Gather rustc-specific functions around MatchCheckCtxt

This commit is contained in:
Nadrieril 2023-12-10 22:14:00 +01:00
parent 281002d42c
commit 3691a0aee5
8 changed files with 903 additions and 900 deletions

View file

@ -158,21 +158,16 @@ use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::RangeEnd;
use rustc_index::IndexVec;
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::mir;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::thir::{Pat, PatKind, PatRange, PatRangeBoundary};
use rustc_middle::mir::Const;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Integer, VariantIdx, FIRST_VARIANT};
use rustc_target::abi::{Integer, VariantIdx};
use self::Constructor::*;
use self::MaybeInfiniteInt::*;
use self::SliceKind::*;
use crate::pat::Fields;
use crate::usefulness::{MatchCheckCtxt, PatCtxt};
use crate::usefulness::PatCtxt;
/// Whether we have seen a constructor in the column or not.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@ -196,7 +191,7 @@ pub enum MaybeInfiniteInt {
impl MaybeInfiniteInt {
// The return value of `signed_bias` should be XORed with a value to encode/decode it.
fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
pub(crate) fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
match *ty.kind() {
ty::Int(ity) => {
let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
@ -206,58 +201,13 @@ impl MaybeInfiniteInt {
}
}
fn new_finite(tcx: TyCtxt<'_>, ty: Ty<'_>, bits: u128) -> Self {
pub fn new_finite(tcx: TyCtxt<'_>, ty: Ty<'_>, bits: u128) -> Self {
let bias = Self::signed_bias(tcx, ty);
// Perform a shift if the underlying types are signed, which makes the interval arithmetic
// type-independent.
let x = bits ^ bias;
Finite(x)
}
pub(crate) fn from_pat_range_bdy<'tcx>(
bdy: PatRangeBoundary<'tcx>,
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Self {
match bdy {
PatRangeBoundary::NegInfinity => NegInfinity,
PatRangeBoundary::Finite(value) => {
let bits = value.eval_bits(tcx, param_env);
Self::new_finite(tcx, ty, bits)
}
PatRangeBoundary::PosInfinity => PosInfinity,
}
}
/// Used only for diagnostics.
/// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
/// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
/// `PosInfinity`.
fn to_diagnostic_pat_range_bdy<'tcx>(
self,
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
) -> PatRangeBoundary<'tcx> {
match self {
NegInfinity => PatRangeBoundary::NegInfinity,
Finite(x) => {
let bias = Self::signed_bias(tcx, ty);
let bits = x ^ bias;
let size = ty.primitive_size(tcx);
match Scalar::try_from_uint(bits, size) {
Some(scalar) => {
let value = mir::Const::from_scalar(tcx, scalar, ty);
PatRangeBoundary::Finite(value)
}
// The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value
// for a type, the problem isn't that the value is too small. So it must be too
// large.
None => PatRangeBoundary::PosInfinity,
}
}
JustAfterMax | PosInfinity => PatRangeBoundary::PosInfinity,
}
}
/// Note: this will not turn a finite value into an infinite one or vice-versa.
pub fn minus_one(self) -> Self {
@ -290,16 +240,11 @@ impl MaybeInfiniteInt {
/// space: i.e., `range.lo < range.hi`.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct IntRange {
pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
}
impl IntRange {
#[inline]
pub(super) fn is_integral(ty: Ty<'_>) -> bool {
matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_))
}
/// Best effort; will not know that e.g. `255u8..` is a singleton.
pub fn is_singleton(&self) -> bool {
// Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
@ -421,55 +366,6 @@ impl IntRange {
(presence, range)
})
}
/// Whether the range denotes the fictitious values before `isize::MIN` or after
/// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
pub fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
ty.is_ptr_sized_integral() && {
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy`
// converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `self.lo`
// otherwise.
let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
matches!(lo, PatRangeBoundary::PosInfinity)
|| matches!(self.hi, MaybeInfiniteInt::Finite(0))
}
}
/// Only used for displaying the range.
pub(super) fn to_diagnostic_pat<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Pat<'tcx> {
let kind = if matches!((self.lo, self.hi), (NegInfinity, PosInfinity)) {
PatKind::Wild
} else if self.is_singleton() {
let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
let value = lo.as_finite().unwrap();
PatKind::Constant { value }
} else {
// We convert to an inclusive range for diagnostics.
let mut end = RangeEnd::Included;
let mut lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
if matches!(lo, PatRangeBoundary::PosInfinity) {
// The only reason to get `PosInfinity` here is the special case where
// `to_diagnostic_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
// fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
// this). We show this to the user as `usize::MAX..` which is slightly incorrect but
// probably clear enough.
let c = ty.numeric_max_val(tcx).unwrap();
let value = mir::Const::from_ty_const(c, tcx);
lo = PatRangeBoundary::Finite(value);
}
let hi = if matches!(self.hi, MaybeInfiniteInt::Finite(0)) {
// The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
end = RangeEnd::Excluded;
self.hi
} else {
self.hi.minus_one()
};
let hi = hi.to_diagnostic_pat_range_bdy(ty, tcx);
PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
};
Pat { ty, span: DUMMY_SP, kind }
}
}
/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
@ -742,7 +638,7 @@ pub enum Constructor<'tcx> {
F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
/// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
Str(mir::Const<'tcx>),
Str(Const<'tcx>),
/// Array and slice patterns.
Slice(Slice),
/// Constants that must not be matched structurally. They are treated as black boxes for the
@ -797,49 +693,10 @@ impl<'tcx> Constructor<'tcx> {
}
}
pub(crate) fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
match *self {
Variant(idx) => idx,
Single => {
assert!(!adt.is_enum());
FIRST_VARIANT
}
_ => bug!("bad constructor {:?} for adt {:?}", self, adt),
}
}
/// The number of fields for this constructor. This must be kept in sync with
/// `Fields::wildcards`.
pub(crate) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
match self {
Single | Variant(_) => match pcx.ty.kind() {
ty::Tuple(fs) => fs.len(),
ty::Ref(..) => 1,
ty::Adt(adt, ..) => {
if adt.is_box() {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
1
} else {
let variant = &adt.variant(self.variant_index_for_adt(*adt));
Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
}
}
_ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
},
Slice(slice) => slice.arity(),
Bool(..)
| IntRange(..)
| F32Range(..)
| F64Range(..)
| Str(..)
| Opaque(..)
| NonExhaustive
| Hidden
| Missing { .. }
| Wildcard => 0,
Or => bug!("The `Or` constructor doesn't have a fixed arity"),
}
pcx.cx.ctor_arity(self, pcx.ty)
}
/// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
@ -974,123 +831,6 @@ pub(super) struct SplitConstructorSet<'tcx> {
}
impl ConstructorSet {
/// Creates a set that represents all the constructors of `ty`.
///
/// See at the top of the file for considerations of emptiness.
#[instrument(level = "debug", skip(cx), ret)]
pub fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
let make_range = |start, end| {
IntRange::from_range(
MaybeInfiniteInt::new_finite(cx.tcx, ty, start),
MaybeInfiniteInt::new_finite(cx.tcx, ty, end),
RangeEnd::Included,
)
};
// This determines the set of all possible constructors for the type `ty`. For numbers,
// arrays and slices we use ranges and variable-length slices when appropriate.
match ty.kind() {
ty::Bool => Self::Bool,
ty::Char => {
// The valid Unicode Scalar Value ranges.
Self::Integers {
range_1: make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
range_2: Some(make_range('\u{E000}' as u128, '\u{10FFFF}' as u128)),
}
}
&ty::Int(ity) => {
let range = if ty.is_ptr_sized_integral() {
// The min/max values of `isize` are not allowed to be observed.
IntRange { lo: NegInfinity, hi: PosInfinity }
} else {
let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
let min = 1u128 << (bits - 1);
let max = min - 1;
make_range(min, max)
};
Self::Integers { range_1: range, range_2: None }
}
&ty::Uint(uty) => {
let range = if ty.is_ptr_sized_integral() {
// The max value of `usize` is not allowed to be observed.
let lo = MaybeInfiniteInt::new_finite(cx.tcx, ty, 0);
IntRange { lo, hi: PosInfinity }
} else {
let size = Integer::from_uint_ty(&cx.tcx, uty).size();
let max = size.truncate(u128::MAX);
make_range(0, max)
};
Self::Integers { range_1: range, range_2: None }
}
ty::Slice(sub_ty) => {
Self::Slice { array_len: None, subtype_is_empty: cx.is_uninhabited(*sub_ty) }
}
ty::Array(sub_ty, len) => {
// We treat arrays of a constant but unknown length like slices.
Self::Slice {
array_len: len.try_eval_target_usize(cx.tcx, cx.param_env).map(|l| l as usize),
subtype_is_empty: cx.is_uninhabited(*sub_ty),
}
}
ty::Adt(def, args) if def.is_enum() => {
let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty);
if def.variants().is_empty() && !is_declared_nonexhaustive {
Self::NoConstructors
} else {
let mut variants =
IndexVec::from_elem(VariantVisibility::Visible, def.variants());
for (idx, v) in def.variants().iter_enumerated() {
let variant_def_id = def.variant(idx).def_id;
// Visibly uninhabited variants.
let is_inhabited = v
.inhabited_predicate(cx.tcx, *def)
.instantiate(cx.tcx, args)
.apply(cx.tcx, cx.param_env, cx.module);
// Variants that depend on a disabled unstable feature.
let is_unstable = matches!(
cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
EvalResult::Deny { .. }
);
// Foreign `#[doc(hidden)]` variants.
let is_doc_hidden =
cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
let visibility = if !is_inhabited {
// FIXME: handle empty+hidden
VariantVisibility::Empty
} else if is_unstable || is_doc_hidden {
VariantVisibility::Hidden
} else {
VariantVisibility::Visible
};
variants[idx] = visibility;
}
Self::Variants { variants, non_exhaustive: is_declared_nonexhaustive }
}
}
ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => {
Self::Single { empty: cx.is_uninhabited(ty) }
}
ty::Never => Self::NoConstructors,
// This type is one for which we cannot list constructors, like `str` or `f64`.
// FIXME(Nadrieril): which of these are actually allowed?
ty::Float(_)
| ty::Str
| ty::Foreign(_)
| ty::RawPtr(_)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Dynamic(_, _, _)
| ty::Closure(_, _)
| ty::Coroutine(_, _, _)
| ty::Alias(_, _)
| ty::Param(_)
| ty::Error(_) => Self::Unlistable,
ty::CoroutineWitness(_, _) | ty::Bound(_, _) | ty::Placeholder(_) | ty::Infer(_) => {
bug!("Encountered unexpected type in `ConstructorSet::for_ty`: {ty:?}")
}
}
}
/// This analyzes a column of constructors to 1/ determine which constructors of the type (if
/// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation