Auto merge of #101168 - jachris:dataflow-const-prop, r=oli-obk
Add new MIR constant propagation based on dataflow analysis The current constant propagation in `rustc_mir_transform/src/const_prop.rs` fails to handle many cases that would be expected from a constant propagation optimization. For example: ```rust let x = if true { 0 } else { 0 }; ``` This pull request adds a new constant propagation MIR optimization pass based on the existing dataflow analysis framework. Since most of the analysis is not unique to constant propagation, a generic framework has been extracted. It works on top of the existing framework and could be reused for other optimzations. Closes #80038. Closes #81605. ## Todo ### Essential - [x] [Writes to inactive enum variants](https://github.com/rust-lang/rust/pull/101168#pullrequestreview-1089493974). Resolved by rejecting the registration of places with downcast projections for now. Could be improved by flooding other variants if mutable access to a variant is observed. - [X] Handle [`StatementKind::CopyNonOverlapping`](https://github.com/rust-lang/rust/pull/101168#discussion_r957774914). Resolved by flooding the destination. - [x] Handle `UnsafeCell` / `!Freeze` correctly. - [X] Overflow propagation of `CheckedBinaryOp`: Decided to not propagate if overflow flag is `true` (`false` will still be propagated) - [x] More documentation in general. - [x] Arguments for correctness, documentation of necessary assumptions. - [x] Better performance, or alternatively, require `-Zmir-opt-level=3` for now. ### Extra - [x] Add explicit unreachability, i.e. upgrading the lattice from $\mathbb{P} \to \mathbb{V}$ to $\set{\bot} \cup (\mathbb{P} \to \mathbb{V})$. - [x] Use storage statements to improve precision. - [ ] Consider opening issue for duplicate diagnostics: https://github.com/rust-lang/rust/pull/101168#issuecomment-1276609950 - [ ] Flood moved-from places with $\bot$ (requires some changes for places with tracked projections). - [ ] Add downcast projections back in. - [ ] [Algebraic simplifications](https://github.com/rust-lang/rust/pull/101168#discussion_r957967878) (possibly with a shared API; done by old const prop). - [ ] Propagation through slices / arrays. - [ ] Find other optimizations that are done by old `const_prop.rs`, but not by this one.
This commit is contained in:
commit
357f660729
43 changed files with 2441 additions and 25 deletions
530
compiler/rustc_mir_transform/src/dataflow_const_prop.rs
Normal file
530
compiler/rustc_mir_transform/src/dataflow_const_prop.rs
Normal file
|
@ -0,0 +1,530 @@
|
|||
//! A constant propagation optimization pass based on dataflow analysis.
|
||||
//!
|
||||
//! Currently, this pass only propagates scalar values.
|
||||
|
||||
use rustc_const_eval::interpret::{ConstValue, ImmTy, Immediate, InterpCx, Scalar};
|
||||
use rustc_data_structures::fx::FxHashMap;
|
||||
use rustc_middle::mir::visit::{MutVisitor, Visitor};
|
||||
use rustc_middle::mir::*;
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_mir_dataflow::value_analysis::{Map, State, TrackElem, ValueAnalysis, ValueOrPlace};
|
||||
use rustc_mir_dataflow::{lattice::FlatSet, Analysis, ResultsVisitor, SwitchIntEdgeEffects};
|
||||
use rustc_span::DUMMY_SP;
|
||||
|
||||
use crate::MirPass;
|
||||
|
||||
// These constants are somewhat random guesses and have not been optimized.
|
||||
// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
|
||||
const BLOCK_LIMIT: usize = 100;
|
||||
const PLACE_LIMIT: usize = 100;
|
||||
|
||||
pub struct DataflowConstProp;
|
||||
|
||||
impl<'tcx> MirPass<'tcx> for DataflowConstProp {
|
||||
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
|
||||
sess.mir_opt_level() >= 3
|
||||
}
|
||||
|
||||
#[instrument(skip_all level = "debug")]
|
||||
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
|
||||
if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
|
||||
debug!("aborted dataflow const prop due too many basic blocks");
|
||||
return;
|
||||
}
|
||||
|
||||
// Decide which places to track during the analysis.
|
||||
let map = Map::from_filter(tcx, body, Ty::is_scalar);
|
||||
|
||||
// We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
|
||||
// Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
|
||||
// applications, where `h` is the height of the lattice. Because the height of our lattice
|
||||
// is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
|
||||
// because every transfer function application could traverse the whole map, this becomes
|
||||
// `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
|
||||
// map nodes is strongly correlated to the number of tracked places, this becomes more or
|
||||
// less `O(n)` if we place a constant limit on the number of tracked places.
|
||||
if tcx.sess.mir_opt_level() < 4 && map.tracked_places() > PLACE_LIMIT {
|
||||
debug!("aborted dataflow const prop due to too many tracked places");
|
||||
return;
|
||||
}
|
||||
|
||||
// Perform the actual dataflow analysis.
|
||||
let analysis = ConstAnalysis::new(tcx, body, map);
|
||||
let results = debug_span!("analyze")
|
||||
.in_scope(|| analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint());
|
||||
|
||||
// Collect results and patch the body afterwards.
|
||||
let mut visitor = CollectAndPatch::new(tcx, &results.analysis.0.map);
|
||||
debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
|
||||
debug_span!("patch").in_scope(|| visitor.visit_body(body));
|
||||
}
|
||||
}
|
||||
|
||||
struct ConstAnalysis<'tcx> {
|
||||
map: Map,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'tcx> {
|
||||
type Value = FlatSet<ScalarTy<'tcx>>;
|
||||
|
||||
const NAME: &'static str = "ConstAnalysis";
|
||||
|
||||
fn map(&self) -> &Map {
|
||||
&self.map
|
||||
}
|
||||
|
||||
fn handle_assign(
|
||||
&self,
|
||||
target: Place<'tcx>,
|
||||
rvalue: &Rvalue<'tcx>,
|
||||
state: &mut State<Self::Value>,
|
||||
) {
|
||||
match rvalue {
|
||||
Rvalue::CheckedBinaryOp(op, box (left, right)) => {
|
||||
let target = self.map().find(target.as_ref());
|
||||
if let Some(target) = target {
|
||||
// We should not track any projections other than
|
||||
// what is overwritten below, but just in case...
|
||||
state.flood_idx(target, self.map());
|
||||
}
|
||||
|
||||
let value_target = target
|
||||
.and_then(|target| self.map().apply(target, TrackElem::Field(0_u32.into())));
|
||||
let overflow_target = target
|
||||
.and_then(|target| self.map().apply(target, TrackElem::Field(1_u32.into())));
|
||||
|
||||
if value_target.is_some() || overflow_target.is_some() {
|
||||
let (val, overflow) = self.binary_op(state, *op, left, right);
|
||||
|
||||
if let Some(value_target) = value_target {
|
||||
state.assign_idx(value_target, ValueOrPlace::Value(val), self.map());
|
||||
}
|
||||
if let Some(overflow_target) = overflow_target {
|
||||
let overflow = match overflow {
|
||||
FlatSet::Top => FlatSet::Top,
|
||||
FlatSet::Elem(overflow) => {
|
||||
if overflow {
|
||||
// Overflow cannot be reliably propagated. See: https://github.com/rust-lang/rust/pull/101168#issuecomment-1288091446
|
||||
FlatSet::Top
|
||||
} else {
|
||||
self.wrap_scalar(Scalar::from_bool(false), self.tcx.types.bool)
|
||||
}
|
||||
}
|
||||
FlatSet::Bottom => FlatSet::Bottom,
|
||||
};
|
||||
state.assign_idx(
|
||||
overflow_target,
|
||||
ValueOrPlace::Value(overflow),
|
||||
self.map(),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => self.super_assign(target, rvalue, state),
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_rvalue(
|
||||
&self,
|
||||
rvalue: &Rvalue<'tcx>,
|
||||
state: &mut State<Self::Value>,
|
||||
) -> ValueOrPlace<Self::Value> {
|
||||
match rvalue {
|
||||
Rvalue::Cast(
|
||||
kind @ (CastKind::IntToInt
|
||||
| CastKind::FloatToInt
|
||||
| CastKind::FloatToFloat
|
||||
| CastKind::IntToFloat),
|
||||
operand,
|
||||
ty,
|
||||
) => match self.eval_operand(operand, state) {
|
||||
FlatSet::Elem(op) => match kind {
|
||||
CastKind::IntToInt | CastKind::IntToFloat => {
|
||||
self.ecx.int_to_int_or_float(&op, *ty)
|
||||
}
|
||||
CastKind::FloatToInt | CastKind::FloatToFloat => {
|
||||
self.ecx.float_to_float_or_int(&op, *ty)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
.map(|result| ValueOrPlace::Value(self.wrap_immediate(result, *ty)))
|
||||
.unwrap_or(ValueOrPlace::top()),
|
||||
_ => ValueOrPlace::top(),
|
||||
},
|
||||
Rvalue::BinaryOp(op, box (left, right)) => {
|
||||
// Overflows must be ignored here.
|
||||
let (val, _overflow) = self.binary_op(state, *op, left, right);
|
||||
ValueOrPlace::Value(val)
|
||||
}
|
||||
Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
|
||||
FlatSet::Elem(value) => self
|
||||
.ecx
|
||||
.unary_op(*op, &value)
|
||||
.map(|val| ValueOrPlace::Value(self.wrap_immty(val)))
|
||||
.unwrap_or(ValueOrPlace::Value(FlatSet::Top)),
|
||||
FlatSet::Bottom => ValueOrPlace::Value(FlatSet::Bottom),
|
||||
FlatSet::Top => ValueOrPlace::Value(FlatSet::Top),
|
||||
},
|
||||
_ => self.super_rvalue(rvalue, state),
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_constant(
|
||||
&self,
|
||||
constant: &Constant<'tcx>,
|
||||
_state: &mut State<Self::Value>,
|
||||
) -> Self::Value {
|
||||
constant
|
||||
.literal
|
||||
.eval(self.tcx, self.param_env)
|
||||
.try_to_scalar()
|
||||
.map(|value| FlatSet::Elem(ScalarTy(value, constant.ty())))
|
||||
.unwrap_or(FlatSet::Top)
|
||||
}
|
||||
|
||||
fn handle_switch_int(
|
||||
&self,
|
||||
discr: &Operand<'tcx>,
|
||||
apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
|
||||
) {
|
||||
// FIXME: The dataflow framework only provides the state if we call `apply()`, which makes
|
||||
// this more inefficient than it has to be.
|
||||
let mut discr_value = None;
|
||||
let mut handled = false;
|
||||
apply_edge_effects.apply(|state, target| {
|
||||
let discr_value = match discr_value {
|
||||
Some(value) => value,
|
||||
None => {
|
||||
let value = match self.handle_operand(discr, state) {
|
||||
ValueOrPlace::Value(value) => value,
|
||||
ValueOrPlace::Place(place) => state.get_idx(place, self.map()),
|
||||
};
|
||||
let result = match value {
|
||||
FlatSet::Top => FlatSet::Top,
|
||||
FlatSet::Elem(ScalarTy(scalar, _)) => {
|
||||
let int = scalar.assert_int();
|
||||
FlatSet::Elem(int.assert_bits(int.size()))
|
||||
}
|
||||
FlatSet::Bottom => FlatSet::Bottom,
|
||||
};
|
||||
discr_value = Some(result);
|
||||
result
|
||||
}
|
||||
};
|
||||
|
||||
let FlatSet::Elem(choice) = discr_value else {
|
||||
// Do nothing if we don't know which branch will be taken.
|
||||
return
|
||||
};
|
||||
|
||||
if target.value.map(|n| n == choice).unwrap_or(!handled) {
|
||||
// Branch is taken. Has no effect on state.
|
||||
handled = true;
|
||||
} else {
|
||||
// Branch is not taken.
|
||||
state.mark_unreachable();
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq)]
|
||||
struct ScalarTy<'tcx>(Scalar, Ty<'tcx>);
|
||||
|
||||
impl<'tcx> std::fmt::Debug for ScalarTy<'tcx> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
// This is used for dataflow visualization, so we return something more concise.
|
||||
std::fmt::Display::fmt(&ConstantKind::Val(ConstValue::Scalar(self.0), self.1), f)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> ConstAnalysis<'tcx> {
|
||||
pub fn new(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, map: Map) -> Self {
|
||||
let param_env = tcx.param_env(body.source.def_id());
|
||||
Self {
|
||||
map,
|
||||
tcx,
|
||||
ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
|
||||
param_env: param_env,
|
||||
}
|
||||
}
|
||||
|
||||
fn binary_op(
|
||||
&self,
|
||||
state: &mut State<FlatSet<ScalarTy<'tcx>>>,
|
||||
op: BinOp,
|
||||
left: &Operand<'tcx>,
|
||||
right: &Operand<'tcx>,
|
||||
) -> (FlatSet<ScalarTy<'tcx>>, FlatSet<bool>) {
|
||||
let left = self.eval_operand(left, state);
|
||||
let right = self.eval_operand(right, state);
|
||||
match (left, right) {
|
||||
(FlatSet::Elem(left), FlatSet::Elem(right)) => {
|
||||
match self.ecx.overflowing_binary_op(op, &left, &right) {
|
||||
Ok((val, overflow, ty)) => (self.wrap_scalar(val, ty), FlatSet::Elem(overflow)),
|
||||
_ => (FlatSet::Top, FlatSet::Top),
|
||||
}
|
||||
}
|
||||
(FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
|
||||
(_, _) => {
|
||||
// Could attempt some algebraic simplifcations here.
|
||||
(FlatSet::Top, FlatSet::Top)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn eval_operand(
|
||||
&self,
|
||||
op: &Operand<'tcx>,
|
||||
state: &mut State<FlatSet<ScalarTy<'tcx>>>,
|
||||
) -> FlatSet<ImmTy<'tcx>> {
|
||||
let value = match self.handle_operand(op, state) {
|
||||
ValueOrPlace::Value(value) => value,
|
||||
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
|
||||
};
|
||||
match value {
|
||||
FlatSet::Top => FlatSet::Top,
|
||||
FlatSet::Elem(ScalarTy(scalar, ty)) => self
|
||||
.tcx
|
||||
.layout_of(self.param_env.and(ty))
|
||||
.map(|layout| FlatSet::Elem(ImmTy::from_scalar(scalar, layout)))
|
||||
.unwrap_or(FlatSet::Top),
|
||||
FlatSet::Bottom => FlatSet::Bottom,
|
||||
}
|
||||
}
|
||||
|
||||
fn wrap_scalar(&self, scalar: Scalar, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
|
||||
FlatSet::Elem(ScalarTy(scalar, ty))
|
||||
}
|
||||
|
||||
fn wrap_immediate(&self, imm: Immediate, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
|
||||
match imm {
|
||||
Immediate::Scalar(scalar) => self.wrap_scalar(scalar, ty),
|
||||
_ => FlatSet::Top,
|
||||
}
|
||||
}
|
||||
|
||||
fn wrap_immty(&self, val: ImmTy<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
|
||||
self.wrap_immediate(*val, val.layout.ty)
|
||||
}
|
||||
}
|
||||
|
||||
struct CollectAndPatch<'tcx, 'map> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
map: &'map Map,
|
||||
|
||||
/// For a given MIR location, this stores the values of the operands used by that location. In
|
||||
/// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
|
||||
/// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
|
||||
before_effect: FxHashMap<(Location, Place<'tcx>), ScalarTy<'tcx>>,
|
||||
|
||||
/// Stores the assigned values for assignments where the Rvalue is constant.
|
||||
assignments: FxHashMap<Location, ScalarTy<'tcx>>,
|
||||
}
|
||||
|
||||
impl<'tcx, 'map> CollectAndPatch<'tcx, 'map> {
|
||||
fn new(tcx: TyCtxt<'tcx>, map: &'map Map) -> Self {
|
||||
Self { tcx, map, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
|
||||
}
|
||||
|
||||
fn make_operand(&self, scalar: ScalarTy<'tcx>) -> Operand<'tcx> {
|
||||
Operand::Constant(Box::new(Constant {
|
||||
span: DUMMY_SP,
|
||||
user_ty: None,
|
||||
literal: ConstantKind::Val(ConstValue::Scalar(scalar.0), scalar.1),
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'mir, 'tcx, 'map> ResultsVisitor<'mir, 'tcx> for CollectAndPatch<'tcx, 'map> {
|
||||
type FlowState = State<FlatSet<ScalarTy<'tcx>>>;
|
||||
|
||||
fn visit_statement_before_primary_effect(
|
||||
&mut self,
|
||||
state: &Self::FlowState,
|
||||
statement: &'mir Statement<'tcx>,
|
||||
location: Location,
|
||||
) {
|
||||
match &statement.kind {
|
||||
StatementKind::Assign(box (_, rvalue)) => {
|
||||
OperandCollector { state, visitor: self }.visit_rvalue(rvalue, location);
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
|
||||
fn visit_statement_after_primary_effect(
|
||||
&mut self,
|
||||
state: &Self::FlowState,
|
||||
statement: &'mir Statement<'tcx>,
|
||||
location: Location,
|
||||
) {
|
||||
match statement.kind {
|
||||
StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
|
||||
// Don't overwrite the assignment if it already uses a constant (to keep the span).
|
||||
}
|
||||
StatementKind::Assign(box (place, _)) => match state.get(place.as_ref(), self.map) {
|
||||
FlatSet::Top => (),
|
||||
FlatSet::Elem(value) => {
|
||||
self.assignments.insert(location, value);
|
||||
}
|
||||
FlatSet::Bottom => {
|
||||
// This assignment is either unreachable, or an uninitialized value is assigned.
|
||||
}
|
||||
},
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
|
||||
fn visit_terminator_before_primary_effect(
|
||||
&mut self,
|
||||
state: &Self::FlowState,
|
||||
terminator: &'mir Terminator<'tcx>,
|
||||
location: Location,
|
||||
) {
|
||||
OperandCollector { state, visitor: self }.visit_terminator(terminator, location);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, 'map> MutVisitor<'tcx> for CollectAndPatch<'tcx, 'map> {
|
||||
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
|
||||
self.tcx
|
||||
}
|
||||
|
||||
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
|
||||
if let Some(value) = self.assignments.get(&location) {
|
||||
match &mut statement.kind {
|
||||
StatementKind::Assign(box (_, rvalue)) => {
|
||||
*rvalue = Rvalue::Use(self.make_operand(value.clone()));
|
||||
}
|
||||
_ => bug!("found assignment info for non-assign statement"),
|
||||
}
|
||||
} else {
|
||||
self.super_statement(statement, location);
|
||||
}
|
||||
}
|
||||
|
||||
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
|
||||
match operand {
|
||||
Operand::Copy(place) | Operand::Move(place) => {
|
||||
if let Some(value) = self.before_effect.get(&(location, *place)) {
|
||||
*operand = self.make_operand(value.clone());
|
||||
}
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct OperandCollector<'tcx, 'map, 'a> {
|
||||
state: &'a State<FlatSet<ScalarTy<'tcx>>>,
|
||||
visitor: &'a mut CollectAndPatch<'tcx, 'map>,
|
||||
}
|
||||
|
||||
impl<'tcx, 'map, 'a> Visitor<'tcx> for OperandCollector<'tcx, 'map, 'a> {
|
||||
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
|
||||
match operand {
|
||||
Operand::Copy(place) | Operand::Move(place) => {
|
||||
match self.state.get(place.as_ref(), self.visitor.map) {
|
||||
FlatSet::Top => (),
|
||||
FlatSet::Elem(value) => {
|
||||
self.visitor.before_effect.insert((location, *place), value);
|
||||
}
|
||||
FlatSet::Bottom => (),
|
||||
}
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct DummyMachine;
|
||||
|
||||
impl<'mir, 'tcx> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine {
|
||||
rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>);
|
||||
type MemoryKind = !;
|
||||
const PANIC_ON_ALLOC_FAIL: bool = true;
|
||||
|
||||
fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn find_mir_or_eval_fn(
|
||||
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
|
||||
_instance: ty::Instance<'tcx>,
|
||||
_abi: rustc_target::spec::abi::Abi,
|
||||
_args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
|
||||
_destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
|
||||
_target: Option<BasicBlock>,
|
||||
_unwind: rustc_const_eval::interpret::StackPopUnwind,
|
||||
) -> interpret::InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn call_intrinsic(
|
||||
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
|
||||
_instance: ty::Instance<'tcx>,
|
||||
_args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
|
||||
_destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
|
||||
_target: Option<BasicBlock>,
|
||||
_unwind: rustc_const_eval::interpret::StackPopUnwind,
|
||||
) -> interpret::InterpResult<'tcx> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn assert_panic(
|
||||
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
|
||||
_msg: &rustc_middle::mir::AssertMessage<'tcx>,
|
||||
_unwind: Option<BasicBlock>,
|
||||
) -> interpret::InterpResult<'tcx> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn binary_ptr_op(
|
||||
_ecx: &InterpCx<'mir, 'tcx, Self>,
|
||||
_bin_op: BinOp,
|
||||
_left: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
|
||||
_right: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
|
||||
) -> interpret::InterpResult<'tcx, (interpret::Scalar<Self::Provenance>, bool, Ty<'tcx>)> {
|
||||
throw_unsup!(Unsupported("".into()))
|
||||
}
|
||||
|
||||
fn expose_ptr(
|
||||
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
|
||||
_ptr: interpret::Pointer<Self::Provenance>,
|
||||
) -> interpret::InterpResult<'tcx> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn init_frame_extra(
|
||||
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
|
||||
_frame: rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance>,
|
||||
) -> interpret::InterpResult<
|
||||
'tcx,
|
||||
rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
|
||||
> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn stack<'a>(
|
||||
_ecx: &'a InterpCx<'mir, 'tcx, Self>,
|
||||
) -> &'a [rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>]
|
||||
{
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn stack_mut<'a>(
|
||||
_ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
|
||||
) -> &'a mut Vec<
|
||||
rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
|
||||
> {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
|
@ -54,6 +54,7 @@ mod const_goto;
|
|||
mod const_prop;
|
||||
mod const_prop_lint;
|
||||
mod coverage;
|
||||
mod dataflow_const_prop;
|
||||
mod dead_store_elimination;
|
||||
mod deaggregator;
|
||||
mod deduce_param_attrs;
|
||||
|
@ -569,6 +570,7 @@ fn run_optimization_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
|
|||
//
|
||||
// FIXME(#70073): This pass is responsible for both optimization as well as some lints.
|
||||
&const_prop::ConstProp,
|
||||
&dataflow_const_prop::DataflowConstProp,
|
||||
//
|
||||
// Const-prop runs unconditionally, but doesn't mutate the MIR at mir-opt-level=0.
|
||||
&const_debuginfo::ConstDebugInfo,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue