1
Fork 0

Rollup merge of #133122 - compiler-errors:afidt, r=oli-obk

Add unpolished, experimental support for AFIDT (async fn in dyn trait)

This allows us to begin messing around `async fn` in `dyn Trait`. Calling an async fn from a trait object always returns a `dyn* Future<Output = ...>`.

To make it work, Implementations are currently required to return something that can be coerced to a `dyn* Future` (see the example in `tests/ui/async-await/dyn/works.rs`). If it's not the right size, then it'll raise an error at the coercion site (see the example in `tests/ui/async-await/dyn/wrong-size.rs`). Currently the only practical way of doing this is wrapping the body in `Box::pin(async move { .. })`.

This PR does not implement a helper type like a "`Boxing`"[^boxing] adapter, and I'll probably follow-up with another PR to improve the error message for the `PointerLike` trait (something that explains in just normal prose what is happening here, rather than a trait error).
[^boxing]: https://rust-lang.github.io/async-fundamentals-initiative/explainer/user_guide_future.html#the-boxing-adapter

This PR also does not implement new trait solver support for AFIDT; I'll need to think how best to integrate it into candidate assembly, and that's a bit of a matter of taste, but I don't think it will be difficult to do.

This could also be generalized:
* To work on functions that are `-> impl Future` (soon).
* To work on functions that are `-> impl Iterator` and other "dyn rpitit safe" traits. We still need to nail down exactly what is needed for this to be okay (not soon).

Tracking:
* https://github.com/rust-lang/rust/issues/133119
This commit is contained in:
Matthias Krüger 2024-12-12 19:00:41 +01:00 committed by GitHub
commit 2e8807d87c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
23 changed files with 624 additions and 36 deletions

View file

@ -11,6 +11,7 @@ use rustc_abi::BackendRepr;
use rustc_errors::FatalError;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::{
self, EarlyBinder, ExistentialPredicateStableCmpExt as _, GenericArgs, Ty, TyCtxt,
@ -901,23 +902,59 @@ fn contains_illegal_impl_trait_in_trait<'tcx>(
fn_def_id: DefId,
ty: ty::Binder<'tcx, Ty<'tcx>>,
) -> Option<MethodViolationCode> {
// This would be caught below, but rendering the error as a separate
// `async-specific` message is better.
if tcx.asyncness(fn_def_id).is_async() {
return Some(MethodViolationCode::AsyncFn);
}
let ty = tcx.liberate_late_bound_regions(fn_def_id, ty);
if tcx.asyncness(fn_def_id).is_async() {
// FIXME(async_fn_in_dyn_trait): Think of a better way to unify these code paths
// to issue an appropriate feature suggestion when users try to use AFIDT.
// Obviously we must only do this once AFIDT is finished enough to actually be usable.
if tcx.features().async_fn_in_dyn_trait() {
let ty::Alias(ty::Projection, proj) = *ty.kind() else {
bug!("expected async fn in trait to return an RPITIT");
};
assert!(tcx.is_impl_trait_in_trait(proj.def_id));
// FIXME(async_fn_in_dyn_trait): We should check that this bound is legal too,
// and stop relying on `async fn` in the definition.
for bound in tcx.item_bounds(proj.def_id).instantiate(tcx, proj.args) {
if let Some(violation) = bound
.visit_with(&mut IllegalRpititVisitor { tcx, allowed: Some(proj) })
.break_value()
{
return Some(violation);
}
}
// FIXME(RPITIT): Perhaps we should use a visitor here?
ty.skip_binder().walk().find_map(|arg| {
if let ty::GenericArgKind::Type(ty) = arg.unpack()
&& let ty::Alias(ty::Projection, proj) = ty.kind()
&& tcx.is_impl_trait_in_trait(proj.def_id)
{
Some(MethodViolationCode::ReferencesImplTraitInTrait(tcx.def_span(proj.def_id)))
} else {
None
} else {
// Rendering the error as a separate `async-specific` message is better.
Some(MethodViolationCode::AsyncFn)
}
})
} else {
ty.visit_with(&mut IllegalRpititVisitor { tcx, allowed: None }).break_value()
}
}
struct IllegalRpititVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
allowed: Option<ty::AliasTy<'tcx>>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for IllegalRpititVisitor<'tcx> {
type Result = ControlFlow<MethodViolationCode>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
if let ty::Alias(ty::Projection, proj) = *ty.kind()
&& Some(proj) != self.allowed
&& self.tcx.is_impl_trait_in_trait(proj.def_id)
{
ControlFlow::Break(MethodViolationCode::ReferencesImplTraitInTrait(
self.tcx.def_span(proj.def_id),
))
} else {
ty.super_visit_with(self)
}
}
}
pub(crate) fn provide(providers: &mut Providers) {

View file

@ -7,8 +7,8 @@ use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
use rustc_infer::infer::{DefineOpaqueTypes, RegionVariableOrigin};
use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
use rustc_middle::traits::select::OverflowError;
use rustc_middle::traits::{BuiltinImplSource, ImplSource, ImplSourceUserDefinedData};
@ -18,6 +18,7 @@ use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, Term, Ty, TyCtxt, TypingMode, Upcast};
use rustc_middle::{bug, span_bug};
use rustc_span::symbol::sym;
use thin_vec::thin_vec;
use tracing::{debug, instrument};
use super::{
@ -61,6 +62,9 @@ enum ProjectionCandidate<'tcx> {
/// Bounds specified on an object type
Object(ty::PolyProjectionPredicate<'tcx>),
/// Built-in bound for a dyn async fn in trait
ObjectRpitit,
/// From an "impl" (or a "pseudo-impl" returned by select)
Select(Selection<'tcx>),
}
@ -827,6 +831,17 @@ fn assemble_candidates_from_object_ty<'cx, 'tcx>(
env_predicates,
false,
);
// `dyn Trait` automagically project their AFITs to `dyn* Future`.
if tcx.is_impl_trait_in_trait(obligation.predicate.def_id)
&& let Some(out_trait_def_id) = data.principal_def_id()
&& let rpitit_trait_def_id = tcx.parent(obligation.predicate.def_id)
&& tcx
.supertrait_def_ids(out_trait_def_id)
.any(|trait_def_id| trait_def_id == rpitit_trait_def_id)
{
candidate_set.push_candidate(ProjectionCandidate::ObjectRpitit);
}
}
#[instrument(
@ -1247,6 +1262,8 @@ fn confirm_candidate<'cx, 'tcx>(
ProjectionCandidate::Select(impl_source) => {
confirm_select_candidate(selcx, obligation, impl_source)
}
ProjectionCandidate::ObjectRpitit => confirm_object_rpitit_candidate(selcx, obligation),
};
// When checking for cycle during evaluation, we compare predicates with
@ -2034,6 +2051,45 @@ fn confirm_impl_candidate<'cx, 'tcx>(
}
}
fn confirm_object_rpitit_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTermObligation<'tcx>,
) -> Progress<'tcx> {
let tcx = selcx.tcx();
let mut obligations = thin_vec![];
// Compute an intersection lifetime for all the input components of this GAT.
let intersection =
selcx.infcx.next_region_var(RegionVariableOrigin::MiscVariable(obligation.cause.span));
for component in obligation.predicate.args {
match component.unpack() {
ty::GenericArgKind::Lifetime(lt) => {
obligations.push(obligation.with(tcx, ty::OutlivesPredicate(lt, intersection)));
}
ty::GenericArgKind::Type(ty) => {
obligations.push(obligation.with(tcx, ty::OutlivesPredicate(ty, intersection)));
}
ty::GenericArgKind::Const(_ct) => {
// Consts have no outlives...
}
}
}
Progress {
term: Ty::new_dynamic(
tcx,
tcx.item_bounds_to_existential_predicates(
obligation.predicate.def_id,
obligation.predicate.args,
),
intersection,
ty::DynStar,
)
.into(),
obligations,
}
}
// Get obligations corresponding to the predicates from the where-clause of the
// associated type itself.
fn assoc_ty_own_obligations<'cx, 'tcx>(

View file

@ -19,6 +19,7 @@ use rustc_middle::traits::{BuiltinImplSource, SignatureMismatchData};
use rustc_middle::ty::{self, GenericArgsRef, ToPolyTraitRef, Ty, TyCtxt, Upcast};
use rustc_middle::{bug, span_bug};
use rustc_span::def_id::DefId;
use rustc_type_ir::elaborate;
use tracing::{debug, instrument};
use super::SelectionCandidate::{self, *};
@ -624,6 +625,12 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
for assoc_type in assoc_types {
let defs: &ty::Generics = tcx.generics_of(assoc_type);
// When `async_fn_in_dyn_trait` is enabled, we don't need to check the
// RPITIT for compatibility, since it's not provided by the user.
if tcx.features().async_fn_in_dyn_trait() && tcx.is_impl_trait_in_trait(assoc_type) {
continue;
}
if !defs.own_params.is_empty() {
tcx.dcx().span_delayed_bug(
obligation.cause.span,
@ -1175,6 +1182,38 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
ty::ClauseKind::TypeOutlives(outlives).upcast(tcx),
));
// Require that all AFIT will return something that can be coerced into `dyn*`
// -- a shim will be responsible for doing the actual coercion to `dyn*`.
if let Some(principal) = data.principal() {
for supertrait in
elaborate::supertraits(tcx, principal.with_self_ty(tcx, source))
{
if tcx.is_trait_alias(supertrait.def_id()) {
continue;
}
for &assoc_item in tcx.associated_item_def_ids(supertrait.def_id()) {
if !tcx.is_impl_trait_in_trait(assoc_item) {
continue;
}
// RPITITs with `Self: Sized` don't need to be checked.
if tcx.generics_require_sized_self(assoc_item) {
continue;
}
let pointer_like_goal = pointer_like_goal_for_rpitit(
tcx,
supertrait,
assoc_item,
&obligation.cause,
);
nested.push(predicate_to_obligation(pointer_like_goal.upcast(tcx)));
}
}
}
ImplSource::Builtin(BuiltinImplSource::Misc, nested)
}
@ -1280,3 +1319,43 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
})
}
}
/// Compute a goal that some RPITIT (right now, only RPITITs corresponding to Futures)
/// implements the `PointerLike` trait, which is a requirement for the RPITIT to be
/// coercible to `dyn* Future`, which is itself a requirement for the RPITIT's parent
/// trait to be coercible to `dyn Trait`.
///
/// We do this given a supertrait's substitutions, and then augment the substitutions
/// with bound variables to compute the goal universally. Given that `PointerLike` has
/// no region requirements (at least for the built-in pointer types), this shouldn't
/// *really* matter, but it is the best choice for soundness.
fn pointer_like_goal_for_rpitit<'tcx>(
tcx: TyCtxt<'tcx>,
supertrait: ty::PolyTraitRef<'tcx>,
rpitit_item: DefId,
cause: &ObligationCause<'tcx>,
) -> ty::PolyTraitRef<'tcx> {
let mut bound_vars = supertrait.bound_vars().to_vec();
let args = supertrait.skip_binder().args.extend_to(tcx, rpitit_item, |arg, _| match arg.kind {
ty::GenericParamDefKind::Lifetime => {
let kind = ty::BoundRegionKind::Named(arg.def_id, tcx.item_name(arg.def_id));
bound_vars.push(ty::BoundVariableKind::Region(kind));
ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind,
})
.into()
}
ty::GenericParamDefKind::Type { .. } | ty::GenericParamDefKind::Const { .. } => {
unreachable!()
}
});
ty::Binder::bind_with_vars(
ty::TraitRef::new(tcx, tcx.require_lang_item(LangItem::PointerLike, Some(cause.span)), [
Ty::new_projection_from_args(tcx, rpitit_item, args),
]),
tcx.mk_bound_variable_kinds(&bound_vars),
)
}