mv std libs to library/
This commit is contained in:
parent
9be8ffcb02
commit
2c31b45ae8
875 changed files with 1255 additions and 1223 deletions
767
library/std/src/sync/mutex.rs
Normal file
767
library/std/src/sync/mutex.rs
Normal file
|
@ -0,0 +1,767 @@
|
|||
use crate::cell::UnsafeCell;
|
||||
use crate::fmt;
|
||||
use crate::mem;
|
||||
use crate::ops::{Deref, DerefMut};
|
||||
use crate::ptr;
|
||||
use crate::sys_common::mutex as sys;
|
||||
use crate::sys_common::poison::{self, LockResult, TryLockError, TryLockResult};
|
||||
|
||||
/// A mutual exclusion primitive useful for protecting shared data
|
||||
///
|
||||
/// This mutex will block threads waiting for the lock to become available. The
|
||||
/// mutex can also be statically initialized or created via a [`new`]
|
||||
/// constructor. Each mutex has a type parameter which represents the data that
|
||||
/// it is protecting. The data can only be accessed through the RAII guards
|
||||
/// returned from [`lock`] and [`try_lock`], which guarantees that the data is only
|
||||
/// ever accessed when the mutex is locked.
|
||||
///
|
||||
/// # Poisoning
|
||||
///
|
||||
/// The mutexes in this module implement a strategy called "poisoning" where a
|
||||
/// mutex is considered poisoned whenever a thread panics while holding the
|
||||
/// mutex. Once a mutex is poisoned, all other threads are unable to access the
|
||||
/// data by default as it is likely tainted (some invariant is not being
|
||||
/// upheld).
|
||||
///
|
||||
/// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a
|
||||
/// [`Result`] which indicates whether a mutex has been poisoned or not. Most
|
||||
/// usage of a mutex will simply [`unwrap()`] these results, propagating panics
|
||||
/// among threads to ensure that a possibly invalid invariant is not witnessed.
|
||||
///
|
||||
/// A poisoned mutex, however, does not prevent all access to the underlying
|
||||
/// data. The [`PoisonError`] type has an [`into_inner`] method which will return
|
||||
/// the guard that would have otherwise been returned on a successful lock. This
|
||||
/// allows access to the data, despite the lock being poisoned.
|
||||
///
|
||||
/// [`new`]: #method.new
|
||||
/// [`lock`]: #method.lock
|
||||
/// [`try_lock`]: #method.try_lock
|
||||
/// [`Result`]: ../../std/result/enum.Result.html
|
||||
/// [`unwrap()`]: ../../std/result/enum.Result.html#method.unwrap
|
||||
/// [`PoisonError`]: ../../std/sync/struct.PoisonError.html
|
||||
/// [`into_inner`]: ../../std/sync/struct.PoisonError.html#method.into_inner
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex};
|
||||
/// use std::thread;
|
||||
/// use std::sync::mpsc::channel;
|
||||
///
|
||||
/// const N: usize = 10;
|
||||
///
|
||||
/// // Spawn a few threads to increment a shared variable (non-atomically), and
|
||||
/// // let the main thread know once all increments are done.
|
||||
/// //
|
||||
/// // Here we're using an Arc to share memory among threads, and the data inside
|
||||
/// // the Arc is protected with a mutex.
|
||||
/// let data = Arc::new(Mutex::new(0));
|
||||
///
|
||||
/// let (tx, rx) = channel();
|
||||
/// for _ in 0..N {
|
||||
/// let (data, tx) = (Arc::clone(&data), tx.clone());
|
||||
/// thread::spawn(move || {
|
||||
/// // The shared state can only be accessed once the lock is held.
|
||||
/// // Our non-atomic increment is safe because we're the only thread
|
||||
/// // which can access the shared state when the lock is held.
|
||||
/// //
|
||||
/// // We unwrap() the return value to assert that we are not expecting
|
||||
/// // threads to ever fail while holding the lock.
|
||||
/// let mut data = data.lock().unwrap();
|
||||
/// *data += 1;
|
||||
/// if *data == N {
|
||||
/// tx.send(()).unwrap();
|
||||
/// }
|
||||
/// // the lock is unlocked here when `data` goes out of scope.
|
||||
/// });
|
||||
/// }
|
||||
///
|
||||
/// rx.recv().unwrap();
|
||||
/// ```
|
||||
///
|
||||
/// To recover from a poisoned mutex:
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let lock = Arc::new(Mutex::new(0_u32));
|
||||
/// let lock2 = lock.clone();
|
||||
///
|
||||
/// let _ = thread::spawn(move || -> () {
|
||||
/// // This thread will acquire the mutex first, unwrapping the result of
|
||||
/// // `lock` because the lock has not been poisoned.
|
||||
/// let _guard = lock2.lock().unwrap();
|
||||
///
|
||||
/// // This panic while holding the lock (`_guard` is in scope) will poison
|
||||
/// // the mutex.
|
||||
/// panic!();
|
||||
/// }).join();
|
||||
///
|
||||
/// // The lock is poisoned by this point, but the returned result can be
|
||||
/// // pattern matched on to return the underlying guard on both branches.
|
||||
/// let mut guard = match lock.lock() {
|
||||
/// Ok(guard) => guard,
|
||||
/// Err(poisoned) => poisoned.into_inner(),
|
||||
/// };
|
||||
///
|
||||
/// *guard += 1;
|
||||
/// ```
|
||||
///
|
||||
/// It is sometimes necessary to manually drop the mutex guard to unlock it
|
||||
/// sooner than the end of the enclosing scope.
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// const N: usize = 3;
|
||||
///
|
||||
/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
|
||||
/// let res_mutex = Arc::new(Mutex::new(0));
|
||||
///
|
||||
/// let mut threads = Vec::with_capacity(N);
|
||||
/// (0..N).for_each(|_| {
|
||||
/// let data_mutex_clone = Arc::clone(&data_mutex);
|
||||
/// let res_mutex_clone = Arc::clone(&res_mutex);
|
||||
///
|
||||
/// threads.push(thread::spawn(move || {
|
||||
/// let mut data = data_mutex_clone.lock().unwrap();
|
||||
/// // This is the result of some important and long-ish work.
|
||||
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
|
||||
/// data.push(result);
|
||||
/// drop(data);
|
||||
/// *res_mutex_clone.lock().unwrap() += result;
|
||||
/// }));
|
||||
/// });
|
||||
///
|
||||
/// let mut data = data_mutex.lock().unwrap();
|
||||
/// // This is the result of some important and long-ish work.
|
||||
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
|
||||
/// data.push(result);
|
||||
/// // We drop the `data` explicitly because it's not necessary anymore and the
|
||||
/// // thread still has work to do. This allow other threads to start working on
|
||||
/// // the data immediately, without waiting for the rest of the unrelated work
|
||||
/// // to be done here.
|
||||
/// //
|
||||
/// // It's even more important here than in the threads because we `.join` the
|
||||
/// // threads after that. If we had not dropped the mutex guard, a thread could
|
||||
/// // be waiting forever for it, causing a deadlock.
|
||||
/// drop(data);
|
||||
/// // Here the mutex guard is not assigned to a variable and so, even if the
|
||||
/// // scope does not end after this line, the mutex is still released: there is
|
||||
/// // no deadlock.
|
||||
/// *res_mutex.lock().unwrap() += result;
|
||||
///
|
||||
/// threads.into_iter().for_each(|thread| {
|
||||
/// thread
|
||||
/// .join()
|
||||
/// .expect("The thread creating or execution failed !")
|
||||
/// });
|
||||
///
|
||||
/// assert_eq!(*res_mutex.lock().unwrap(), 800);
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
#[cfg_attr(not(test), rustc_diagnostic_item = "mutex_type")]
|
||||
pub struct Mutex<T: ?Sized> {
|
||||
// Note that this mutex is in a *box*, not inlined into the struct itself.
|
||||
// Once a native mutex has been used once, its address can never change (it
|
||||
// can't be moved). This mutex type can be safely moved at any time, so to
|
||||
// ensure that the native mutex is used correctly we box the inner mutex to
|
||||
// give it a constant address.
|
||||
inner: Box<sys::Mutex>,
|
||||
poison: poison::Flag,
|
||||
data: UnsafeCell<T>,
|
||||
}
|
||||
|
||||
// these are the only places where `T: Send` matters; all other
|
||||
// functionality works fine on a single thread.
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
|
||||
|
||||
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
|
||||
/// dropped (falls out of scope), the lock will be unlocked.
|
||||
///
|
||||
/// The data protected by the mutex can be accessed through this guard via its
|
||||
/// [`Deref`] and [`DerefMut`] implementations.
|
||||
///
|
||||
/// This structure is created by the [`lock`] and [`try_lock`] methods on
|
||||
/// [`Mutex`].
|
||||
///
|
||||
/// [`Deref`]: ../../std/ops/trait.Deref.html
|
||||
/// [`DerefMut`]: ../../std/ops/trait.DerefMut.html
|
||||
/// [`lock`]: struct.Mutex.html#method.lock
|
||||
/// [`try_lock`]: struct.Mutex.html#method.try_lock
|
||||
/// [`Mutex`]: struct.Mutex.html
|
||||
#[must_use = "if unused the Mutex will immediately unlock"]
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub struct MutexGuard<'a, T: ?Sized + 'a> {
|
||||
lock: &'a Mutex<T>,
|
||||
poison: poison::Guard,
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
|
||||
#[stable(feature = "mutexguard", since = "1.19.0")]
|
||||
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
|
||||
|
||||
impl<T> Mutex<T> {
|
||||
/// Creates a new mutex in an unlocked state ready for use.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::Mutex;
|
||||
///
|
||||
/// let mutex = Mutex::new(0);
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn new(t: T) -> Mutex<T> {
|
||||
let mut m = Mutex {
|
||||
inner: box sys::Mutex::new(),
|
||||
poison: poison::Flag::new(),
|
||||
data: UnsafeCell::new(t),
|
||||
};
|
||||
unsafe {
|
||||
m.inner.init();
|
||||
}
|
||||
m
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized> Mutex<T> {
|
||||
/// Acquires a mutex, blocking the current thread until it is able to do so.
|
||||
///
|
||||
/// This function will block the local thread until it is available to acquire
|
||||
/// the mutex. Upon returning, the thread is the only thread with the lock
|
||||
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
|
||||
/// the guard goes out of scope, the mutex will be unlocked.
|
||||
///
|
||||
/// The exact behavior on locking a mutex in the thread which already holds
|
||||
/// the lock is left unspecified. However, this function will not return on
|
||||
/// the second call (it might panic or deadlock, for example).
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If another user of this mutex panicked while holding the mutex, then
|
||||
/// this call will return an error once the mutex is acquired.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// This function might panic when called if the lock is already held by
|
||||
/// the current thread.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let mutex = Arc::new(Mutex::new(0));
|
||||
/// let c_mutex = mutex.clone();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// *c_mutex.lock().unwrap() = 10;
|
||||
/// }).join().expect("thread::spawn failed");
|
||||
/// assert_eq!(*mutex.lock().unwrap(), 10);
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
|
||||
unsafe {
|
||||
self.inner.raw_lock();
|
||||
MutexGuard::new(self)
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to acquire this lock.
|
||||
///
|
||||
/// If the lock could not be acquired at this time, then [`Err`] is returned.
|
||||
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
|
||||
/// guard is dropped.
|
||||
///
|
||||
/// This function does not block.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If another user of this mutex panicked while holding the mutex, then
|
||||
/// this call will return failure if the mutex would otherwise be
|
||||
/// acquired.
|
||||
///
|
||||
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let mutex = Arc::new(Mutex::new(0));
|
||||
/// let c_mutex = mutex.clone();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// let mut lock = c_mutex.try_lock();
|
||||
/// if let Ok(ref mut mutex) = lock {
|
||||
/// **mutex = 10;
|
||||
/// } else {
|
||||
/// println!("try_lock failed");
|
||||
/// }
|
||||
/// }).join().expect("thread::spawn failed");
|
||||
/// assert_eq!(*mutex.lock().unwrap(), 10);
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
|
||||
unsafe {
|
||||
if self.inner.try_lock() {
|
||||
Ok(MutexGuard::new(self)?)
|
||||
} else {
|
||||
Err(TryLockError::WouldBlock)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Determines whether the mutex is poisoned.
|
||||
///
|
||||
/// If another thread is active, the mutex can still become poisoned at any
|
||||
/// time. You should not trust a `false` value for program correctness
|
||||
/// without additional synchronization.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let mutex = Arc::new(Mutex::new(0));
|
||||
/// let c_mutex = mutex.clone();
|
||||
///
|
||||
/// let _ = thread::spawn(move || {
|
||||
/// let _lock = c_mutex.lock().unwrap();
|
||||
/// panic!(); // the mutex gets poisoned
|
||||
/// }).join();
|
||||
/// assert_eq!(mutex.is_poisoned(), true);
|
||||
/// ```
|
||||
#[inline]
|
||||
#[stable(feature = "sync_poison", since = "1.2.0")]
|
||||
pub fn is_poisoned(&self) -> bool {
|
||||
self.poison.get()
|
||||
}
|
||||
|
||||
/// Consumes this mutex, returning the underlying data.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If another user of this mutex panicked while holding the mutex, then
|
||||
/// this call will return an error instead.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::Mutex;
|
||||
///
|
||||
/// let mutex = Mutex::new(0);
|
||||
/// assert_eq!(mutex.into_inner().unwrap(), 0);
|
||||
/// ```
|
||||
#[stable(feature = "mutex_into_inner", since = "1.6.0")]
|
||||
pub fn into_inner(self) -> LockResult<T>
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
// We know statically that there are no outstanding references to
|
||||
// `self` so there's no need to lock the inner mutex.
|
||||
//
|
||||
// To get the inner value, we'd like to call `data.into_inner()`,
|
||||
// but because `Mutex` impl-s `Drop`, we can't move out of it, so
|
||||
// we'll have to destructure it manually instead.
|
||||
unsafe {
|
||||
// Like `let Mutex { inner, poison, data } = self`.
|
||||
let (inner, poison, data) = {
|
||||
let Mutex { ref inner, ref poison, ref data } = self;
|
||||
(ptr::read(inner), ptr::read(poison), ptr::read(data))
|
||||
};
|
||||
mem::forget(self);
|
||||
inner.destroy(); // Keep in sync with the `Drop` impl.
|
||||
drop(inner);
|
||||
|
||||
poison::map_result(poison.borrow(), |_| data.into_inner())
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a mutable reference to the underlying data.
|
||||
///
|
||||
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
|
||||
/// take place -- the mutable borrow statically guarantees no locks exist.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If another user of this mutex panicked while holding the mutex, then
|
||||
/// this call will return an error instead.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::Mutex;
|
||||
///
|
||||
/// let mut mutex = Mutex::new(0);
|
||||
/// *mutex.get_mut().unwrap() = 10;
|
||||
/// assert_eq!(*mutex.lock().unwrap(), 10);
|
||||
/// ```
|
||||
#[stable(feature = "mutex_get_mut", since = "1.6.0")]
|
||||
pub fn get_mut(&mut self) -> LockResult<&mut T> {
|
||||
// We know statically that there are no other references to `self`, so
|
||||
// there's no need to lock the inner mutex.
|
||||
let data = unsafe { &mut *self.data.get() };
|
||||
poison::map_result(self.poison.borrow(), |_| data)
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
unsafe impl<#[may_dangle] T: ?Sized> Drop for Mutex<T> {
|
||||
fn drop(&mut self) {
|
||||
// This is actually safe b/c we know that there is no further usage of
|
||||
// this mutex (it's up to the user to arrange for a mutex to get
|
||||
// dropped, that's not our job)
|
||||
//
|
||||
// IMPORTANT: This code must be kept in sync with `Mutex::into_inner`.
|
||||
unsafe { self.inner.destroy() }
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "mutex_from", since = "1.24.0")]
|
||||
impl<T> From<T> for Mutex<T> {
|
||||
/// Creates a new mutex in an unlocked state ready for use.
|
||||
/// This is equivalent to [`Mutex::new`].
|
||||
///
|
||||
/// [`Mutex::new`]: ../../std/sync/struct.Mutex.html#method.new
|
||||
fn from(t: T) -> Self {
|
||||
Mutex::new(t)
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "mutex_default", since = "1.10.0")]
|
||||
impl<T: ?Sized + Default> Default for Mutex<T> {
|
||||
/// Creates a `Mutex<T>`, with the `Default` value for T.
|
||||
fn default() -> Mutex<T> {
|
||||
Mutex::new(Default::default())
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
match self.try_lock() {
|
||||
Ok(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
|
||||
Err(TryLockError::Poisoned(err)) => {
|
||||
f.debug_struct("Mutex").field("data", &&**err.get_ref()).finish()
|
||||
}
|
||||
Err(TryLockError::WouldBlock) => {
|
||||
struct LockedPlaceholder;
|
||||
impl fmt::Debug for LockedPlaceholder {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.write_str("<locked>")
|
||||
}
|
||||
}
|
||||
|
||||
f.debug_struct("Mutex").field("data", &LockedPlaceholder).finish()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
|
||||
unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
|
||||
poison::map_result(lock.poison.borrow(), |guard| MutexGuard { lock, poison: guard })
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
|
||||
type Target = T;
|
||||
|
||||
fn deref(&self) -> &T {
|
||||
unsafe { &*self.lock.data.get() }
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
|
||||
fn deref_mut(&mut self) -> &mut T {
|
||||
unsafe { &mut *self.lock.data.get() }
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
|
||||
#[inline]
|
||||
fn drop(&mut self) {
|
||||
unsafe {
|
||||
self.lock.poison.done(&self.poison);
|
||||
self.lock.inner.raw_unlock();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "std_debug", since = "1.16.0")]
|
||||
impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
fmt::Debug::fmt(&**self, f)
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "std_guard_impls", since = "1.20.0")]
|
||||
impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
(**self).fmt(f)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
|
||||
&guard.lock.inner
|
||||
}
|
||||
|
||||
pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
|
||||
&guard.lock.poison
|
||||
}
|
||||
|
||||
#[cfg(all(test, not(target_os = "emscripten")))]
|
||||
mod tests {
|
||||
use crate::sync::atomic::{AtomicUsize, Ordering};
|
||||
use crate::sync::mpsc::channel;
|
||||
use crate::sync::{Arc, Condvar, Mutex};
|
||||
use crate::thread;
|
||||
|
||||
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
|
||||
|
||||
#[derive(Eq, PartialEq, Debug)]
|
||||
struct NonCopy(i32);
|
||||
|
||||
#[test]
|
||||
fn smoke() {
|
||||
let m = Mutex::new(());
|
||||
drop(m.lock().unwrap());
|
||||
drop(m.lock().unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn lots_and_lots() {
|
||||
const J: u32 = 1000;
|
||||
const K: u32 = 3;
|
||||
|
||||
let m = Arc::new(Mutex::new(0));
|
||||
|
||||
fn inc(m: &Mutex<u32>) {
|
||||
for _ in 0..J {
|
||||
*m.lock().unwrap() += 1;
|
||||
}
|
||||
}
|
||||
|
||||
let (tx, rx) = channel();
|
||||
for _ in 0..K {
|
||||
let tx2 = tx.clone();
|
||||
let m2 = m.clone();
|
||||
thread::spawn(move || {
|
||||
inc(&m2);
|
||||
tx2.send(()).unwrap();
|
||||
});
|
||||
let tx2 = tx.clone();
|
||||
let m2 = m.clone();
|
||||
thread::spawn(move || {
|
||||
inc(&m2);
|
||||
tx2.send(()).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
drop(tx);
|
||||
for _ in 0..2 * K {
|
||||
rx.recv().unwrap();
|
||||
}
|
||||
assert_eq!(*m.lock().unwrap(), J * K * 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn try_lock() {
|
||||
let m = Mutex::new(());
|
||||
*m.try_lock().unwrap() = ();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_inner() {
|
||||
let m = Mutex::new(NonCopy(10));
|
||||
assert_eq!(m.into_inner().unwrap(), NonCopy(10));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_inner_drop() {
|
||||
struct Foo(Arc<AtomicUsize>);
|
||||
impl Drop for Foo {
|
||||
fn drop(&mut self) {
|
||||
self.0.fetch_add(1, Ordering::SeqCst);
|
||||
}
|
||||
}
|
||||
let num_drops = Arc::new(AtomicUsize::new(0));
|
||||
let m = Mutex::new(Foo(num_drops.clone()));
|
||||
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
|
||||
{
|
||||
let _inner = m.into_inner().unwrap();
|
||||
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
|
||||
}
|
||||
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_inner_poison() {
|
||||
let m = Arc::new(Mutex::new(NonCopy(10)));
|
||||
let m2 = m.clone();
|
||||
let _ = thread::spawn(move || {
|
||||
let _lock = m2.lock().unwrap();
|
||||
panic!("test panic in inner thread to poison mutex");
|
||||
})
|
||||
.join();
|
||||
|
||||
assert!(m.is_poisoned());
|
||||
match Arc::try_unwrap(m).unwrap().into_inner() {
|
||||
Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
|
||||
Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_get_mut() {
|
||||
let mut m = Mutex::new(NonCopy(10));
|
||||
*m.get_mut().unwrap() = NonCopy(20);
|
||||
assert_eq!(m.into_inner().unwrap(), NonCopy(20));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_get_mut_poison() {
|
||||
let m = Arc::new(Mutex::new(NonCopy(10)));
|
||||
let m2 = m.clone();
|
||||
let _ = thread::spawn(move || {
|
||||
let _lock = m2.lock().unwrap();
|
||||
panic!("test panic in inner thread to poison mutex");
|
||||
})
|
||||
.join();
|
||||
|
||||
assert!(m.is_poisoned());
|
||||
match Arc::try_unwrap(m).unwrap().get_mut() {
|
||||
Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
|
||||
Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mutex_arc_condvar() {
|
||||
let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
|
||||
let packet2 = Packet(packet.0.clone());
|
||||
let (tx, rx) = channel();
|
||||
let _t = thread::spawn(move || {
|
||||
// wait until parent gets in
|
||||
rx.recv().unwrap();
|
||||
let &(ref lock, ref cvar) = &*packet2.0;
|
||||
let mut lock = lock.lock().unwrap();
|
||||
*lock = true;
|
||||
cvar.notify_one();
|
||||
});
|
||||
|
||||
let &(ref lock, ref cvar) = &*packet.0;
|
||||
let mut lock = lock.lock().unwrap();
|
||||
tx.send(()).unwrap();
|
||||
assert!(!*lock);
|
||||
while !*lock {
|
||||
lock = cvar.wait(lock).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_arc_condvar_poison() {
|
||||
let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
|
||||
let packet2 = Packet(packet.0.clone());
|
||||
let (tx, rx) = channel();
|
||||
|
||||
let _t = thread::spawn(move || -> () {
|
||||
rx.recv().unwrap();
|
||||
let &(ref lock, ref cvar) = &*packet2.0;
|
||||
let _g = lock.lock().unwrap();
|
||||
cvar.notify_one();
|
||||
// Parent should fail when it wakes up.
|
||||
panic!();
|
||||
});
|
||||
|
||||
let &(ref lock, ref cvar) = &*packet.0;
|
||||
let mut lock = lock.lock().unwrap();
|
||||
tx.send(()).unwrap();
|
||||
while *lock == 1 {
|
||||
match cvar.wait(lock) {
|
||||
Ok(l) => {
|
||||
lock = l;
|
||||
assert_eq!(*lock, 1);
|
||||
}
|
||||
Err(..) => break,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mutex_arc_poison() {
|
||||
let arc = Arc::new(Mutex::new(1));
|
||||
assert!(!arc.is_poisoned());
|
||||
let arc2 = arc.clone();
|
||||
let _ = thread::spawn(move || {
|
||||
let lock = arc2.lock().unwrap();
|
||||
assert_eq!(*lock, 2);
|
||||
})
|
||||
.join();
|
||||
assert!(arc.lock().is_err());
|
||||
assert!(arc.is_poisoned());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mutex_arc_nested() {
|
||||
// Tests nested mutexes and access
|
||||
// to underlying data.
|
||||
let arc = Arc::new(Mutex::new(1));
|
||||
let arc2 = Arc::new(Mutex::new(arc));
|
||||
let (tx, rx) = channel();
|
||||
let _t = thread::spawn(move || {
|
||||
let lock = arc2.lock().unwrap();
|
||||
let lock2 = lock.lock().unwrap();
|
||||
assert_eq!(*lock2, 1);
|
||||
tx.send(()).unwrap();
|
||||
});
|
||||
rx.recv().unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mutex_arc_access_in_unwind() {
|
||||
let arc = Arc::new(Mutex::new(1));
|
||||
let arc2 = arc.clone();
|
||||
let _ = thread::spawn(move || -> () {
|
||||
struct Unwinder {
|
||||
i: Arc<Mutex<i32>>,
|
||||
}
|
||||
impl Drop for Unwinder {
|
||||
fn drop(&mut self) {
|
||||
*self.i.lock().unwrap() += 1;
|
||||
}
|
||||
}
|
||||
let _u = Unwinder { i: arc2 };
|
||||
panic!();
|
||||
})
|
||||
.join();
|
||||
let lock = arc.lock().unwrap();
|
||||
assert_eq!(*lock, 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mutex_unsized() {
|
||||
let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
|
||||
{
|
||||
let b = &mut *mutex.lock().unwrap();
|
||||
b[0] = 4;
|
||||
b[2] = 5;
|
||||
}
|
||||
let comp: &[i32] = &[4, 2, 5];
|
||||
assert_eq!(&*mutex.lock().unwrap(), comp);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue