation(obligation, |this| nested_goal.visit_with(this))?;
}
// alias-relate may fail because the lhs or rhs can't be normalized,
// and therefore is treated as rigid.
if let Some(ty::PredicateKind::AliasRelate(lhs, rhs, _)) = pred_kind.no_bound_vars() {
if let Some(obligation) = goal
.infcx()
.visit_proof_tree_at_depth(
goal.goal().with(goal.infcx().tcx, ty::ClauseKind::WellFormed(lhs.into())),
goal.depth() + 1,
self,
)
.break_value()
{
return ControlFlow::Break(obligation);
} else if let Some(obligation) = goal
.infcx()
.visit_proof_tree_at_depth(
goal.goal().with(goal.infcx().tcx, ty::ClauseKind::WellFormed(rhs.into())),
goal.depth() + 1,
self,
)
.break_value()
{
return ControlFlow::Break(obligation);
}
}
ControlFlow::Break(self.obligation.clone())
}
}
#[derive(Debug, Copy, Clone)]
enum ChildMode<'tcx> {
// Try to derive an `ObligationCause::{ImplDerived,BuiltinDerived}`,
// and skip all `GoalSource::Misc`, which represent useless obligations
// such as alias-eq which may not hold.
Trait(ty::PolyTraitPredicate<'tcx>),
// Try to derive an `ObligationCause::{ImplDerived,BuiltinDerived}`,
// and skip all `GoalSource::Misc`, which represent useless obligations
// such as alias-eq which may not hold.
Host(ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>),
// Skip trying to derive an `ObligationCause` from this obligation, and
// report *all* sub-obligations as if they came directly from the parent
// obligation.
PassThrough,
}
fn derive_cause<'tcx>(
tcx: TyCtxt<'tcx>,
candidate_kind: inspect::ProbeKind<TyCtxt<'tcx>>,
mut cause: ObligationCause<'tcx>,
idx: usize,
parent_trait_pred: ty::PolyTraitPredicate<'tcx>,
) -> ObligationCause<'tcx> {
match candidate_kind {
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(impl_def_id),
result: _,
} => {
if let Some((_, span)) =
tcx.predicates_of(impl_def_id).instantiate_identity(tcx).iter().nth(idx)
{
cause = cause.derived_cause(parent_trait_pred, |derived| {
ObligationCauseCode::ImplDerived(Box::new(traits::ImplDerivedCause {
derived,
impl_or_alias_def_id: impl_def_id,
impl_def_predicate_index: Some(idx),
span,
}))
})
}
}
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::BuiltinImpl(..),
result: _,
} => {
cause = cause.derived_cause(parent_trait_pred, ObligationCauseCode::BuiltinDerived);
}
_ => {}
};
cause
}
fn derive_host_cause<'tcx>(
tcx: TyCtxt<'tcx>,
candidate_kind: inspect::ProbeKind<TyCtxt<'tcx>>,
mut cause: ObligationCause<'tcx>,
idx: usize,
parent_host_pred: ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>,
) -> ObligationCause<'tcx> {
match candidate_kind {
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(impl_def_id),
result: _,
} => {
if let Some((_, span)) = tcx
.predicates_of(impl_def_id)
.instantiate_identity(tcx)
.into_iter()
.chain(tcx.const_conditions(impl_def_id).instantiate_identity(tcx).into_iter().map(
|(trait_ref, span)| {
(
trait_ref.to_host_effect_clause(
tcx,
parent_host_pred.skip_binder().constness,
),
span,
)
},
))
.nth(idx)
{
cause =
cause.derived_host_cause(parent_host_pred, |derived| {
ObligationCauseCode::ImplDerivedHost(Box::new(
traits::ImplDerivedHostCause { derived, impl_def_id, span },
))
})
}
}
inspect::ProbeKind::TraitCandidate {
source: CandidateSource::BuiltinImpl(..),
result: _,
} => {
cause =
cause.derived_host_cause(parent_host_pred, ObligationCauseCode::BuiltinDerivedHost);
}
_ => {}
};
cause
}

View file

@ -194,47 +194,57 @@ impl<'a, 'tcx> InspectCandidate<'a, 'tcx> {
let goals = instantiated_goals
.into_iter()
.map(|(source, goal)| match goal.predicate.kind().no_bound_vars() {
Some(ty::PredicateKind::NormalizesTo(ty::NormalizesTo { alias, term })) => {
let unconstrained_term = match term.unpack() {
ty::TermKind::Ty(_) => infcx.next_ty_var(span).into(),
ty::TermKind::Const(_) => infcx.next_const_var(span).into(),
};
let goal =
goal.with(infcx.tcx, ty::NormalizesTo { alias, term: unconstrained_term });
// We have to use a `probe` here as evaluating a `NormalizesTo` can constrain the
// expected term. This means that candidates which only fail due to nested goals
// and which normalize to a different term then the final result could ICE: when
// building their proof tree, the expected term was unconstrained, but when
// instantiating the candidate it is already constrained to the result of another
// candidate.
let proof_tree = infcx
.probe(|_| infcx.evaluate_root_goal_raw(goal, GenerateProofTree::Yes).1);
InspectGoal::new(
infcx,
self.goal.depth + 1,
proof_tree.unwrap(),
Some(NormalizesToTermHack { term, unconstrained_term }),
source,
)
}
_ => {
// We're using a probe here as evaluating a goal could constrain
// inference variables by choosing one candidate. If we then recurse
// into another candidate who ends up with different inference
// constraints, we get an ICE if we already applied the constraints
// from the chosen candidate.
let proof_tree = infcx
.probe(|_| infcx.evaluate_root_goal(goal, GenerateProofTree::Yes).1)
.unwrap();
InspectGoal::new(infcx, self.goal.depth + 1, proof_tree, None, source)
}
})
.map(|(source, goal)| self.instantiate_proof_tree_for_nested_goal(source, goal, span))
.collect();
(goals, opt_impl_args)
}
pub fn instantiate_proof_tree_for_nested_goal(
&self,
source: GoalSource,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
span: Span,
) -> InspectGoal<'a, 'tcx> {
let infcx = self.goal.infcx;
match goal.predicate.kind().no_bound_vars() {
Some(ty::PredicateKind::NormalizesTo(ty::NormalizesTo { alias, term })) => {
let unconstrained_term = match term.unpack() {
ty::TermKind::Ty(_) => infcx.next_ty_var(span).into(),
ty::TermKind::Const(_) => infcx.next_const_var(span).into(),
};
let goal =
goal.with(infcx.tcx, ty::NormalizesTo { alias, term: unconstrained_term });
// We have to use a `probe` here as evaluating a `NormalizesTo` can constrain the
// expected term. This means that candidates which only fail due to nested goals
// and which normalize to a different term then the final result could ICE: when
// building their proof tree, the expected term was unconstrained, but when
// instantiating the candidate it is already constrained to the result of another
// candidate.
let proof_tree =
infcx.probe(|_| infcx.evaluate_root_goal_raw(goal, GenerateProofTree::Yes).1);
InspectGoal::new(
infcx,
self.goal.depth + 1,
proof_tree.unwrap(),
Some(NormalizesToTermHack { term, unconstrained_term }),
source,
)
}
_ => {
// We're using a probe here as evaluating a goal could constrain
// inference variables by choosing one candidate. If we then recurse
// into another candidate who ends up with different inference
// constraints, we get an ICE if we already applied the constraints
// from the chosen candidate.
let proof_tree = infcx
.probe(|_| infcx.evaluate_root_goal(goal, GenerateProofTree::Yes).1)
.unwrap();
InspectGoal::new(infcx, self.goal.depth + 1, proof_tree, None, source)
}
}
}
/// Visit all nested goals of this candidate, rolling back
/// all inference constraints.
pub fn visit_nested_in_probe<V: ProofTreeVisitor<'tcx>>(&self, visitor: &mut V) -> V::Result {

View file

@ -76,6 +76,7 @@ use crate::infer::{InferCtxt, TyCtxtInferExt};
use crate::regions::InferCtxtRegionExt;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
#[derive(Debug)]
pub struct FulfillmentError<'tcx> {
pub obligation: PredicateObligation<'tcx>,
pub code: FulfillmentErrorCode<'tcx>,
@ -107,12 +108,6 @@ impl<'tcx> FulfillmentError<'tcx> {
}
}
impl<'tcx> Debug for FulfillmentError<'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "FulfillmentError({:?},{:?})", self.obligation, self.code)
}
}
#[derive(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
/// Inherently impossible to fulfill; this trait is implemented if and only

View file

@ -5,8 +5,8 @@ use rustc_infer::traits::query::type_op::ImpliedOutlivesBounds;
use rustc_middle::infer::canonical::CanonicalQueryResponse;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, TypeFolder, TypeVisitableExt};
use rustc_span::Span;
use rustc_span::def_id::CRATE_DEF_ID;
use rustc_span::{DUMMY_SP, Span};
use rustc_type_ir::outlives::{Component, push_outlives_components};
use smallvec::{SmallVec, smallvec};
use tracing::debug;
@ -92,7 +92,9 @@ pub fn compute_implied_outlives_bounds_inner<'tcx>(
// From the full set of obligations, just filter down to the region relationships.
for obligation in
wf::unnormalized_obligations(ocx.infcx, param_env, arg).into_iter().flatten()
wf::unnormalized_obligations(ocx.infcx, param_env, arg, DUMMY_SP, CRATE_DEF_ID)
.into_iter()
.flatten()
{
assert!(!obligation.has_escaping_bound_vars());
let Some(pred) = obligation.predicate.kind().no_bound_vars() else {

View file

@ -8,8 +8,8 @@ use rustc_middle::ty::{
self, GenericArg, GenericArgKind, GenericArgsRef, Ty, TyCtxt, TypeSuperVisitable,
TypeVisitable, TypeVisitableExt, TypeVisitor,
};
use rustc_span::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
use rustc_span::{DUMMY_SP, Span};
use rustc_span::Span;
use rustc_span::def_id::{DefId, LocalDefId};
use tracing::{debug, instrument, trace};
use crate::infer::InferCtxt;
@ -89,6 +89,8 @@ pub fn unnormalized_obligations<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
arg: GenericArg<'tcx>,
span: Span,
body_id: LocalDefId,
) -> Option<PredicateObligations<'tcx>> {
debug_assert_eq!(arg, infcx.resolve_vars_if_possible(arg));
@ -106,8 +108,8 @@ pub fn unnormalized_obligations<'tcx>(
let mut wf = WfPredicates {
infcx,
param_env,
body_id: CRATE_DEF_ID,
span: DUMMY_SP,
body_id,
span,
out: PredicateObligations::new(),
recursion_depth: 0,
item: None,