1
Fork 0

Auto merge of #115699 - RalfJung:interpret-abi-compat, r=oli-obk

interpret: change ABI-compat test to be type-based

This makes the test consistent across targets. Otherwise the chances are very high that ABI mismatches get accepted on x86_64 but still fail on many other targets with more complicated ABIs.

This implements (most of) the rules described in https://github.com/rust-lang/rust/pull/115476.
This commit is contained in:
bors 2023-09-12 03:34:55 +00:00
commit 366dab13f7
13 changed files with 270 additions and 116 deletions

View file

@ -482,6 +482,9 @@ impl<'a> ReportErrorExt for UndefinedBehaviorInfo<'a> {
use UndefinedBehaviorInfo::*;
match self {
Ub(msg) => msg.clone().into(),
Custom(x) => (x.msg)(),
ValidationError(e) => e.diagnostic_message(),
Unreachable => const_eval_unreachable,
BoundsCheckFailed { .. } => const_eval_bounds_check_failed,
DivisionByZero => const_eval_division_by_zero,
@ -513,8 +516,8 @@ impl<'a> ReportErrorExt for UndefinedBehaviorInfo<'a> {
ScalarSizeMismatch(_) => const_eval_scalar_size_mismatch,
UninhabitedEnumVariantWritten(_) => const_eval_uninhabited_enum_variant_written,
UninhabitedEnumVariantRead(_) => const_eval_uninhabited_enum_variant_read,
ValidationError(e) => e.diagnostic_message(),
Custom(x) => (x.msg)(),
AbiMismatchArgument { .. } => const_eval_incompatible_types,
AbiMismatchReturn { .. } => const_eval_incompatible_return_types,
}
}
@ -525,8 +528,15 @@ impl<'a> ReportErrorExt for UndefinedBehaviorInfo<'a> {
) {
use UndefinedBehaviorInfo::*;
match self {
Ub(_)
| Unreachable
Ub(_) => {}
Custom(custom) => {
(custom.add_args)(&mut |name, value| {
builder.set_arg(name, value);
});
}
ValidationError(e) => e.add_args(handler, builder),
Unreachable
| DivisionByZero
| RemainderByZero
| DivisionOverflow
@ -593,11 +603,10 @@ impl<'a> ReportErrorExt for UndefinedBehaviorInfo<'a> {
builder.set_arg("target_size", info.target_size);
builder.set_arg("data_size", info.data_size);
}
ValidationError(e) => e.add_args(handler, builder),
Custom(custom) => {
(custom.add_args)(&mut |name, value| {
builder.set_arg(name, value);
});
AbiMismatchArgument { caller_ty, callee_ty }
| AbiMismatchReturn { caller_ty, callee_ty } => {
builder.set_arg("caller_ty", caller_ty.to_string());
builder.set_arg("callee_ty", callee_ty.to_string());
}
}
}

View file

@ -6,12 +6,16 @@ use rustc_middle::{
mir,
ty::{
self,
layout::{FnAbiOf, LayoutOf, TyAndLayout},
Instance, Ty,
layout::{FnAbiOf, IntegerExt, LayoutOf, TyAndLayout},
AdtDef, Instance, Ty,
},
};
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use rustc_span::sym;
use rustc_target::abi::{self, FieldIdx};
use rustc_target::abi::{
call::{ArgAbi, FnAbi, PassMode},
Integer,
};
use rustc_target::spec::abi::Abi;
use super::{
@ -255,9 +259,15 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Find the wrapped inner type of a transparent wrapper.
/// Must not be called on 1-ZST (as they don't have a uniquely defined "wrapped field").
fn unfold_transparent(&self, layout: TyAndLayout<'tcx>) -> TyAndLayout<'tcx> {
///
/// We work with `TyAndLayout` here since that makes it much easier to iterate over all fields.
fn unfold_transparent(
&self,
layout: TyAndLayout<'tcx>,
may_unfold: impl Fn(AdtDef<'tcx>) -> bool,
) -> TyAndLayout<'tcx> {
match layout.ty.kind() {
ty::Adt(adt_def, _) if adt_def.repr().transparent() => {
ty::Adt(adt_def, _) if adt_def.repr().transparent() && may_unfold(*adt_def) => {
assert!(!adt_def.is_enum());
// Find the non-1-ZST field.
let mut non_1zst_fields = (0..layout.fields.count()).filter_map(|idx| {
@ -271,77 +281,157 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
);
// Found it!
self.unfold_transparent(first)
self.unfold_transparent(first, may_unfold)
}
// Not a transparent type, no further unfolding.
_ => layout,
}
}
/// Unwrap types that are guaranteed a null-pointer-optimization
fn unfold_npo(&self, layout: TyAndLayout<'tcx>) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
// Check if this is `Option` wrapping some type.
let inner = match layout.ty.kind() {
ty::Adt(def, args) if self.tcx.is_diagnostic_item(sym::Option, def.did()) => {
args[0].as_type().unwrap()
}
_ => {
// Not an `Option`.
return Ok(layout);
}
};
let inner = self.layout_of(inner)?;
// Check if the inner type is one of the NPO-guaranteed ones.
// For that we first unpeel transparent *structs* (but not unions).
let is_npo = |def: AdtDef<'tcx>| {
self.tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
};
let inner = self.unfold_transparent(inner, /* may_unfold */ |def| {
// Stop at NPO tpyes so that we don't miss that attribute in the check below!
def.is_struct() && !is_npo(def)
});
Ok(match inner.ty.kind() {
ty::Ref(..) | ty::FnPtr(..) => {
// Option<&T> behaves like &T, and same for fn()
inner
}
ty::Adt(def, _) if is_npo(*def) => {
// Once we found a `nonnull_optimization_guaranteed` type, further strip off
// newtype structs from it to find the underlying ABI type.
self.unfold_transparent(inner, /* may_unfold */ |def| def.is_struct())
}
_ => {
// Everything else we do not unfold.
layout
}
})
}
/// Check if these two layouts look like they are fn-ABI-compatible.
/// (We also compare the `PassMode`, so this doesn't have to check everything. But it turns out
/// that only checking the `PassMode` is insufficient.)
fn layout_compat(
&self,
caller_layout: TyAndLayout<'tcx>,
callee_layout: TyAndLayout<'tcx>,
) -> bool {
if caller_layout.ty == callee_layout.ty {
// Fast path: equal types are definitely compatible.
return true;
caller: TyAndLayout<'tcx>,
callee: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, bool> {
// Fast path: equal types are definitely compatible.
if caller.ty == callee.ty {
return Ok(true);
}
// 1-ZST are compatible with all 1-ZST (and with nothing else).
if caller.is_1zst() || callee.is_1zst() {
return Ok(caller.is_1zst() && callee.is_1zst());
}
// Unfold newtypes and NPO optimizations.
let unfold = |layout: TyAndLayout<'tcx>| {
self.unfold_npo(self.unfold_transparent(layout, /* may_unfold */ |_def| true))
};
let caller = unfold(caller)?;
let callee = unfold(callee)?;
// Now see if these inner types are compatible.
// Compatible pointer types. For thin pointers, we have to accept even non-`repr(transparent)`
// things as compatible due to `DispatchFromDyn`. For instance, `Rc<i32>` and `*mut i32`
// must be compatible. So we just accept everything with Pointer ABI as compatible,
// even if this will accept some code that is not stably guaranteed to work.
// This also handles function pointers.
let thin_pointer = |layout: TyAndLayout<'tcx>| match layout.abi {
abi::Abi::Scalar(s) => match s.primitive() {
abi::Primitive::Pointer(addr_space) => Some(addr_space),
_ => None,
},
_ => None,
};
if let (Some(caller), Some(callee)) = (thin_pointer(caller), thin_pointer(callee)) {
return Ok(caller == callee);
}
// For wide pointers we have to get the pointee type.
let pointee_ty = |ty: Ty<'tcx>| -> InterpResult<'tcx, Option<Ty<'tcx>>> {
// We cannot use `builtin_deref` here since we need to reject `Box<T, MyAlloc>`.
Ok(Some(match ty.kind() {
ty::Ref(_, ty, _) => *ty,
ty::RawPtr(mt) => mt.ty,
// We should only accept `Box` with the default allocator.
// It's hard to test for that though so we accept every 1-ZST allocator.
ty::Adt(def, args)
if def.is_box()
&& self.layout_of(args[1].expect_ty()).is_ok_and(|l| l.is_1zst()) =>
{
args[0].expect_ty()
}
_ => return Ok(None),
}))
};
if let (Some(caller), Some(callee)) = (pointee_ty(caller.ty)?, pointee_ty(callee.ty)?) {
// This is okay if they have the same metadata type.
let meta_ty = |ty: Ty<'tcx>| {
let (meta, only_if_sized) = ty.ptr_metadata_ty(*self.tcx, |ty| ty);
assert!(
!only_if_sized,
"there should be no more 'maybe has that metadata' types during interpretation"
);
meta
};
return Ok(meta_ty(caller) == meta_ty(callee));
}
match caller_layout.abi {
// For Scalar/Vector/ScalarPair ABI, we directly compare them.
// NOTE: this is *not* a stable guarantee! It just reflects a property of our current
// ABIs. It's also fragile; the same pair of types might be considered ABI-compatible
// when used directly by-value but not considered compatible as a struct field or array
// element.
abi::Abi::Scalar(..) | abi::Abi::ScalarPair(..) | abi::Abi::Vector { .. } => {
caller_layout.abi.eq_up_to_validity(&callee_layout.abi)
}
_ => {
// Everything else is compatible only if they newtype-wrap the same type, or if they are both 1-ZST.
// (The latter part is needed to ensure e.g. that `struct Zst` is compatible with `struct Wrap((), Zst)`.)
// This is conservative, but also means that our check isn't quite so heavily dependent on the `PassMode`,
// which means having ABI-compatibility on one target is much more likely to imply compatibility for other targets.
if caller_layout.is_1zst() || callee_layout.is_1zst() {
// If either is a 1-ZST, both must be.
caller_layout.is_1zst() && callee_layout.is_1zst()
} else {
// Neither is a 1-ZST, so we can check what they are wrapping.
self.unfold_transparent(caller_layout).ty
== self.unfold_transparent(callee_layout).ty
}
}
// Compatible integer types (in particular, usize vs ptr-sized-u32/u64).
let int_ty = |ty: Ty<'tcx>| {
Some(match ty.kind() {
ty::Int(ity) => (Integer::from_int_ty(&self.tcx, *ity), /* signed */ true),
ty::Uint(uty) => (Integer::from_uint_ty(&self.tcx, *uty), /* signed */ false),
_ => return None,
})
};
if let (Some(caller), Some(callee)) = (int_ty(caller.ty), int_ty(callee.ty)) {
// This is okay if they are the same integer type.
return Ok(caller == callee);
}
// Fall back to exact equality.
// FIXME: We are missing the rules for "repr(C) wrapping compatible types".
Ok(caller == callee)
}
fn check_argument_compat(
&self,
caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
) -> bool {
// Ideally `PassMode` would capture everything there is about argument passing, but that is
// not the case: in `FnAbi::llvm_type`, also parts of the layout and type information are
// used. So we need to check that *both* sufficiently agree to ensures the arguments are
// compatible.
// For instance, `layout_compat` is needed to reject `i32` vs `f32`, which is not reflected
// in `PassMode`. `mode_compat` is needed to reject `u8` vs `bool`, which have the same
// `abi::Primitive` but different `arg_ext`.
if self.layout_compat(caller_abi.layout, callee_abi.layout)
&& caller_abi.mode.eq_abi(&callee_abi.mode)
{
// Something went very wrong if our checks don't imply layout ABI compatibility.
assert!(caller_abi.layout.eq_abi(&callee_abi.layout));
return true;
) -> InterpResult<'tcx, bool> {
// We do not want to accept things as ABI-compatible that just "happen to be" compatible on the current target,
// so we implement a type-based check that reflects the guaranteed rules for ABI compatibility.
if self.layout_compat(caller_abi.layout, callee_abi.layout)? {
// Ensure that our checks imply actual ABI compatibility for this concrete call.
assert!(caller_abi.eq_abi(&callee_abi));
return Ok(true);
} else {
trace!(
"check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
caller_abi,
callee_abi
);
return false;
return Ok(false);
}
}
@ -360,6 +450,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
'tcx: 'x,
'tcx: 'y,
{
assert_eq!(callee_ty, callee_abi.layout.ty);
if matches!(callee_abi.mode, PassMode::Ignore) {
// This one is skipped. Still must be made live though!
if !already_live {
@ -371,15 +462,17 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
let Some((caller_arg, caller_abi)) = caller_args.next() else {
throw_ub_custom!(fluent::const_eval_not_enough_caller_args);
};
assert_eq!(caller_arg.layout().layout, caller_abi.layout.layout);
// Sadly we cannot assert that `caller_arg.layout().ty` and `caller_abi.layout.ty` are
// equal; in closures the types sometimes differ. We just hope that `caller_abi` is the
// right type to print to the user.
// Check compatibility
if !self.check_argument_compat(caller_abi, callee_abi) {
let callee_ty = format!("{}", callee_ty);
let caller_ty = format!("{}", caller_arg.layout().ty);
throw_ub_custom!(
fluent::const_eval_incompatible_types,
callee_ty = callee_ty,
caller_ty = caller_ty,
)
if !self.check_argument_compat(caller_abi, callee_abi)? {
throw_ub!(AbiMismatchArgument {
caller_ty: caller_abi.layout.ty,
callee_ty: callee_abi.layout.ty
});
}
// We work with a copy of the argument for now; if this is in-place argument passing, we
// will later protect the source it comes from. This means the callee cannot observe if we
@ -583,7 +676,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// taking into account the `spread_arg`. If we could write
// this is a single iterator (that handles `spread_arg`), then
// `pass_argument` would be the loop body. It takes care to
// not advance `caller_iter` for ZSTs.
// not advance `caller_iter` for ignored arguments.
let mut callee_args_abis = callee_fn_abi.args.iter();
for local in body.args_iter() {
// Construct the destination place for this argument. At this point all
@ -645,14 +738,11 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
}
// Don't forget to check the return type!
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret) {
let callee_ty = format!("{}", callee_fn_abi.ret.layout.ty);
let caller_ty = format!("{}", caller_fn_abi.ret.layout.ty);
throw_ub_custom!(
fluent::const_eval_incompatible_return_types,
callee_ty = callee_ty,
caller_ty = caller_ty,
)
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret)? {
throw_ub!(AbiMismatchReturn {
caller_ty: caller_fn_abi.ret.layout.ty,
callee_ty: callee_fn_abi.ret.layout.ty
});
}
// Ensure the return place is aligned and dereferenceable, and protect it for
// in-place return value passing.
@ -674,7 +764,8 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
Ok(()) => Ok(()),
}
}
// cannot use the shim here, because that will only result in infinite recursion
// `InstanceDef::Virtual` does not have callable MIR. Calls to `Virtual` instances must be
// codegen'd / interpreted as virtual calls through the vtable.
ty::InstanceDef::Virtual(def_id, idx) => {
let mut args = args.to_vec();
// We have to implement all "object safe receivers". So we have to go search for a
@ -798,18 +889,26 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
}
// Adjust receiver argument. Layout can be any (thin) ptr.
let receiver_ty = Ty::new_mut_ptr(self.tcx.tcx, dyn_ty);
args[0] = FnArg::Copy(
ImmTy::from_immediate(
Scalar::from_maybe_pointer(adjusted_receiver, self).into(),
self.layout_of(Ty::new_mut_ptr(self.tcx.tcx, dyn_ty))?,
self.layout_of(receiver_ty)?,
)
.into(),
);
trace!("Patched receiver operand to {:#?}", args[0]);
// Need to also adjust the type in the ABI. Strangely, the layout there is actually
// already fine! Just the type is bogus. This is due to what `force_thin_self_ptr`
// does in `fn_abi_new_uncached`; supposedly, codegen relies on having the bogus
// type, so we just patch this up locally.
let mut caller_fn_abi = caller_fn_abi.clone();
caller_fn_abi.args[0].layout.ty = receiver_ty;
// recurse with concrete function
self.eval_fn_call(
FnVal::Instance(fn_inst),
(caller_abi, caller_fn_abi),
(caller_abi, &caller_fn_abi),
&args,
with_caller_location,
destination,

View file

@ -157,6 +157,14 @@ fn visit_implementation_of_dispatch_from_dyn(tcx: TyCtxt<'_>, impl_did: LocalDef
let infcx = tcx.infer_ctxt().build();
let cause = ObligationCause::misc(span, impl_did);
// Later parts of the compiler rely on all DispatchFromDyn types to be ABI-compatible with raw
// pointers. This is enforced here: we only allow impls for references, raw pointers, and things
// that are effectively repr(transparent) newtypes around types that already hav a
// DispatchedFromDyn impl. We cannot literally use repr(transparent) on those tpyes since some
// of them support an allocator, but we ensure that for the cases where the type implements this
// trait, they *do* satisfy the repr(transparent) rules, and then we assume that everything else
// in the compiler (in particular, all the call ABI logic) will treat them as repr(transparent)
// even if they do not carry that attribute.
use rustc_type_ir::sty::TyKind::*;
match (source.kind(), target.kind()) {
(&Ref(r_a, _, mutbl_a), Ref(r_b, _, mutbl_b))

View file

@ -255,9 +255,16 @@ impl_into_diagnostic_arg_through_debug! {
/// Error information for when the program caused Undefined Behavior.
#[derive(Debug)]
pub enum UndefinedBehaviorInfo<'a> {
pub enum UndefinedBehaviorInfo<'tcx> {
/// Free-form case. Only for errors that are never caught! Used by miri
Ub(String),
// FIXME(fee1-dead) these should all be actual variants of the enum instead of dynamically
// dispatched
/// A custom (free-form) fluent-translated error, created by `err_ub_custom!`.
Custom(crate::error::CustomSubdiagnostic<'tcx>),
/// Validation error.
ValidationError(ValidationErrorInfo<'tcx>),
/// Unreachable code was executed.
Unreachable,
/// A slice/array index projection went out-of-bounds.
@ -319,12 +326,10 @@ pub enum UndefinedBehaviorInfo<'a> {
UninhabitedEnumVariantWritten(VariantIdx),
/// An uninhabited enum variant is projected.
UninhabitedEnumVariantRead(VariantIdx),
/// Validation error.
ValidationError(ValidationErrorInfo<'a>),
// FIXME(fee1-dead) these should all be actual variants of the enum instead of dynamically
// dispatched
/// A custom (free-form) error, created by `err_ub_custom!`.
Custom(crate::error::CustomSubdiagnostic<'a>),
/// ABI-incompatible argument types.
AbiMismatchArgument { caller_ty: Ty<'tcx>, callee_ty: Ty<'tcx> },
/// ABI-incompatible return types.
AbiMismatchReturn { caller_ty: Ty<'tcx>, callee_ty: Ty<'tcx> },
}
#[derive(Debug, Clone, Copy)]

View file

@ -2749,6 +2749,8 @@ impl<'tcx> Ty<'tcx> {
| ty::Error(_)
// Extern types have metadata = ().
| ty::Foreign(..)
// `dyn*` has no metadata
| ty::Dynamic(_, _, DynKind::DynStar)
// If returned by `struct_tail_without_normalization` this is a unit struct
// without any fields, or not a struct, and therefore is Sized.
| ty::Adt(..)
@ -2757,7 +2759,7 @@ impl<'tcx> Ty<'tcx> {
| ty::Tuple(..) => (tcx.types.unit, false),
ty::Str | ty::Slice(_) => (tcx.types.usize, false),
ty::Dynamic(..) => {
ty::Dynamic(_, _, DynKind::Dyn) => {
let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, None);
(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]), false)
},

View file

@ -199,6 +199,7 @@ pub fn report_error<'tcx, 'mir>(
e: InterpErrorInfo<'tcx>,
) -> Option<(i64, bool)> {
use InterpError::*;
use UndefinedBehaviorInfo::*;
let mut msg = vec![];
@ -271,7 +272,7 @@ pub fn report_error<'tcx, 'mir>(
(title, helps)
} else {
let title = match e.kind() {
UndefinedBehavior(UndefinedBehaviorInfo::ValidationError(validation_err))
UndefinedBehavior(ValidationError(validation_err))
if matches!(
validation_err.kind,
ValidationErrorKind::PointerAsInt { .. } | ValidationErrorKind::PartialPointer
@ -299,7 +300,7 @@ pub fn report_error<'tcx, 'mir>(
let helps = match e.kind() {
Unsupported(_) =>
vec![(None, format!("this is likely not a bug in the program; it indicates that the program performed an operation that the interpreter does not support"))],
UndefinedBehavior(UndefinedBehaviorInfo::AlignmentCheckFailed { .. })
UndefinedBehavior(AlignmentCheckFailed { .. })
if ecx.machine.check_alignment == AlignmentCheck::Symbolic
=>
vec![
@ -311,13 +312,20 @@ pub fn report_error<'tcx, 'mir>(
(None, format!("this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior")),
(None, format!("see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information")),
];
if let UndefinedBehaviorInfo::PointerUseAfterFree(alloc_id, _) | UndefinedBehaviorInfo::PointerOutOfBounds { alloc_id, .. } = info {
if let Some(span) = ecx.machine.allocated_span(*alloc_id) {
helps.push((Some(span), format!("{:?} was allocated here:", alloc_id)));
match info {
PointerUseAfterFree(alloc_id, _) | PointerOutOfBounds { alloc_id, .. } => {
if let Some(span) = ecx.machine.allocated_span(*alloc_id) {
helps.push((Some(span), format!("{:?} was allocated here:", alloc_id)));
}
if let Some(span) = ecx.machine.deallocated_span(*alloc_id) {
helps.push((Some(span), format!("{:?} was deallocated here:", alloc_id)));
}
}
if let Some(span) = ecx.machine.deallocated_span(*alloc_id) {
helps.push((Some(span), format!("{:?} was deallocated here:", alloc_id)));
AbiMismatchArgument { .. } | AbiMismatchReturn { .. } => {
helps.push((None, format!("this means these two types are not *guaranteed* to be ABI-compatible across all targets")));
helps.push((None, format!("if you think this code should be accepted anyway, please report an issue")));
}
_ => {},
}
helps
}
@ -339,7 +347,7 @@ pub fn report_error<'tcx, 'mir>(
// We want to dump the allocation if this is `InvalidUninitBytes`. Since `format_error` consumes `e`, we compute the outut early.
let mut extra = String::new();
match e.kind() {
UndefinedBehavior(UndefinedBehaviorInfo::InvalidUninitBytes(Some((alloc_id, access)))) => {
UndefinedBehavior(InvalidUninitBytes(Some((alloc_id, access)))) => {
writeln!(
extra,
"Uninitialized memory occurred at {alloc_id:?}{range:?}, in this allocation:",

View file

@ -6,6 +6,8 @@ LL | g(Default::default())
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= help: this means these two types are not *guaranteed* to be ABI-compatible across all targets
= help: if you think this code should be accepted anyway, please report an issue
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_array_vs_struct.rs:LL:CC

View file

@ -6,6 +6,8 @@ LL | g(42)
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= help: this means these two types are not *guaranteed* to be ABI-compatible across all targets
= help: if you think this code should be accepted anyway, please report an issue
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_int_vs_float.rs:LL:CC

View file

@ -6,6 +6,8 @@ LL | g(&42 as *const i32)
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= help: this means these two types are not *guaranteed* to be ABI-compatible across all targets
= help: if you think this code should be accepted anyway, please report an issue
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_raw_pointer.rs:LL:CC

View file

@ -6,6 +6,8 @@ LL | g()
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= help: this means these two types are not *guaranteed* to be ABI-compatible across all targets
= help: if you think this code should be accepted anyway, please report an issue
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_return_type.rs:LL:CC

View file

@ -6,6 +6,8 @@ LL | g(42)
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= help: this means these two types are not *guaranteed* to be ABI-compatible across all targets
= help: if you think this code should be accepted anyway, please report an issue
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_simple.rs:LL:CC

View file

@ -6,6 +6,8 @@ LL | g(Default::default())
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= help: this means these two types are not *guaranteed* to be ABI-compatible across all targets
= help: if you think this code should be accepted anyway, please report an issue
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_vector.rs:LL:CC

View file

@ -1,10 +1,17 @@
use std::mem;
use std::num;
use std::ptr;
#[derive(Copy, Clone, Default)]
struct Zst;
fn test_abi_compat<T: Copy, U: Copy>(t: T, u: U) {
#[repr(transparent)]
#[derive(Copy, Clone)]
struct Wrapper<T>(T);
fn id<T>(x: T) -> T { x }
fn test_abi_compat<T: Clone, U: Clone>(t: T, u: U) {
fn id<T>(x: T) -> T {
x
}
@ -16,10 +23,10 @@ fn test_abi_compat<T: Copy, U: Copy>(t: T, u: U) {
// in both directions.
let f: fn(T) -> T = id;
let f: fn(U) -> U = unsafe { std::mem::transmute(f) };
let _val = f(u);
let _val = f(u.clone());
let f: fn(U) -> U = id;
let f: fn(T) -> T = unsafe { std::mem::transmute(f) };
let _val = f(t);
let _val = f(t.clone());
// And then we do the same for `extern "C"`.
let f: extern "C" fn(T) -> T = id_c;
@ -32,9 +39,6 @@ fn test_abi_compat<T: Copy, U: Copy>(t: T, u: U) {
/// Ensure that `T` is compatible with various repr(transparent) wrappers around `T`.
fn test_abi_newtype<T: Copy + Default>() {
#[repr(transparent)]
#[derive(Copy, Clone)]
struct Wrapper1<T>(T);
#[repr(transparent)]
#[derive(Copy, Clone)]
struct Wrapper2<T>(T, ());
@ -46,7 +50,7 @@ fn test_abi_newtype<T: Copy + Default>() {
struct Wrapper3<T>(Zst, T, [u8; 0]);
let t = T::default();
test_abi_compat(t, Wrapper1(t));
test_abi_compat(t, Wrapper(t));
test_abi_compat(t, Wrapper2(t, ()));
test_abi_compat(t, Wrapper2a((), t));
test_abi_compat(t, Wrapper3(Zst, t, []));
@ -54,23 +58,30 @@ fn test_abi_newtype<T: Copy + Default>() {
}
fn main() {
// Here we check:
// - u32 vs char is allowed
// - u32 vs NonZeroU32/Option<NonZeroU32> is allowed
// - reference vs raw pointer is allowed
// - references to things of the same size and alignment are allowed
// These are very basic tests that should work on all ABIs. However it is not clear that any of
// these would be stably guaranteed. Code that relies on this is equivalent to code that relies
// on the layout of `repr(Rust)` types. They are also fragile: the same mismatches in the fields
// of a struct (even with `repr(C)`) will not always be accepted by Miri.
// Note that `bool` and `u8` are *not* compatible, at least on x86-64!
// One of them has `arg_ext: Zext`, the other does not.
// Similarly, `i32` and `u32` are not compatible on s390x due to different `arg_ext`.
test_abi_compat(0u32, 'x');
// Here we check some of the guaranteed ABI compatibilities.
// Different integer types of the same size and sign.
if cfg!(target_pointer_width = "32") {
test_abi_compat(0usize, 0u32);
test_abi_compat(0isize, 0i32);
} else {
test_abi_compat(0usize, 0u64);
test_abi_compat(0isize, 0i64);
}
test_abi_compat(42u32, num::NonZeroU32::new(1).unwrap());
test_abi_compat(0u32, Some(num::NonZeroU32::new(1).unwrap()));
// Reference/pointer types with the same pointee.
test_abi_compat(&0u32, &0u32 as *const u32);
test_abi_compat(&mut 0u32 as *mut u32, Box::new(0u32));
test_abi_compat(&(), ptr::NonNull::<()>::dangling());
// Reference/pointer types with different but sized pointees.
test_abi_compat(&0u32, &([true; 4], [0u32; 0]));
// `fn` types
test_abi_compat(main as fn(), id::<i32> as fn(i32) -> i32);
// Guaranteed null-pointer-optimizations.
test_abi_compat(&0u32 as *const u32, Some(&0u32));
test_abi_compat(main as fn(), Some(main as fn()));
test_abi_compat(0u32, Some(num::NonZeroU32::new(1).unwrap()));
test_abi_compat(&0u32 as *const u32, Some(Wrapper(&0u32)));
test_abi_compat(0u32, Some(Wrapper(num::NonZeroU32::new(1).unwrap())));
// These must work for *any* type, since we guarantee that `repr(transparent)` is ABI-compatible
// with the wrapped field.