Introduce ChunkedBitSet and use it for some dataflow analyses.

This reduces peak memory usage significantly for some programs with very
large functions, such as:
- `keccak`, `unicode_normalization`, and `match-stress-enum`, from
  the `rustc-perf` benchmark suite;
- `http-0.2.6` from crates.io.

The new type is used in the analyses where the bitsets can get huge
(e.g. 10s of thousands of bits): `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`.

Some refactoring was required in `rustc_mir_dataflow`. All existing
analysis domains are either `BitSet` or a trivial wrapper around
`BitSet`, and access in a few places is done via `Borrow<BitSet>` or
`BorrowMut<BitSet>`. Now that some of these domains are `ClusterBitSet`,
that no longer works. So this commit replaces the `Borrow`/`BorrowMut`
usage with a new trait `BitSetExt` containing the needed bitset
operations. The impls just forward these to the underlying bitset type.
This required fiddling with trait bounds in a few places.

The commit also:
- Moves `static_assert_size` from `rustc_data_structures` to
  `rustc_index` so it can be used in the latter; the former now
  re-exports it so existing users are unaffected.
- Factors out some common "clear excess bits in the final word"
  functionality in `bit_set.rs`.
- Uses `fill` in a few places instead of loops.
This commit is contained in:
Nicholas Nethercote 2022-02-10 00:47:48 +11:00
parent 523a1b1d38
commit 36b495f3cf
14 changed files with 806 additions and 75 deletions

View file

@ -5,16 +5,37 @@ use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Bound, Not, Range, RangeBounds, Shl};
use std::rc::Rc;
use std::slice;
use rustc_macros::{Decodable, Encodable};
use Chunk::*;
#[cfg(test)]
mod tests;
pub type Word = u64;
pub const WORD_BYTES: usize = mem::size_of::<Word>();
pub const WORD_BITS: usize = WORD_BYTES * 8;
type Word = u64;
const WORD_BYTES: usize = mem::size_of::<Word>();
const WORD_BITS: usize = WORD_BYTES * 8;
// The choice of chunk size has some trade-offs.
//
// A big chunk size tends to favour cases where many large `ChunkedBitSet`s are
// present, because they require fewer `Chunk`s, reducing the number of
// allocations and reducing peak memory usage. Also, fewer chunk operations are
// required, though more of them might be `Mixed`.
//
// A small chunk size tends to favour cases where many small `ChunkedBitSet`s
// are present, because less space is wasted at the end of the final chunk (if
// it's not full).
const CHUNK_WORDS: usize = 32;
const CHUNK_BITS: usize = CHUNK_WORDS * WORD_BITS; // 2048 bits
/// ChunkSize is small to keep `Chunk` small. The static assertion ensures it's
/// not too small.
type ChunkSize = u16;
const _: () = assert!(CHUNK_BITS <= ChunkSize::MAX as usize);
pub trait BitRelations<Rhs> {
fn union(&mut self, other: &Rhs) -> bool;
@ -121,19 +142,12 @@ impl<T: Idx> BitSet<T> {
/// Clear all elements.
#[inline]
pub fn clear(&mut self) {
for word in &mut self.words {
*word = 0;
}
self.words.fill(0);
}
/// Clear excess bits in the final word.
fn clear_excess_bits(&mut self) {
let num_bits_in_final_word = self.domain_size % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let final_word_idx = self.words.len() - 1;
self.words[final_word_idx] &= mask;
}
clear_excess_bits_in_final_word(self.domain_size, &mut self.words);
}
/// Count the number of set bits in the set.
@ -203,9 +217,7 @@ impl<T: Idx> BitSet<T> {
/// Sets all bits to true.
pub fn insert_all(&mut self) {
for word in &mut self.words {
*word = !0;
}
self.words.fill(!0);
self.clear_excess_bits();
}
@ -328,6 +340,407 @@ impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
}
}
/// A fixed-size bitset type with a partially dense, partially sparse
/// representation. The bitset is broken into chunks, and chunks that are all
/// zeros or all ones are represented and handled very efficiently.
///
/// This type is especially efficient for sets that typically have a large
/// `domain_size` with significant stretches of all zeros or all ones, and also
/// some stretches with lots of 0s and 1s mixed in a way that causes trouble
/// for `IntervalSet`.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
#[derive(Debug, PartialEq, Eq)]
pub struct ChunkedBitSet<T> {
domain_size: usize,
/// The chunks. Each one contains exactly CHUNK_BITS values, except the
/// last one which contains 1..=CHUNK_BITS values.
chunks: Box<[Chunk]>,
marker: PhantomData<T>,
}
// Note: the chunk domain size is duplicated in each variant. This is a bit
// inconvenient, but it allows the type size to be smaller than if we had an
// outer struct containing a chunk domain size plus the `Chunk`, because the
// compiler can place the chunk domain size after the tag.
#[derive(Clone, Debug, PartialEq, Eq)]
enum Chunk {
/// A chunk that is all zeros; we don't represent the zeros explicitly.
Zeros(ChunkSize),
/// A chunk that is all ones; we don't represent the ones explicitly.
Ones(ChunkSize),
/// A chunk that has a mix of zeros and ones, which are represented
/// explicitly and densely. It never has all zeros or all ones.
///
/// If this is the final chunk there may be excess, unused words. This
/// turns out to be both simpler and have better performance than
/// allocating the minimum number of words, largely because we avoid having
/// to store the length, which would make this type larger. These excess
/// words are always be zero, as are any excess bits in the final in-use
/// word.
///
/// The second field is the count of 1s set in the chunk, and must satisfy
/// `0 < count < chunk_domain_size`.
///
/// The words are within an `Rc` because it's surprisingly common to
/// duplicate an entire chunk, e.g. in `ChunkedBitSet::clone_from()`, or
/// when a `Mixed` chunk is union'd into a `Zeros` chunk. When we do need
/// to modify a chunk we use `Rc::make_mut`.
Mixed(ChunkSize, ChunkSize, Rc<[Word; CHUNK_WORDS]>),
}
// This type is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
crate::static_assert_size!(Chunk, 16);
impl<T> ChunkedBitSet<T> {
pub fn domain_size(&self) -> usize {
self.domain_size
}
#[cfg(test)]
fn assert_valid(&self) {
if self.domain_size == 0 {
assert!(self.chunks.is_empty());
return;
}
assert!((self.chunks.len() - 1) * CHUNK_BITS <= self.domain_size);
assert!(self.chunks.len() * CHUNK_BITS >= self.domain_size);
for chunk in self.chunks.iter() {
chunk.assert_valid();
}
}
}
impl<T: Idx> ChunkedBitSet<T> {
/// Creates a new bitset with a given `domain_size` and chunk kind.
fn new(domain_size: usize, is_empty: bool) -> Self {
let chunks = if domain_size == 0 {
Box::new([])
} else {
// All the chunks have a chunk_domain_size of `CHUNK_BITS` except
// the final one.
let final_chunk_domain_size = {
let n = domain_size % CHUNK_BITS;
if n == 0 { CHUNK_BITS } else { n }
};
let mut chunks =
vec![Chunk::new(CHUNK_BITS, is_empty); num_chunks(domain_size)].into_boxed_slice();
*chunks.last_mut().unwrap() = Chunk::new(final_chunk_domain_size, is_empty);
chunks
};
ChunkedBitSet { domain_size, chunks, marker: PhantomData }
}
/// Creates a new, empty bitset with a given `domain_size`.
#[inline]
pub fn new_empty(domain_size: usize) -> Self {
ChunkedBitSet::new(domain_size, /* is_empty */ true)
}
/// Creates a new, filled bitset with a given `domain_size`.
#[inline]
pub fn new_filled(domain_size: usize) -> Self {
ChunkedBitSet::new(domain_size, /* is_empty */ false)
}
#[cfg(test)]
fn chunks(&self) -> &[Chunk] {
&self.chunks
}
/// Count the number of bits in the set.
pub fn count(&self) -> usize {
self.chunks.iter().map(|chunk| chunk.count()).sum()
}
/// Returns `true` if `self` contains `elem`.
#[inline]
pub fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let chunk = &self.chunks[chunk_index(elem)];
match &chunk {
Zeros(_) => false,
Ones(_) => true,
Mixed(_, _, words) => {
let (word_index, mask) = chunk_word_index_and_mask(elem);
(words[word_index] & mask) != 0
}
}
}
/// Insert `elem`. Returns whether the set has changed.
pub fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let chunk_index = chunk_index(elem);
let chunk = &mut self.chunks[chunk_index];
match *chunk {
Zeros(chunk_domain_size) => {
if chunk_domain_size > 1 {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
let mut words = unsafe { words.assume_init() };
let words_ref = Rc::get_mut(&mut words).unwrap();
let (word_index, mask) = chunk_word_index_and_mask(elem);
words_ref[word_index] |= mask;
*chunk = Mixed(chunk_domain_size, 1, words);
} else {
*chunk = Ones(chunk_domain_size);
}
true
}
Ones(_) => false,
Mixed(chunk_domain_size, ref mut count, ref mut words) => {
// We skip all the work if the bit is already set.
let (word_index, mask) = chunk_word_index_and_mask(elem);
if (words[word_index] & mask) == 0 {
*count += 1;
if *count < chunk_domain_size {
let words = Rc::make_mut(words);
words[word_index] |= mask;
} else {
*chunk = Ones(chunk_domain_size);
}
true
} else {
false
}
}
}
}
/// Sets all bits to true.
pub fn insert_all(&mut self) {
for chunk in self.chunks.iter_mut() {
*chunk = match *chunk {
Zeros(chunk_domain_size)
| Ones(chunk_domain_size)
| Mixed(chunk_domain_size, ..) => Ones(chunk_domain_size),
}
}
}
/// Returns `true` if the set has changed.
pub fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let chunk_index = chunk_index(elem);
let chunk = &mut self.chunks[chunk_index];
match *chunk {
Zeros(_) => false,
Ones(chunk_domain_size) => {
if chunk_domain_size > 1 {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
let mut words = unsafe { words.assume_init() };
let words_ref = Rc::get_mut(&mut words).unwrap();
// Set only the bits in use.
let num_words = num_words(chunk_domain_size as usize);
words_ref[..num_words].fill(!0);
clear_excess_bits_in_final_word(
chunk_domain_size as usize,
&mut words_ref[..num_words],
);
let (word_index, mask) = chunk_word_index_and_mask(elem);
words_ref[word_index] &= !mask;
*chunk = Mixed(chunk_domain_size, chunk_domain_size - 1, words);
} else {
*chunk = Zeros(chunk_domain_size);
}
true
}
Mixed(chunk_domain_size, ref mut count, ref mut words) => {
// We skip all the work if the bit is already clear.
let (word_index, mask) = chunk_word_index_and_mask(elem);
if (words[word_index] & mask) != 0 {
*count -= 1;
if *count > 0 {
let words = Rc::make_mut(words);
words[word_index] &= !mask;
} else {
*chunk = Zeros(chunk_domain_size);
}
true
} else {
false
}
}
}
}
bit_relations_inherent_impls! {}
}
impl<T: Idx> BitRelations<ChunkedBitSet<T>> for ChunkedBitSet<T> {
fn union(&mut self, other: &ChunkedBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
debug_assert_eq!(self.chunks.len(), other.chunks.len());
let mut changed = false;
for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
match (&mut self_chunk, &other_chunk) {
(_, Zeros(_)) | (Ones(_), _) => {}
(Zeros(self_chunk_domain_size), Ones(other_chunk_domain_size))
| (Mixed(self_chunk_domain_size, ..), Ones(other_chunk_domain_size))
| (Zeros(self_chunk_domain_size), Mixed(other_chunk_domain_size, ..)) => {
// `other_chunk` fully overwrites `self_chunk`
debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
*self_chunk = other_chunk.clone();
changed = true;
}
(
Mixed(
self_chunk_domain_size,
ref mut self_chunk_count,
ref mut self_chunk_words,
),
Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
) => {
// First check if the operation would change
// `self_chunk.words`. If not, we can avoid allocating some
// words, and this happens often enough that it's a
// performance win. Also, we only need to operate on the
// in-use words, hence the slicing.
let op = |a, b| a | b;
let num_words = num_words(*self_chunk_domain_size as usize);
if bitwise_changes(
&self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
) {
let self_chunk_words = Rc::make_mut(self_chunk_words);
let has_changed = bitwise(
&mut self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
);
debug_assert!(has_changed);
*self_chunk_count = self_chunk_words[0..num_words]
.iter()
.map(|w| w.count_ones() as ChunkSize)
.sum();
if *self_chunk_count == *self_chunk_domain_size {
*self_chunk = Ones(*self_chunk_domain_size);
}
changed = true;
}
}
}
}
changed
}
fn subtract(&mut self, _other: &ChunkedBitSet<T>) -> bool {
unimplemented!("implement if/when necessary");
}
fn intersect(&mut self, _other: &ChunkedBitSet<T>) -> bool {
unimplemented!("implement if/when necessary");
}
}
impl<T: Idx> BitRelations<HybridBitSet<T>> for ChunkedBitSet<T> {
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
// FIXME: this is slow if `other` is dense, and could easily be
// improved, but it hasn't been a problem in practice so far.
assert_eq!(self.domain_size, other.domain_size());
sequential_update(|elem| self.insert(elem), other.iter())
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
// FIXME: this is slow if `other` is dense, and could easily be
// improved, but it hasn't been a problem in practice so far.
assert_eq!(self.domain_size, other.domain_size());
sequential_update(|elem| self.remove(elem), other.iter())
}
fn intersect(&mut self, _other: &HybridBitSet<T>) -> bool {
unimplemented!("implement if/when necessary");
}
}
impl<T> Clone for ChunkedBitSet<T> {
fn clone(&self) -> Self {
ChunkedBitSet {
domain_size: self.domain_size,
chunks: self.chunks.clone(),
marker: PhantomData,
}
}
/// WARNING: this implementation of clone_from will panic if the two
/// bitsets have different domain sizes. This constraint is not inherent to
/// `clone_from`, but it works with the existing call sites and allows a
/// faster implementation, which is important because this function is hot.
fn clone_from(&mut self, from: &Self) {
assert_eq!(self.domain_size, from.domain_size);
debug_assert_eq!(self.chunks.len(), from.chunks.len());
self.chunks.clone_from(&from.chunks)
}
}
impl Chunk {
#[cfg(test)]
fn assert_valid(&self) {
match *self {
Zeros(chunk_domain_size) | Ones(chunk_domain_size) => {
assert!(chunk_domain_size as usize <= CHUNK_BITS);
}
Mixed(chunk_domain_size, count, ref words) => {
assert!(chunk_domain_size as usize <= CHUNK_BITS);
assert!(0 < count && count < chunk_domain_size);
// Check the number of set bits matches `count`.
assert_eq!(
words.iter().map(|w| w.count_ones() as ChunkSize).sum::<ChunkSize>(),
count
);
// Check the not-in-use words are all zeroed.
let num_words = num_words(chunk_domain_size as usize);
if num_words < CHUNK_WORDS {
assert_eq!(
words[num_words..]
.iter()
.map(|w| w.count_ones() as ChunkSize)
.sum::<ChunkSize>(),
0
);
}
}
}
}
fn new(chunk_domain_size: usize, is_empty: bool) -> Self {
debug_assert!(chunk_domain_size <= CHUNK_BITS);
let chunk_domain_size = chunk_domain_size as ChunkSize;
if is_empty { Zeros(chunk_domain_size) } else { Ones(chunk_domain_size) }
}
/// Count the number of 1s in the chunk.
fn count(&self) -> usize {
match *self {
Zeros(_) => 0,
Ones(chunk_domain_size) => chunk_domain_size as usize,
Mixed(_, count, _) => count as usize,
}
}
}
// Applies a function to mutate a bitset, and returns true if any
// of the applications return true
fn sequential_update<T: Idx>(
@ -642,6 +1055,23 @@ where
changed != 0
}
/// Does this bitwise operation change `out_vec`?
#[inline]
fn bitwise_changes<Op>(out_vec: &[Word], in_vec: &[Word], op: Op) -> bool
where
Op: Fn(Word, Word) -> Word,
{
assert_eq!(out_vec.len(), in_vec.len());
for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
let old_val = *out_elem;
let new_val = op(old_val, *in_elem);
if old_val != new_val {
return true;
}
}
false
}
const SPARSE_MAX: usize = 8;
/// A fixed-size bitset type with a sparse representation and a maximum of
@ -1136,18 +1566,7 @@ impl<R: Idx, C: Idx> BitMatrix<R, C> {
for index in start..end {
words[index] = !0;
}
self.clear_excess_bits(row);
}
/// Clear excess bits in the final word of the row.
fn clear_excess_bits(&mut self, row: R) {
let num_bits_in_final_word = self.num_columns % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let (_, end) = self.range(row);
let final_word_idx = end - 1;
self.words[final_word_idx] &= mask;
}
clear_excess_bits_in_final_word(self.num_columns, &mut self.words[..end]);
}
/// Gets a slice of the underlying words.
@ -1339,6 +1758,12 @@ fn num_words<T: Idx>(domain_size: T) -> usize {
(domain_size.index() + WORD_BITS - 1) / WORD_BITS
}
#[inline]
fn num_chunks<T: Idx>(domain_size: T) -> usize {
assert!(domain_size.index() > 0);
(domain_size.index() + CHUNK_BITS - 1) / CHUNK_BITS
}
#[inline]
fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
let elem = elem.index();
@ -1347,6 +1772,25 @@ fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
(word_index, mask)
}
#[inline]
fn chunk_index<T: Idx>(elem: T) -> usize {
elem.index() / CHUNK_BITS
}
#[inline]
fn chunk_word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
let chunk_elem = elem.index() % CHUNK_BITS;
word_index_and_mask(chunk_elem)
}
fn clear_excess_bits_in_final_word(domain_size: usize, words: &mut [Word]) {
let num_bits_in_final_word = domain_size % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
words[words.len() - 1] &= mask;
}
}
#[inline]
fn max_bit(word: Word) -> usize {
WORD_BITS - 1 - word.leading_zeros() as usize