mv std libs to library/
This commit is contained in:
parent
9be8ffcb02
commit
2c31b45ae8
875 changed files with 1255 additions and 1223 deletions
818
library/std/src/sync/condvar.rs
Normal file
818
library/std/src/sync/condvar.rs
Normal file
|
@ -0,0 +1,818 @@
|
|||
use crate::fmt;
|
||||
use crate::sync::atomic::{AtomicUsize, Ordering};
|
||||
use crate::sync::{mutex, MutexGuard, PoisonError};
|
||||
use crate::sys_common::condvar as sys;
|
||||
use crate::sys_common::mutex as sys_mutex;
|
||||
use crate::sys_common::poison::{self, LockResult};
|
||||
use crate::time::{Duration, Instant};
|
||||
|
||||
/// A type indicating whether a timed wait on a condition variable returned
|
||||
/// due to a time out or not.
|
||||
///
|
||||
/// It is returned by the [`wait_timeout`] method.
|
||||
///
|
||||
/// [`wait_timeout`]: struct.Condvar.html#method.wait_timeout
|
||||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
||||
#[stable(feature = "wait_timeout", since = "1.5.0")]
|
||||
pub struct WaitTimeoutResult(bool);
|
||||
|
||||
impl WaitTimeoutResult {
|
||||
/// Returns `true` if the wait was known to have timed out.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// This example spawns a thread which will update the boolean value and
|
||||
/// then wait 100 milliseconds before notifying the condvar.
|
||||
///
|
||||
/// The main thread will wait with a timeout on the condvar and then leave
|
||||
/// once the boolean has been updated and notified.
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Condvar, Mutex};
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
///
|
||||
/// // Let's wait 20 milliseconds before notifying the condvar.
|
||||
/// thread::sleep(Duration::from_millis(20));
|
||||
///
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// // We update the boolean value.
|
||||
/// *started = true;
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// loop {
|
||||
/// // Let's put a timeout on the condvar's wait.
|
||||
/// let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap();
|
||||
/// // 10 milliseconds have passed, or maybe the value changed!
|
||||
/// started = result.0;
|
||||
/// if *started == true {
|
||||
/// // We received the notification and the value has been updated, we can leave.
|
||||
/// break
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "wait_timeout", since = "1.5.0")]
|
||||
pub fn timed_out(&self) -> bool {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// A Condition Variable
|
||||
///
|
||||
/// Condition variables represent the ability to block a thread such that it
|
||||
/// consumes no CPU time while waiting for an event to occur. Condition
|
||||
/// variables are typically associated with a boolean predicate (a condition)
|
||||
/// and a mutex. The predicate is always verified inside of the mutex before
|
||||
/// determining that a thread must block.
|
||||
///
|
||||
/// Functions in this module will block the current **thread** of execution and
|
||||
/// are bindings to system-provided condition variables where possible. Note
|
||||
/// that this module places one additional restriction over the system condition
|
||||
/// variables: each condvar can be used with precisely one mutex at runtime. Any
|
||||
/// attempt to use multiple mutexes on the same condition variable will result
|
||||
/// in a runtime panic. If this is not desired, then the unsafe primitives in
|
||||
/// `sys` do not have this restriction but may result in undefined behavior.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// // Inside of our lock, spawn a new thread, and then wait for it to start.
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// *started = true;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// while !*started {
|
||||
/// started = cvar.wait(started).unwrap();
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub struct Condvar {
|
||||
inner: Box<sys::Condvar>,
|
||||
mutex: AtomicUsize,
|
||||
}
|
||||
|
||||
impl Condvar {
|
||||
/// Creates a new condition variable which is ready to be waited on and
|
||||
/// notified.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::Condvar;
|
||||
///
|
||||
/// let condvar = Condvar::new();
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn new() -> Condvar {
|
||||
let mut c = Condvar { inner: box sys::Condvar::new(), mutex: AtomicUsize::new(0) };
|
||||
unsafe {
|
||||
c.inner.init();
|
||||
}
|
||||
c
|
||||
}
|
||||
|
||||
/// Blocks the current thread until this condition variable receives a
|
||||
/// notification.
|
||||
///
|
||||
/// This function will atomically unlock the mutex specified (represented by
|
||||
/// `guard`) and block the current thread. This means that any calls
|
||||
/// to [`notify_one`] or [`notify_all`] which happen logically after the
|
||||
/// mutex is unlocked are candidates to wake this thread up. When this
|
||||
/// function call returns, the lock specified will have been re-acquired.
|
||||
///
|
||||
/// Note that this function is susceptible to spurious wakeups. Condition
|
||||
/// variables normally have a boolean predicate associated with them, and
|
||||
/// the predicate must always be checked each time this function returns to
|
||||
/// protect against spurious wakeups.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This function will return an error if the mutex being waited on is
|
||||
/// poisoned when this thread re-acquires the lock. For more information,
|
||||
/// see information about [poisoning] on the [`Mutex`] type.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// This function will [`panic!`] if it is used with more than one mutex
|
||||
/// over time. Each condition variable is dynamically bound to exactly one
|
||||
/// mutex to ensure defined behavior across platforms. If this functionality
|
||||
/// is not desired, then unsafe primitives in `sys` are provided.
|
||||
///
|
||||
/// [`notify_one`]: #method.notify_one
|
||||
/// [`notify_all`]: #method.notify_all
|
||||
/// [poisoning]: ../sync/struct.Mutex.html#poisoning
|
||||
/// [`Mutex`]: ../sync/struct.Mutex.html
|
||||
/// [`panic!`]: ../../std/macro.panic.html
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// *started = true;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
|
||||
/// while !*started {
|
||||
/// started = cvar.wait(started).unwrap();
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) -> LockResult<MutexGuard<'a, T>> {
|
||||
let poisoned = unsafe {
|
||||
let lock = mutex::guard_lock(&guard);
|
||||
self.verify(lock);
|
||||
self.inner.wait(lock);
|
||||
mutex::guard_poison(&guard).get()
|
||||
};
|
||||
if poisoned { Err(PoisonError::new(guard)) } else { Ok(guard) }
|
||||
}
|
||||
|
||||
/// Blocks the current thread until this condition variable receives a
|
||||
/// notification and the provided condition is false.
|
||||
///
|
||||
/// This function will atomically unlock the mutex specified (represented by
|
||||
/// `guard`) and block the current thread. This means that any calls
|
||||
/// to [`notify_one`] or [`notify_all`] which happen logically after the
|
||||
/// mutex is unlocked are candidates to wake this thread up. When this
|
||||
/// function call returns, the lock specified will have been re-acquired.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This function will return an error if the mutex being waited on is
|
||||
/// poisoned when this thread re-acquires the lock. For more information,
|
||||
/// see information about [poisoning] on the [`Mutex`] type.
|
||||
///
|
||||
/// [`notify_one`]: #method.notify_one
|
||||
/// [`notify_all`]: #method.notify_all
|
||||
/// [poisoning]: ../sync/struct.Mutex.html#poisoning
|
||||
/// [`Mutex`]: ../sync/struct.Mutex.html
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(true), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut pending = lock.lock().unwrap();
|
||||
/// *pending = false;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// // As long as the value inside the `Mutex<bool>` is `true`, we wait.
|
||||
/// let _guard = cvar.wait_while(lock.lock().unwrap(), |pending| { *pending }).unwrap();
|
||||
/// ```
|
||||
#[stable(feature = "wait_until", since = "1.42.0")]
|
||||
pub fn wait_while<'a, T, F>(
|
||||
&self,
|
||||
mut guard: MutexGuard<'a, T>,
|
||||
mut condition: F,
|
||||
) -> LockResult<MutexGuard<'a, T>>
|
||||
where
|
||||
F: FnMut(&mut T) -> bool,
|
||||
{
|
||||
while condition(&mut *guard) {
|
||||
guard = self.wait(guard)?;
|
||||
}
|
||||
Ok(guard)
|
||||
}
|
||||
|
||||
/// Waits on this condition variable for a notification, timing out after a
|
||||
/// specified duration.
|
||||
///
|
||||
/// The semantics of this function are equivalent to [`wait`]
|
||||
/// except that the thread will be blocked for roughly no longer
|
||||
/// than `ms` milliseconds. This method should not be used for
|
||||
/// precise timing due to anomalies such as preemption or platform
|
||||
/// differences that may not cause the maximum amount of time
|
||||
/// waited to be precisely `ms`.
|
||||
///
|
||||
/// Note that the best effort is made to ensure that the time waited is
|
||||
/// measured with a monotonic clock, and not affected by the changes made to
|
||||
/// the system time.
|
||||
///
|
||||
/// The returned boolean is `false` only if the timeout is known
|
||||
/// to have elapsed.
|
||||
///
|
||||
/// Like [`wait`], the lock specified will be re-acquired when this function
|
||||
/// returns, regardless of whether the timeout elapsed or not.
|
||||
///
|
||||
/// [`wait`]: #method.wait
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// *started = true;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
|
||||
/// loop {
|
||||
/// let result = cvar.wait_timeout_ms(started, 10).unwrap();
|
||||
/// // 10 milliseconds have passed, or maybe the value changed!
|
||||
/// started = result.0;
|
||||
/// if *started == true {
|
||||
/// // We received the notification and the value has been updated, we can leave.
|
||||
/// break
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
#[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::sync::Condvar::wait_timeout`")]
|
||||
pub fn wait_timeout_ms<'a, T>(
|
||||
&self,
|
||||
guard: MutexGuard<'a, T>,
|
||||
ms: u32,
|
||||
) -> LockResult<(MutexGuard<'a, T>, bool)> {
|
||||
let res = self.wait_timeout(guard, Duration::from_millis(ms as u64));
|
||||
poison::map_result(res, |(a, b)| (a, !b.timed_out()))
|
||||
}
|
||||
|
||||
/// Waits on this condition variable for a notification, timing out after a
|
||||
/// specified duration.
|
||||
///
|
||||
/// The semantics of this function are equivalent to [`wait`] except that
|
||||
/// the thread will be blocked for roughly no longer than `dur`. This
|
||||
/// method should not be used for precise timing due to anomalies such as
|
||||
/// preemption or platform differences that may not cause the maximum
|
||||
/// amount of time waited to be precisely `dur`.
|
||||
///
|
||||
/// Note that the best effort is made to ensure that the time waited is
|
||||
/// measured with a monotonic clock, and not affected by the changes made to
|
||||
/// the system time. This function is susceptible to spurious wakeups.
|
||||
/// Condition variables normally have a boolean predicate associated with
|
||||
/// them, and the predicate must always be checked each time this function
|
||||
/// returns to protect against spurious wakeups. Additionally, it is
|
||||
/// typically desirable for the timeout to not exceed some duration in
|
||||
/// spite of spurious wakes, thus the sleep-duration is decremented by the
|
||||
/// amount slept. Alternatively, use the `wait_timeout_while` method
|
||||
/// to wait with a timeout while a predicate is true.
|
||||
///
|
||||
/// The returned [`WaitTimeoutResult`] value indicates if the timeout is
|
||||
/// known to have elapsed.
|
||||
///
|
||||
/// Like [`wait`], the lock specified will be re-acquired when this function
|
||||
/// returns, regardless of whether the timeout elapsed or not.
|
||||
///
|
||||
/// [`wait`]: #method.wait
|
||||
/// [`wait_timeout_while`]: #method.wait_timeout_while
|
||||
/// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// *started = true;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // wait for the thread to start up
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// // as long as the value inside the `Mutex<bool>` is `false`, we wait
|
||||
/// loop {
|
||||
/// let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap();
|
||||
/// // 10 milliseconds have passed, or maybe the value changed!
|
||||
/// started = result.0;
|
||||
/// if *started == true {
|
||||
/// // We received the notification and the value has been updated, we can leave.
|
||||
/// break
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "wait_timeout", since = "1.5.0")]
|
||||
pub fn wait_timeout<'a, T>(
|
||||
&self,
|
||||
guard: MutexGuard<'a, T>,
|
||||
dur: Duration,
|
||||
) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> {
|
||||
let (poisoned, result) = unsafe {
|
||||
let lock = mutex::guard_lock(&guard);
|
||||
self.verify(lock);
|
||||
let success = self.inner.wait_timeout(lock, dur);
|
||||
(mutex::guard_poison(&guard).get(), WaitTimeoutResult(!success))
|
||||
};
|
||||
if poisoned { Err(PoisonError::new((guard, result))) } else { Ok((guard, result)) }
|
||||
}
|
||||
|
||||
/// Waits on this condition variable for a notification, timing out after a
|
||||
/// specified duration.
|
||||
///
|
||||
/// The semantics of this function are equivalent to [`wait_while`] except
|
||||
/// that the thread will be blocked for roughly no longer than `dur`. This
|
||||
/// method should not be used for precise timing due to anomalies such as
|
||||
/// preemption or platform differences that may not cause the maximum
|
||||
/// amount of time waited to be precisely `dur`.
|
||||
///
|
||||
/// Note that the best effort is made to ensure that the time waited is
|
||||
/// measured with a monotonic clock, and not affected by the changes made to
|
||||
/// the system time.
|
||||
///
|
||||
/// The returned [`WaitTimeoutResult`] value indicates if the timeout is
|
||||
/// known to have elapsed without the condition being met.
|
||||
///
|
||||
/// Like [`wait_while`], the lock specified will be re-acquired when this
|
||||
/// function returns, regardless of whether the timeout elapsed or not.
|
||||
///
|
||||
/// [`wait_while`]: #method.wait_while
|
||||
/// [`wait_timeout`]: #method.wait_timeout
|
||||
/// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(true), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut pending = lock.lock().unwrap();
|
||||
/// *pending = false;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // wait for the thread to start up
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let result = cvar.wait_timeout_while(
|
||||
/// lock.lock().unwrap(),
|
||||
/// Duration::from_millis(100),
|
||||
/// |&mut pending| pending,
|
||||
/// ).unwrap();
|
||||
/// if result.1.timed_out() {
|
||||
/// // timed-out without the condition ever evaluating to false.
|
||||
/// }
|
||||
/// // access the locked mutex via result.0
|
||||
/// ```
|
||||
#[stable(feature = "wait_timeout_until", since = "1.42.0")]
|
||||
pub fn wait_timeout_while<'a, T, F>(
|
||||
&self,
|
||||
mut guard: MutexGuard<'a, T>,
|
||||
dur: Duration,
|
||||
mut condition: F,
|
||||
) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)>
|
||||
where
|
||||
F: FnMut(&mut T) -> bool,
|
||||
{
|
||||
let start = Instant::now();
|
||||
loop {
|
||||
if !condition(&mut *guard) {
|
||||
return Ok((guard, WaitTimeoutResult(false)));
|
||||
}
|
||||
let timeout = match dur.checked_sub(start.elapsed()) {
|
||||
Some(timeout) => timeout,
|
||||
None => return Ok((guard, WaitTimeoutResult(true))),
|
||||
};
|
||||
guard = self.wait_timeout(guard, timeout)?.0;
|
||||
}
|
||||
}
|
||||
|
||||
/// Wakes up one blocked thread on this condvar.
|
||||
///
|
||||
/// If there is a blocked thread on this condition variable, then it will
|
||||
/// be woken up from its call to [`wait`] or [`wait_timeout`]. Calls to
|
||||
/// `notify_one` are not buffered in any way.
|
||||
///
|
||||
/// To wake up all threads, see [`notify_all`].
|
||||
///
|
||||
/// [`wait`]: #method.wait
|
||||
/// [`wait_timeout`]: #method.wait_timeout
|
||||
/// [`notify_all`]: #method.notify_all
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// *started = true;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_one();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
|
||||
/// while !*started {
|
||||
/// started = cvar.wait(started).unwrap();
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn notify_one(&self) {
|
||||
unsafe { self.inner.notify_one() }
|
||||
}
|
||||
|
||||
/// Wakes up all blocked threads on this condvar.
|
||||
///
|
||||
/// This method will ensure that any current waiters on the condition
|
||||
/// variable are awoken. Calls to `notify_all()` are not buffered in any
|
||||
/// way.
|
||||
///
|
||||
/// To wake up only one thread, see [`notify_one`].
|
||||
///
|
||||
/// [`notify_one`]: #method.notify_one
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::sync::{Arc, Mutex, Condvar};
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
/// let pair2 = pair.clone();
|
||||
///
|
||||
/// thread::spawn(move|| {
|
||||
/// let (lock, cvar) = &*pair2;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// *started = true;
|
||||
/// // We notify the condvar that the value has changed.
|
||||
/// cvar.notify_all();
|
||||
/// });
|
||||
///
|
||||
/// // Wait for the thread to start up.
|
||||
/// let (lock, cvar) = &*pair;
|
||||
/// let mut started = lock.lock().unwrap();
|
||||
/// // As long as the value inside the `Mutex<bool>` is `false`, we wait.
|
||||
/// while !*started {
|
||||
/// started = cvar.wait(started).unwrap();
|
||||
/// }
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn notify_all(&self) {
|
||||
unsafe { self.inner.notify_all() }
|
||||
}
|
||||
|
||||
fn verify(&self, mutex: &sys_mutex::Mutex) {
|
||||
let addr = mutex as *const _ as usize;
|
||||
match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) {
|
||||
// If we got out 0, then we have successfully bound the mutex to
|
||||
// this cvar.
|
||||
0 => {}
|
||||
|
||||
// If we get out a value that's the same as `addr`, then someone
|
||||
// already beat us to the punch.
|
||||
n if n == addr => {}
|
||||
|
||||
// Anything else and we're using more than one mutex on this cvar,
|
||||
// which is currently disallowed.
|
||||
_ => panic!(
|
||||
"attempted to use a condition variable with two \
|
||||
mutexes"
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "std_debug", since = "1.16.0")]
|
||||
impl fmt::Debug for Condvar {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.pad("Condvar { .. }")
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "condvar_default", since = "1.10.0")]
|
||||
impl Default for Condvar {
|
||||
/// Creates a `Condvar` which is ready to be waited on and notified.
|
||||
fn default() -> Condvar {
|
||||
Condvar::new()
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
impl Drop for Condvar {
|
||||
fn drop(&mut self) {
|
||||
unsafe { self.inner.destroy() }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::sync::atomic::{AtomicBool, Ordering};
|
||||
use crate::sync::mpsc::channel;
|
||||
use crate::sync::{Arc, Condvar, Mutex};
|
||||
use crate::thread;
|
||||
use crate::time::Duration;
|
||||
|
||||
#[test]
|
||||
fn smoke() {
|
||||
let c = Condvar::new();
|
||||
c.notify_one();
|
||||
c.notify_all();
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn notify_one() {
|
||||
let m = Arc::new(Mutex::new(()));
|
||||
let m2 = m.clone();
|
||||
let c = Arc::new(Condvar::new());
|
||||
let c2 = c.clone();
|
||||
|
||||
let g = m.lock().unwrap();
|
||||
let _t = thread::spawn(move || {
|
||||
let _g = m2.lock().unwrap();
|
||||
c2.notify_one();
|
||||
});
|
||||
let g = c.wait(g).unwrap();
|
||||
drop(g);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn notify_all() {
|
||||
const N: usize = 10;
|
||||
|
||||
let data = Arc::new((Mutex::new(0), Condvar::new()));
|
||||
let (tx, rx) = channel();
|
||||
for _ in 0..N {
|
||||
let data = data.clone();
|
||||
let tx = tx.clone();
|
||||
thread::spawn(move || {
|
||||
let &(ref lock, ref cond) = &*data;
|
||||
let mut cnt = lock.lock().unwrap();
|
||||
*cnt += 1;
|
||||
if *cnt == N {
|
||||
tx.send(()).unwrap();
|
||||
}
|
||||
while *cnt != 0 {
|
||||
cnt = cond.wait(cnt).unwrap();
|
||||
}
|
||||
tx.send(()).unwrap();
|
||||
});
|
||||
}
|
||||
drop(tx);
|
||||
|
||||
let &(ref lock, ref cond) = &*data;
|
||||
rx.recv().unwrap();
|
||||
let mut cnt = lock.lock().unwrap();
|
||||
*cnt = 0;
|
||||
cond.notify_all();
|
||||
drop(cnt);
|
||||
|
||||
for _ in 0..N {
|
||||
rx.recv().unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn wait_while() {
|
||||
let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
let pair2 = pair.clone();
|
||||
|
||||
// Inside of our lock, spawn a new thread, and then wait for it to start.
|
||||
thread::spawn(move || {
|
||||
let &(ref lock, ref cvar) = &*pair2;
|
||||
let mut started = lock.lock().unwrap();
|
||||
*started = true;
|
||||
// We notify the condvar that the value has changed.
|
||||
cvar.notify_one();
|
||||
});
|
||||
|
||||
// Wait for the thread to start up.
|
||||
let &(ref lock, ref cvar) = &*pair;
|
||||
let guard = cvar.wait_while(lock.lock().unwrap(), |started| !*started);
|
||||
assert!(*guard.unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn wait_timeout_wait() {
|
||||
let m = Arc::new(Mutex::new(()));
|
||||
let c = Arc::new(Condvar::new());
|
||||
|
||||
loop {
|
||||
let g = m.lock().unwrap();
|
||||
let (_g, no_timeout) = c.wait_timeout(g, Duration::from_millis(1)).unwrap();
|
||||
// spurious wakeups mean this isn't necessarily true
|
||||
// so execute test again, if not timeout
|
||||
if !no_timeout.timed_out() {
|
||||
continue;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn wait_timeout_while_wait() {
|
||||
let m = Arc::new(Mutex::new(()));
|
||||
let c = Arc::new(Condvar::new());
|
||||
|
||||
let g = m.lock().unwrap();
|
||||
let (_g, wait) = c.wait_timeout_while(g, Duration::from_millis(1), |_| true).unwrap();
|
||||
// no spurious wakeups. ensure it timed-out
|
||||
assert!(wait.timed_out());
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn wait_timeout_while_instant_satisfy() {
|
||||
let m = Arc::new(Mutex::new(()));
|
||||
let c = Arc::new(Condvar::new());
|
||||
|
||||
let g = m.lock().unwrap();
|
||||
let (_g, wait) = c.wait_timeout_while(g, Duration::from_millis(0), |_| false).unwrap();
|
||||
// ensure it didn't time-out even if we were not given any time.
|
||||
assert!(!wait.timed_out());
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn wait_timeout_while_wake() {
|
||||
let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
||||
let pair_copy = pair.clone();
|
||||
|
||||
let &(ref m, ref c) = &*pair;
|
||||
let g = m.lock().unwrap();
|
||||
let _t = thread::spawn(move || {
|
||||
let &(ref lock, ref cvar) = &*pair_copy;
|
||||
let mut started = lock.lock().unwrap();
|
||||
thread::sleep(Duration::from_millis(1));
|
||||
*started = true;
|
||||
cvar.notify_one();
|
||||
});
|
||||
let (g2, wait) = c
|
||||
.wait_timeout_while(g, Duration::from_millis(u64::MAX), |&mut notified| !notified)
|
||||
.unwrap();
|
||||
// ensure it didn't time-out even if we were not given any time.
|
||||
assert!(!wait.timed_out());
|
||||
assert!(*g2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn wait_timeout_wake() {
|
||||
let m = Arc::new(Mutex::new(()));
|
||||
let c = Arc::new(Condvar::new());
|
||||
|
||||
loop {
|
||||
let g = m.lock().unwrap();
|
||||
|
||||
let c2 = c.clone();
|
||||
let m2 = m.clone();
|
||||
|
||||
let notified = Arc::new(AtomicBool::new(false));
|
||||
let notified_copy = notified.clone();
|
||||
|
||||
let t = thread::spawn(move || {
|
||||
let _g = m2.lock().unwrap();
|
||||
thread::sleep(Duration::from_millis(1));
|
||||
notified_copy.store(true, Ordering::SeqCst);
|
||||
c2.notify_one();
|
||||
});
|
||||
let (g, timeout_res) = c.wait_timeout(g, Duration::from_millis(u64::MAX)).unwrap();
|
||||
assert!(!timeout_res.timed_out());
|
||||
// spurious wakeups mean this isn't necessarily true
|
||||
// so execute test again, if not notified
|
||||
if !notified.load(Ordering::SeqCst) {
|
||||
t.join().unwrap();
|
||||
continue;
|
||||
}
|
||||
drop(g);
|
||||
|
||||
t.join().unwrap();
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
#[cfg_attr(target_os = "emscripten", ignore)]
|
||||
fn two_mutexes() {
|
||||
let m = Arc::new(Mutex::new(()));
|
||||
let m2 = m.clone();
|
||||
let c = Arc::new(Condvar::new());
|
||||
let c2 = c.clone();
|
||||
|
||||
let mut g = m.lock().unwrap();
|
||||
let _t = thread::spawn(move || {
|
||||
let _g = m2.lock().unwrap();
|
||||
c2.notify_one();
|
||||
});
|
||||
g = c.wait(g).unwrap();
|
||||
drop(g);
|
||||
|
||||
let m = Mutex::new(());
|
||||
let _ = c.wait(m.lock().unwrap()).unwrap();
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue