Change InferCtxtBuilder from enter to build
This commit is contained in:
parent
91269fa5b8
commit
283abbf0e7
53 changed files with 1966 additions and 2182 deletions
|
@ -27,128 +27,120 @@ fn dropck_outlives<'tcx>(
|
|||
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> {
|
||||
debug!("dropck_outlives(goal={:#?})", canonical_goal);
|
||||
|
||||
tcx.infer_ctxt().enter_with_canonical(
|
||||
DUMMY_SP,
|
||||
&canonical_goal,
|
||||
|ref infcx, goal, canonical_inference_vars| {
|
||||
let tcx = infcx.tcx;
|
||||
let ParamEnvAnd { param_env, value: for_ty } = goal;
|
||||
let (ref infcx, goal, canonical_inference_vars) =
|
||||
tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &canonical_goal);
|
||||
let tcx = infcx.tcx;
|
||||
let ParamEnvAnd { param_env, value: for_ty } = goal;
|
||||
|
||||
let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };
|
||||
let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };
|
||||
|
||||
// A stack of types left to process. Each round, we pop
|
||||
// something from the stack and invoke
|
||||
// `dtorck_constraint_for_ty`. This may produce new types that
|
||||
// have to be pushed on the stack. This continues until we have explored
|
||||
// all the reachable types from the type `for_ty`.
|
||||
//
|
||||
// Example: Imagine that we have the following code:
|
||||
//
|
||||
// ```rust
|
||||
// struct A {
|
||||
// value: B,
|
||||
// children: Vec<A>,
|
||||
// }
|
||||
//
|
||||
// struct B {
|
||||
// value: u32
|
||||
// }
|
||||
//
|
||||
// fn f() {
|
||||
// let a: A = ...;
|
||||
// ..
|
||||
// } // here, `a` is dropped
|
||||
// ```
|
||||
//
|
||||
// at the point where `a` is dropped, we need to figure out
|
||||
// which types inside of `a` contain region data that may be
|
||||
// accessed by any destructors in `a`. We begin by pushing `A`
|
||||
// onto the stack, as that is the type of `a`. We will then
|
||||
// invoke `dtorck_constraint_for_ty` which will expand `A`
|
||||
// into the types of its fields `(B, Vec<A>)`. These will get
|
||||
// pushed onto the stack. Eventually, expanding `Vec<A>` will
|
||||
// lead to us trying to push `A` a second time -- to prevent
|
||||
// infinite recursion, we notice that `A` was already pushed
|
||||
// once and stop.
|
||||
let mut ty_stack = vec![(for_ty, 0)];
|
||||
// A stack of types left to process. Each round, we pop
|
||||
// something from the stack and invoke
|
||||
// `dtorck_constraint_for_ty`. This may produce new types that
|
||||
// have to be pushed on the stack. This continues until we have explored
|
||||
// all the reachable types from the type `for_ty`.
|
||||
//
|
||||
// Example: Imagine that we have the following code:
|
||||
//
|
||||
// ```rust
|
||||
// struct A {
|
||||
// value: B,
|
||||
// children: Vec<A>,
|
||||
// }
|
||||
//
|
||||
// struct B {
|
||||
// value: u32
|
||||
// }
|
||||
//
|
||||
// fn f() {
|
||||
// let a: A = ...;
|
||||
// ..
|
||||
// } // here, `a` is dropped
|
||||
// ```
|
||||
//
|
||||
// at the point where `a` is dropped, we need to figure out
|
||||
// which types inside of `a` contain region data that may be
|
||||
// accessed by any destructors in `a`. We begin by pushing `A`
|
||||
// onto the stack, as that is the type of `a`. We will then
|
||||
// invoke `dtorck_constraint_for_ty` which will expand `A`
|
||||
// into the types of its fields `(B, Vec<A>)`. These will get
|
||||
// pushed onto the stack. Eventually, expanding `Vec<A>` will
|
||||
// lead to us trying to push `A` a second time -- to prevent
|
||||
// infinite recursion, we notice that `A` was already pushed
|
||||
// once and stop.
|
||||
let mut ty_stack = vec![(for_ty, 0)];
|
||||
|
||||
// Set used to detect infinite recursion.
|
||||
let mut ty_set = FxHashSet::default();
|
||||
// Set used to detect infinite recursion.
|
||||
let mut ty_set = FxHashSet::default();
|
||||
|
||||
let mut fulfill_cx = <dyn TraitEngine<'_>>::new(infcx.tcx);
|
||||
let mut fulfill_cx = <dyn TraitEngine<'_>>::new(infcx.tcx);
|
||||
|
||||
let cause = ObligationCause::dummy();
|
||||
let mut constraints = DropckConstraint::empty();
|
||||
while let Some((ty, depth)) = ty_stack.pop() {
|
||||
debug!(
|
||||
"{} kinds, {} overflows, {} ty_stack",
|
||||
result.kinds.len(),
|
||||
result.overflows.len(),
|
||||
ty_stack.len()
|
||||
);
|
||||
dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?;
|
||||
let cause = ObligationCause::dummy();
|
||||
let mut constraints = DropckConstraint::empty();
|
||||
while let Some((ty, depth)) = ty_stack.pop() {
|
||||
debug!(
|
||||
"{} kinds, {} overflows, {} ty_stack",
|
||||
result.kinds.len(),
|
||||
result.overflows.len(),
|
||||
ty_stack.len()
|
||||
);
|
||||
dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?;
|
||||
|
||||
// "outlives" represent types/regions that may be touched
|
||||
// by a destructor.
|
||||
result.kinds.append(&mut constraints.outlives);
|
||||
result.overflows.append(&mut constraints.overflows);
|
||||
// "outlives" represent types/regions that may be touched
|
||||
// by a destructor.
|
||||
result.kinds.append(&mut constraints.outlives);
|
||||
result.overflows.append(&mut constraints.overflows);
|
||||
|
||||
// If we have even one overflow, we should stop trying to evaluate further --
|
||||
// chances are, the subsequent overflows for this evaluation won't provide useful
|
||||
// information and will just decrease the speed at which we can emit these errors
|
||||
// (since we'll be printing for just that much longer for the often enormous types
|
||||
// that result here).
|
||||
if !result.overflows.is_empty() {
|
||||
break;
|
||||
}
|
||||
// If we have even one overflow, we should stop trying to evaluate further --
|
||||
// chances are, the subsequent overflows for this evaluation won't provide useful
|
||||
// information and will just decrease the speed at which we can emit these errors
|
||||
// (since we'll be printing for just that much longer for the often enormous types
|
||||
// that result here).
|
||||
if !result.overflows.is_empty() {
|
||||
break;
|
||||
}
|
||||
|
||||
// dtorck types are "types that will get dropped but which
|
||||
// do not themselves define a destructor", more or less. We have
|
||||
// to push them onto the stack to be expanded.
|
||||
for ty in constraints.dtorck_types.drain(..) {
|
||||
match infcx.at(&cause, param_env).normalize(ty) {
|
||||
Ok(Normalized { value: ty, obligations }) => {
|
||||
fulfill_cx.register_predicate_obligations(infcx, obligations);
|
||||
// dtorck types are "types that will get dropped but which
|
||||
// do not themselves define a destructor", more or less. We have
|
||||
// to push them onto the stack to be expanded.
|
||||
for ty in constraints.dtorck_types.drain(..) {
|
||||
match infcx.at(&cause, param_env).normalize(ty) {
|
||||
Ok(Normalized { value: ty, obligations }) => {
|
||||
fulfill_cx.register_predicate_obligations(infcx, obligations);
|
||||
|
||||
debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
|
||||
debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
|
||||
|
||||
match ty.kind() {
|
||||
// All parameters live for the duration of the
|
||||
// function.
|
||||
ty::Param(..) => {}
|
||||
match ty.kind() {
|
||||
// All parameters live for the duration of the
|
||||
// function.
|
||||
ty::Param(..) => {}
|
||||
|
||||
// A projection that we couldn't resolve - it
|
||||
// might have a destructor.
|
||||
ty::Projection(..) | ty::Opaque(..) => {
|
||||
result.kinds.push(ty.into());
|
||||
}
|
||||
|
||||
_ => {
|
||||
if ty_set.insert(ty) {
|
||||
ty_stack.push((ty, depth + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
// A projection that we couldn't resolve - it
|
||||
// might have a destructor.
|
||||
ty::Projection(..) | ty::Opaque(..) => {
|
||||
result.kinds.push(ty.into());
|
||||
}
|
||||
|
||||
// We don't actually expect to fail to normalize.
|
||||
// That implies a WF error somewhere else.
|
||||
Err(NoSolution) => {
|
||||
return Err(NoSolution);
|
||||
_ => {
|
||||
if ty_set.insert(ty) {
|
||||
ty_stack.push((ty, depth + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We don't actually expect to fail to normalize.
|
||||
// That implies a WF error somewhere else.
|
||||
Err(NoSolution) => {
|
||||
return Err(NoSolution);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
debug!("dropck_outlives: result = {:#?}", result);
|
||||
debug!("dropck_outlives: result = {:#?}", result);
|
||||
|
||||
infcx.make_canonicalized_query_response(
|
||||
canonical_inference_vars,
|
||||
result,
|
||||
&mut *fulfill_cx,
|
||||
)
|
||||
},
|
||||
)
|
||||
infcx.make_canonicalized_query_response(canonical_inference_vars, result, &mut *fulfill_cx)
|
||||
}
|
||||
|
||||
/// Returns a set of constraints that needs to be satisfied in
|
||||
|
|
|
@ -18,17 +18,15 @@ fn evaluate_obligation<'tcx>(
|
|||
debug!("evaluate_obligation(canonical_goal={:#?})", canonical_goal);
|
||||
// HACK This bubble is required for this tests to pass:
|
||||
// impl-trait/issue99642.rs
|
||||
tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).enter_with_canonical(
|
||||
DUMMY_SP,
|
||||
&canonical_goal,
|
||||
|ref infcx, goal, _canonical_inference_vars| {
|
||||
debug!("evaluate_obligation: goal={:#?}", goal);
|
||||
let ParamEnvAnd { param_env, value: predicate } = goal;
|
||||
let (ref infcx, goal, _canonical_inference_vars) = tcx
|
||||
.infer_ctxt()
|
||||
.with_opaque_type_inference(DefiningAnchor::Bubble)
|
||||
.build_with_canonical(DUMMY_SP, &canonical_goal);
|
||||
debug!("evaluate_obligation: goal={:#?}", goal);
|
||||
let ParamEnvAnd { param_env, value: predicate } = goal;
|
||||
|
||||
let mut selcx = SelectionContext::with_query_mode(&infcx, TraitQueryMode::Canonical);
|
||||
let obligation = Obligation::new(ObligationCause::dummy(), param_env, predicate);
|
||||
let mut selcx = SelectionContext::with_query_mode(&infcx, TraitQueryMode::Canonical);
|
||||
let obligation = Obligation::new(ObligationCause::dummy(), param_env, predicate);
|
||||
|
||||
selcx.evaluate_root_obligation(&obligation)
|
||||
},
|
||||
)
|
||||
selcx.evaluate_root_obligation(&obligation)
|
||||
}
|
||||
|
|
|
@ -30,30 +30,29 @@ fn try_normalize_after_erasing_regions<'tcx, T: TypeFoldable<'tcx> + PartialEq +
|
|||
goal: ParamEnvAnd<'tcx, T>,
|
||||
) -> Result<T, NoSolution> {
|
||||
let ParamEnvAnd { param_env, value } = goal;
|
||||
tcx.infer_ctxt().enter(|infcx| {
|
||||
let cause = ObligationCause::dummy();
|
||||
match infcx.at(&cause, param_env).normalize(value) {
|
||||
Ok(Normalized { value: normalized_value, obligations: normalized_obligations }) => {
|
||||
// We don't care about the `obligations`; they are
|
||||
// always only region relations, and we are about to
|
||||
// erase those anyway:
|
||||
debug_assert_eq!(
|
||||
normalized_obligations.iter().find(|p| not_outlives_predicate(p.predicate)),
|
||||
None,
|
||||
);
|
||||
let infcx = tcx.infer_ctxt().build();
|
||||
let cause = ObligationCause::dummy();
|
||||
match infcx.at(&cause, param_env).normalize(value) {
|
||||
Ok(Normalized { value: normalized_value, obligations: normalized_obligations }) => {
|
||||
// We don't care about the `obligations`; they are
|
||||
// always only region relations, and we are about to
|
||||
// erase those anyway:
|
||||
debug_assert_eq!(
|
||||
normalized_obligations.iter().find(|p| not_outlives_predicate(p.predicate)),
|
||||
None,
|
||||
);
|
||||
|
||||
let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
|
||||
// It's unclear when `resolve_vars` would have an effect in a
|
||||
// fresh `InferCtxt`. If this assert does trigger, it will give
|
||||
// us a test case.
|
||||
debug_assert_eq!(normalized_value, resolved_value);
|
||||
let erased = infcx.tcx.erase_regions(resolved_value);
|
||||
debug_assert!(!erased.needs_infer(), "{:?}", erased);
|
||||
Ok(erased)
|
||||
}
|
||||
Err(NoSolution) => Err(NoSolution),
|
||||
let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
|
||||
// It's unclear when `resolve_vars` would have an effect in a
|
||||
// fresh `InferCtxt`. If this assert does trigger, it will give
|
||||
// us a test case.
|
||||
debug_assert_eq!(normalized_value, resolved_value);
|
||||
let erased = infcx.tcx.erase_regions(resolved_value);
|
||||
debug_assert!(!erased.needs_infer(), "{:?}", erased);
|
||||
Ok(erased)
|
||||
}
|
||||
})
|
||||
Err(NoSolution) => Err(NoSolution),
|
||||
}
|
||||
}
|
||||
|
||||
fn not_outlives_predicate<'tcx>(p: ty::Predicate<'tcx>) -> bool {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue