1
Fork 0

auto merge of #8400 : blake2-ppc/rust/seq-ord, r=cmr

Use Eq + Ord for lexicographical ordering of sequences.

For each of <, <=, >= or > as R, use::

    [x, ..xs] R [y, ..ys]  =  if x != y { x R y } else { xs R ys }

Previous code using `a < b` and then `!(b < a)` for short-circuiting
fails on cases such as  [1.0, 2.0] < [0.0/0.0, 3.0], where the first
element was effectively considered equal.

Containers like &[T] did also implement only one comparison operator `<`,
and derived the comparison results from this. This isn't correct either for
Ord.

Implement functions in `std::iterator::order::{lt,le,gt,ge,equal,cmp}` that all
iterable containers can use for lexical order.

We also visit tuple ordering, having the same problem and same solution
(but differing implementation).
This commit is contained in:
bors 2013-08-12 11:53:18 -07:00
commit 35040275b3
6 changed files with 308 additions and 73 deletions

View file

@ -148,7 +148,7 @@ macro_rules! tuple_impls {
$(fn $get_fn(&self) -> $T;)+
}
impl<$($T:Clone),+> $cloneable_trait<$($T),+> for ($($T),+) {
impl<$($T:Clone),+> $cloneable_trait<$($T),+> for ($($T,)+) {
$(
#[inline]
fn $get_fn(&self) -> $T {
@ -161,7 +161,7 @@ macro_rules! tuple_impls {
$(fn $get_ref_fn<'a>(&'a self) -> &'a $T;)+
}
impl<$($T),+> $immutable_trait<$($T),+> for ($($T),+) {
impl<$($T),+> $immutable_trait<$($T),+> for ($($T,)+) {
$(
#[inline]
fn $get_ref_fn<'a>(&'a self) -> &'a $T {
@ -170,59 +170,65 @@ macro_rules! tuple_impls {
)+
}
impl<$($T:Clone),+> Clone for ($($T),+) {
fn clone(&self) -> ($($T),+) {
($(self.$get_ref_fn().clone()),+)
impl<$($T:Clone),+> Clone for ($($T,)+) {
fn clone(&self) -> ($($T,)+) {
($(self.$get_ref_fn().clone(),)+)
}
}
#[cfg(not(test))]
impl<$($T:Eq),+> Eq for ($($T),+) {
impl<$($T:Eq),+> Eq for ($($T,)+) {
#[inline]
fn eq(&self, other: &($($T),+)) -> bool {
fn eq(&self, other: &($($T,)+)) -> bool {
$(*self.$get_ref_fn() == *other.$get_ref_fn())&&+
}
#[inline]
fn ne(&self, other: &($($T),+)) -> bool {
!(*self == *other)
fn ne(&self, other: &($($T,)+)) -> bool {
$(*self.$get_ref_fn() != *other.$get_ref_fn())||+
}
}
#[cfg(not(test))]
impl<$($T:TotalEq),+> TotalEq for ($($T),+) {
impl<$($T:TotalEq),+> TotalEq for ($($T,)+) {
#[inline]
fn equals(&self, other: &($($T),+)) -> bool {
fn equals(&self, other: &($($T,)+)) -> bool {
$(self.$get_ref_fn().equals(other.$get_ref_fn()))&&+
}
}
#[cfg(not(test))]
impl<$($T:Ord),+> Ord for ($($T),+) {
impl<$($T:Ord + Eq),+> Ord for ($($T,)+) {
#[inline]
fn lt(&self, other: &($($T),+)) -> bool {
lexical_lt!($(self.$get_ref_fn(), other.$get_ref_fn()),+)
fn lt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(lt, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn le(&self, other: &($($T),+)) -> bool { !(*other).lt(&(*self)) }
fn le(&self, other: &($($T,)+)) -> bool {
lexical_ord!(le, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn ge(&self, other: &($($T),+)) -> bool { !(*self).lt(other) }
fn ge(&self, other: &($($T,)+)) -> bool {
lexical_ord!(ge, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn gt(&self, other: &($($T),+)) -> bool { (*other).lt(&(*self)) }
fn gt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(gt, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
}
#[cfg(not(test))]
impl<$($T:TotalOrd),+> TotalOrd for ($($T),+) {
impl<$($T:TotalOrd),+> TotalOrd for ($($T,)+) {
#[inline]
fn cmp(&self, other: &($($T),+)) -> Ordering {
fn cmp(&self, other: &($($T,)+)) -> Ordering {
lexical_cmp!($(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
}
#[cfg(not(test))]
impl<$($T:Zero),+> Zero for ($($T),+) {
impl<$($T:Zero),+> Zero for ($($T,)+) {
#[inline]
fn zero() -> ($($T),+) {
($(Zero::zero::<$T>()),+)
fn zero() -> ($($T,)+) {
($(Zero::zero::<$T>(),)+)
}
#[inline]
fn is_zero(&self) -> bool {
@ -234,17 +240,16 @@ macro_rules! tuple_impls {
}
}
// Constructs an expression that performs a lexical less-than
// ordering. The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_lt!(a1, b1, a2, b2,
// Constructs an expression that performs a lexical ordering using method $rel.
// The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, a1, b1, a2, b2,
// a3, b3)` (and similarly for `lexical_cmp`)
macro_rules! lexical_lt {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
if *$a < *$b { true }
else if !(*$b < *$a) { lexical_lt!($($rest_a, $rest_b),+) }
else { false }
macro_rules! lexical_ord {
($rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
if *$a != *$b { lexical_ord!($rel, $a, $b) }
else { lexical_ord!($rel, $($rest_a, $rest_b),+) }
};
($a:expr, $b:expr) => { *$a < *$b };
($rel: ident, $a:expr, $b:expr) => { (*$a) . $rel ($b) };
}
macro_rules! lexical_cmp {
@ -259,6 +264,10 @@ macro_rules! lexical_cmp {
tuple_impls! {
(CloneableTuple1, ImmutableTuple1) {
(n0, n0_ref) -> A { (ref a,) => a }
}
(CloneableTuple2, ImmutableTuple2) {
(n0, n0_ref) -> A { (ref a,_) => a }
(n1, n1_ref) -> B { (_,ref b) => b }
@ -432,6 +441,8 @@ mod tests {
fn test_tuple_cmp() {
let (small, big) = ((1u, 2u, 3u), (3u, 2u, 1u));
let nan = 0.0/0.0;
// Eq
assert_eq!(small, small);
assert_eq!(big, big);
@ -452,6 +463,13 @@ mod tests {
assert!(big >= small);
assert!(big >= big);
assert!(!((1.0, 2.0) < (nan, 3.0)));
assert!(!((1.0, 2.0) <= (nan, 3.0)));
assert!(!((1.0, 2.0) > (nan, 3.0)));
assert!(!((1.0, 2.0) >= (nan, 3.0)));
assert!(((1.0, 2.0) < (2.0, nan)));
assert!(!((2.0, 2.0) < (2.0, nan)));
// TotalEq
assert!(small.equals(&small));
assert!(big.equals(&big));