Evaluate computed values to constants.

This commit is contained in:
Camille GILLOT 2023-09-19 20:12:48 +00:00
parent afd631cc0c
commit 38c86b0798
15 changed files with 546 additions and 191 deletions

View file

@ -406,7 +406,8 @@ impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).ok(),
TrackElem::Discriminant => {
let variant = self.ecx.read_discriminant(op).ok()?;
let discr_value = self.ecx.discriminant_for_variant(op.layout, variant).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(op.layout.ty, variant).ok()?;
Some(discr_value.into())
}
TrackElem::DerefLen => {
@ -507,7 +508,8 @@ impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
return None;
}
let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?;
let discr_value = self.ecx.discriminant_for_variant(enum_ty_layout, variant_index).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).ok()?;
Some(discr_value.to_scalar())
}
@ -854,7 +856,7 @@ impl<'tcx> Visitor<'tcx> for OperandCollector<'tcx, '_, '_, '_> {
}
}
struct DummyMachine;
pub(crate) struct DummyMachine;
impl<'mir, 'tcx: 'mir> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine {
rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>);

View file

@ -53,18 +53,24 @@
//! _c = *_b // replaced by _c = _a
//! ```
use rustc_const_eval::interpret::{ImmTy, InterpCx, MemPlaceMeta, OpTy, Projectable, Scalar};
use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
use rustc_data_structures::graph::dominators::Dominators;
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_macros::newtype_index;
use rustc_middle::mir::interpret::GlobalAlloc;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_target::abi::{VariantIdx, FIRST_VARIANT};
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeAndMut};
use rustc_span::DUMMY_SP;
use rustc_target::abi::{self, Abi, Size, VariantIdx, FIRST_VARIANT};
use crate::dataflow_const_prop::DummyMachine;
use crate::ssa::{AssignedValue, SsaLocals};
use crate::MirPass;
use either::Either;
pub struct GVN;
@ -129,6 +135,12 @@ newtype_index! {
struct VnIndex {}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AddressKind {
Ref(BorrowKind),
Address(Mutability),
}
#[derive(Debug, PartialEq, Eq, Hash)]
enum Value<'tcx> {
// Root values.
@ -145,6 +157,7 @@ enum Value<'tcx> {
/// The address of a place.
Address {
place: Place<'tcx>,
kind: AddressKind,
/// Give each borrow and pointer a different provenance, so we don't merge them.
provenance: usize,
},
@ -172,6 +185,7 @@ enum Value<'tcx> {
struct VnState<'body, 'tcx> {
tcx: TyCtxt<'tcx>,
ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
param_env: ty::ParamEnv<'tcx>,
local_decls: &'body LocalDecls<'tcx>,
/// Value stored in each local.
@ -179,6 +193,8 @@ struct VnState<'body, 'tcx> {
/// First local to be assigned that value.
rev_locals: FxHashMap<VnIndex, Vec<Local>>,
values: FxIndexSet<Value<'tcx>>,
/// Values evaluated as constants if possible.
evaluated: IndexVec<VnIndex, Option<OpTy<'tcx>>>,
/// Counter to generate different values.
/// This is an option to stop creating opaques during replacement.
next_opaque: Option<usize>,
@ -197,11 +213,13 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
) -> Self {
VnState {
tcx,
ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
param_env,
local_decls,
locals: IndexVec::from_elem(None, local_decls),
rev_locals: FxHashMap::default(),
values: FxIndexSet::default(),
evaluated: IndexVec::new(),
next_opaque: Some(0),
ssa,
dominators,
@ -211,8 +229,14 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
#[instrument(level = "trace", skip(self), ret)]
fn insert(&mut self, value: Value<'tcx>) -> VnIndex {
let (index, _) = self.values.insert_full(value);
VnIndex::from_usize(index)
let (index, new) = self.values.insert_full(value);
let index = VnIndex::from_usize(index);
if new {
let evaluated = self.eval_to_const(index);
let _index = self.evaluated.push(evaluated);
debug_assert_eq!(index, _index);
}
index
}
/// Create a new `Value` for which we have no information at all, except that it is distinct
@ -227,9 +251,9 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
/// Create a new `Value::Address` distinct from all the others.
#[instrument(level = "trace", skip(self), ret)]
fn new_pointer(&mut self, place: Place<'tcx>) -> Option<VnIndex> {
fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> Option<VnIndex> {
let next_opaque = self.next_opaque.as_mut()?;
let value = Value::Address { place, provenance: *next_opaque };
let value = Value::Address { place, kind, provenance: *next_opaque };
*next_opaque += 1;
Some(self.insert(value))
}
@ -251,6 +275,176 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
}
}
#[instrument(level = "trace", skip(self), ret)]
fn eval_to_const(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> {
use Value::*;
let op = match *self.get(value) {
Opaque(_) => return None,
// Do not bother evaluating repeat expressions. This would uselessly consume memory.
Repeat(..) => return None,
Constant(ref constant) => self.ecx.eval_mir_constant(constant, None, None).ok()?,
Aggregate(ty, variant, ref fields) => {
let fields = fields
.iter()
.map(|&f| self.evaluated[f].as_ref())
.collect::<Option<Vec<_>>>()?;
let variant = if ty.is_enum() { Some(variant) } else { None };
let ty = self.ecx.layout_of(ty).ok()?;
let alloc_id = self
.ecx
.intern_with_temp_alloc(ty, |ecx, dest| {
let variant_dest = if let Some(variant) = variant {
ecx.project_downcast(dest, variant)?
} else {
dest.clone()
};
for (field_index, op) in fields.into_iter().enumerate() {
let field_dest = ecx.project_field(&variant_dest, field_index)?;
ecx.copy_op(op, &field_dest, /*allow_transmute*/ false)?;
}
ecx.write_discriminant(variant.unwrap_or(FIRST_VARIANT), dest)
})
.ok()?;
let mplace =
self.ecx.raw_const_to_mplace(ConstAlloc { alloc_id, ty: ty.ty }).ok()?;
mplace.into()
}
Projection(base, elem) => {
let value = self.evaluated[base].as_ref()?;
let elem = match elem {
ProjectionElem::Deref => ProjectionElem::Deref,
ProjectionElem::Downcast(name, read_variant) => {
ProjectionElem::Downcast(name, read_variant)
}
ProjectionElem::Field(f, ty) => ProjectionElem::Field(f, ty),
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
// This should have been replaced by a `ConstantIndex` earlier.
ProjectionElem::Index(_) => return None,
};
self.ecx.project(value, elem).ok()?
}
Address { place, kind, provenance: _ } => {
if !place.is_indirect_first_projection() {
return None;
}
let local = self.locals[place.local]?;
let pointer = self.evaluated[local].as_ref()?;
let mut mplace = self.ecx.deref_pointer(pointer).ok()?;
for proj in place.projection.iter().skip(1) {
// We have no call stack to associate a local with a value, so we cannot interpret indexing.
if matches!(proj, ProjectionElem::Index(_)) {
return None;
}
mplace = self.ecx.project(&mplace, proj).ok()?;
}
let pointer = mplace.to_ref(&self.ecx);
let ty = match kind {
AddressKind::Ref(bk) => Ty::new_ref(
self.tcx,
self.tcx.lifetimes.re_erased,
ty::TypeAndMut { ty: mplace.layout.ty, mutbl: bk.to_mutbl_lossy() },
),
AddressKind::Address(mutbl) => {
Ty::new_ptr(self.tcx, TypeAndMut { ty: mplace.layout.ty, mutbl })
}
};
let layout = self.ecx.layout_of(ty).ok()?;
ImmTy::from_immediate(pointer, layout).into()
}
Discriminant(base) => {
let base = self.evaluated[base].as_ref()?;
let variant = self.ecx.read_discriminant(base).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(base.layout.ty, variant).ok()?;
discr_value.into()
}
Len(slice) => {
let slice = self.evaluated[slice].as_ref()?;
let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
let len = slice.len(&self.ecx).ok()?;
let imm = ImmTy::try_from_uint(len, usize_layout)?;
imm.into()
}
NullaryOp(null_op, ty) => {
let layout = self.ecx.layout_of(ty).ok()?;
if let NullOp::SizeOf | NullOp::AlignOf = null_op && layout.is_unsized() {
return None;
}
let val = match null_op {
NullOp::SizeOf => layout.size.bytes(),
NullOp::AlignOf => layout.align.abi.bytes(),
NullOp::OffsetOf(fields) => layout
.offset_of_subfield(&self.ecx, fields.iter().map(|f| f.index()))
.bytes(),
};
let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
let imm = ImmTy::try_from_uint(val, usize_layout)?;
imm.into()
}
UnaryOp(un_op, operand) => {
let operand = self.evaluated[operand].as_ref()?;
let operand = self.ecx.read_immediate(operand).ok()?;
let (val, _) = self.ecx.overflowing_unary_op(un_op, &operand).ok()?;
val.into()
}
BinaryOp(bin_op, lhs, rhs) => {
let lhs = self.evaluated[lhs].as_ref()?;
let lhs = self.ecx.read_immediate(lhs).ok()?;
let rhs = self.evaluated[rhs].as_ref()?;
let rhs = self.ecx.read_immediate(rhs).ok()?;
let (val, _) = self.ecx.overflowing_binary_op(bin_op, &lhs, &rhs).ok()?;
val.into()
}
CheckedBinaryOp(bin_op, lhs, rhs) => {
let lhs = self.evaluated[lhs].as_ref()?;
let lhs = self.ecx.read_immediate(lhs).ok()?;
let rhs = self.evaluated[rhs].as_ref()?;
let rhs = self.ecx.read_immediate(rhs).ok()?;
let (val, overflowed) = self.ecx.overflowing_binary_op(bin_op, &lhs, &rhs).ok()?;
let tuple = Ty::new_tup_from_iter(
self.tcx,
[val.layout.ty, self.tcx.types.bool].into_iter(),
);
let tuple = self.ecx.layout_of(tuple).ok()?;
ImmTy::from_scalar_pair(val.to_scalar(), Scalar::from_bool(overflowed), tuple)
.into()
}
Cast { kind, value, from: _, to } => match kind {
CastKind::IntToInt | CastKind::IntToFloat => {
let value = self.evaluated[value].as_ref()?;
let value = self.ecx.read_immediate(value).ok()?;
let to = self.ecx.layout_of(to).ok()?;
let res = self.ecx.int_to_int_or_float(&value, to).ok()?;
res.into()
}
CastKind::FloatToFloat | CastKind::FloatToInt => {
let value = self.evaluated[value].as_ref()?;
let value = self.ecx.read_immediate(value).ok()?;
let to = self.ecx.layout_of(to).ok()?;
let res = self.ecx.float_to_float_or_int(&value, to).ok()?;
res.into()
}
CastKind::Transmute => {
let value = self.evaluated[value].as_ref()?;
let to = self.ecx.layout_of(to).ok()?;
value.offset(Size::ZERO, to, &self.ecx).ok()?
}
_ => return None,
},
};
Some(op)
}
/// Represent the *value* which would be read from `place`, and point `place` to a preexisting
/// place with the same value (if that already exists).
#[instrument(level = "trace", skip(self), ret)]
@ -385,7 +579,12 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
let ty = rvalue.ty(self.local_decls, self.tcx);
Value::Aggregate(ty, variant_index, fields?)
}
Rvalue::Ref(.., place) | Rvalue::AddressOf(_, place) => return self.new_pointer(place),
Rvalue::Ref(_, borrow_kind, place) => {
return self.new_pointer(place, AddressKind::Ref(borrow_kind));
}
Rvalue::AddressOf(mutbl, place) => {
return self.new_pointer(place, AddressKind::Address(mutbl));
}
// Operations.
Rvalue::Len(ref mut place) => {
@ -424,43 +623,106 @@ impl<'body, 'tcx> VnState<'body, 'tcx> {
}
}
fn op_to_prop_const<'tcx>(
ecx: &mut InterpCx<'_, 'tcx, DummyMachine>,
op: &OpTy<'tcx>,
) -> Option<ConstValue<'tcx>> {
// Do not attempt to propagate unsized locals.
if op.layout.is_unsized() {
return None;
}
// This constant is a ZST, just return an empty value.
if op.layout.is_zst() {
return Some(ConstValue::ZeroSized);
}
// Do not synthetize too large constants. Codegen will just memcpy them, which we'd like to avoid.
if !matches!(op.layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
return None;
}
// If this constant has scalar ABI, return it as a `ConstValue::Scalar`.
if let Abi::Scalar(abi::Scalar::Initialized { .. }) = op.layout.abi
&& let Ok(scalar) = ecx.read_scalar(op)
{
return Some(ConstValue::Scalar(scalar));
}
// If this constant is a projection of another, we can return it directly.
if let Either::Left(mplace) = op.as_mplace_or_imm()
&& let MemPlaceMeta::None = mplace.meta()
{
let pointer = mplace.ptr().into_pointer_or_addr().ok()?;
let (alloc_id, offset) = pointer.into_parts();
return if matches!(ecx.tcx.global_alloc(alloc_id), GlobalAlloc::Memory(_)) {
Some(ConstValue::Indirect { alloc_id, offset })
} else {
None
}
}
// Everything failed: create a new allocation to hold the data.
let alloc_id =
ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest, false)).ok()?;
Some(ConstValue::Indirect { alloc_id, offset: Size::ZERO })
}
impl<'tcx> VnState<'_, 'tcx> {
/// If `index` is a `Value::Constant`, return the `Constant` to be put in the MIR.
fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> {
// This was already constant in MIR, do not change it.
if let Value::Constant(const_) = *self.get(index) {
// Some constants may contain pointers. We need to preserve the provenance of these
// pointers, but not all constants guarantee this:
// - valtrees purposefully do not;
// - ConstValue::Slice does not either.
match const_ {
let const_ok = match const_ {
Const::Ty(c) => match c.kind() {
ty::ConstKind::Value(valtree) => match valtree {
// This is just an integer, keep it.
ty::ValTree::Leaf(_) => {}
ty::ValTree::Branch(_) => return None,
ty::ValTree::Leaf(_) => true,
ty::ValTree::Branch(_) => false,
},
ty::ConstKind::Param(..)
| ty::ConstKind::Unevaluated(..)
| ty::ConstKind::Expr(..) => {}
| ty::ConstKind::Expr(..) => true,
// Should not appear in runtime MIR.
ty::ConstKind::Infer(..)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(..)
| ty::ConstKind::Error(..) => bug!(),
},
Const::Unevaluated(..) => {}
Const::Unevaluated(..) => true,
// If the same slice appears twice in the MIR, we cannot guarantee that we will
// give the same `AllocId` to the data.
Const::Val(ConstValue::Slice { .. }, _) => return None,
Const::Val(ConstValue::Slice { .. }, _) => false,
Const::Val(
ConstValue::ZeroSized | ConstValue::Scalar(_) | ConstValue::Indirect { .. },
_,
) => {}
) => true,
};
if const_ok {
return Some(ConstOperand { span: rustc_span::DUMMY_SP, user_ty: None, const_ });
}
Some(ConstOperand { span: rustc_span::DUMMY_SP, user_ty: None, const_ })
} else {
None
}
let op = self.evaluated[index].as_ref()?;
if op.layout.is_unsized() {
// Do not attempt to propagate unsized locals.
return None;
}
let value = op_to_prop_const(&mut self.ecx, op)?;
// Check that we do not leak a pointer.
// Those pointers may lose part of their identity in codegen.
if value.has_provenance(self.tcx, op.layout.size) {
return None;
}
let const_ = Const::Val(value, op.layout.ty);
Some(ConstOperand { span: rustc_span::DUMMY_SP, user_ty: None, const_ })
}
/// If there is a local which is assigned `index`, and its assignment strictly dominates `loc`,