1
Fork 0

Change InferCtxtBuilder from enter to build

This commit is contained in:
Cameron Steffen 2022-09-19 22:03:59 -05:00
parent 91269fa5b8
commit 283abbf0e7
53 changed files with 1966 additions and 2182 deletions

View file

@ -108,43 +108,42 @@ fn visit_implementation_of_copy(tcx: TyCtxt<'_>, impl_did: LocalDefId) {
// why this field does not implement Copy. This is useful because sometimes
// it is not immediately clear why Copy is not implemented for a field, since
// all we point at is the field itself.
tcx.infer_ctxt().ignoring_regions().enter(|infcx| {
for error in traits::fully_solve_bound(
&infcx,
traits::ObligationCause::dummy_with_span(field_ty_span),
param_env,
ty,
tcx.lang_items().copy_trait().unwrap(),
) {
let error_predicate = error.obligation.predicate;
// Only note if it's not the root obligation, otherwise it's trivial and
// should be self-explanatory (i.e. a field literally doesn't implement Copy).
let infcx = tcx.infer_ctxt().ignoring_regions().build();
for error in traits::fully_solve_bound(
&infcx,
traits::ObligationCause::dummy_with_span(field_ty_span),
param_env,
ty,
tcx.lang_items().copy_trait().unwrap(),
) {
let error_predicate = error.obligation.predicate;
// Only note if it's not the root obligation, otherwise it's trivial and
// should be self-explanatory (i.e. a field literally doesn't implement Copy).
// FIXME: This error could be more descriptive, especially if the error_predicate
// contains a foreign type or if it's a deeply nested type...
if error_predicate != error.root_obligation.predicate {
errors
.entry((ty.to_string(), error_predicate.to_string()))
.or_default()
.push(error.obligation.cause.span);
}
if let ty::PredicateKind::Trait(ty::TraitPredicate {
trait_ref,
polarity: ty::ImplPolarity::Positive,
..
}) = error_predicate.kind().skip_binder()
{
let ty = trait_ref.self_ty();
if let ty::Param(_) = ty.kind() {
bounds.push((
format!("{ty}"),
trait_ref.print_only_trait_path().to_string(),
Some(trait_ref.def_id),
));
}
// FIXME: This error could be more descriptive, especially if the error_predicate
// contains a foreign type or if it's a deeply nested type...
if error_predicate != error.root_obligation.predicate {
errors
.entry((ty.to_string(), error_predicate.to_string()))
.or_default()
.push(error.obligation.cause.span);
}
if let ty::PredicateKind::Trait(ty::TraitPredicate {
trait_ref,
polarity: ty::ImplPolarity::Positive,
..
}) = error_predicate.kind().skip_binder()
{
let ty = trait_ref.self_ty();
if let ty::Param(_) = ty.kind() {
bounds.push((
format!("{ty}"),
trait_ref.print_only_trait_path().to_string(),
Some(trait_ref.def_id),
));
}
}
});
}
}
for ((ty, error_predicate), spans) in errors {
let span: MultiSpan = spans.into();
@ -205,91 +204,89 @@ fn visit_implementation_of_dispatch_from_dyn<'tcx>(tcx: TyCtxt<'tcx>, impl_did:
let create_err = |msg: &str| struct_span_err!(tcx.sess, span, E0378, "{}", msg);
tcx.infer_ctxt().enter(|infcx| {
let cause = ObligationCause::misc(span, impl_hir_id);
let infcx = tcx.infer_ctxt().build();
let cause = ObligationCause::misc(span, impl_hir_id);
use rustc_type_ir::sty::TyKind::*;
match (source.kind(), target.kind()) {
(&Ref(r_a, _, mutbl_a), Ref(r_b, _, mutbl_b))
if infcx.at(&cause, param_env).eq(r_a, *r_b).is_ok() && mutbl_a == *mutbl_b => {}
(&RawPtr(tm_a), &RawPtr(tm_b)) if tm_a.mutbl == tm_b.mutbl => (),
(&Adt(def_a, substs_a), &Adt(def_b, substs_b))
if def_a.is_struct() && def_b.is_struct() =>
{
if def_a != def_b {
let source_path = tcx.def_path_str(def_a.did());
let target_path = tcx.def_path_str(def_b.did());
use rustc_type_ir::sty::TyKind::*;
match (source.kind(), target.kind()) {
(&Ref(r_a, _, mutbl_a), Ref(r_b, _, mutbl_b))
if infcx.at(&cause, param_env).eq(r_a, *r_b).is_ok() && mutbl_a == *mutbl_b => {}
(&RawPtr(tm_a), &RawPtr(tm_b)) if tm_a.mutbl == tm_b.mutbl => (),
(&Adt(def_a, substs_a), &Adt(def_b, substs_b))
if def_a.is_struct() && def_b.is_struct() =>
{
if def_a != def_b {
let source_path = tcx.def_path_str(def_a.did());
let target_path = tcx.def_path_str(def_b.did());
create_err(&format!(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with the same \
definition; expected `{}`, found `{}`",
source_path, target_path,
))
.emit();
create_err(&format!(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with the same \
definition; expected `{}`, found `{}`",
source_path, target_path,
))
.emit();
return;
}
return;
}
if def_a.repr().c() || def_a.repr().packed() {
create_err(
"structs implementing `DispatchFromDyn` may not have \
`#[repr(packed)]` or `#[repr(C)]`",
)
.emit();
}
if def_a.repr().c() || def_a.repr().packed() {
create_err(
"structs implementing `DispatchFromDyn` may not have \
`#[repr(packed)]` or `#[repr(C)]`",
)
.emit();
}
let fields = &def_a.non_enum_variant().fields;
let fields = &def_a.non_enum_variant().fields;
let coerced_fields = fields
.iter()
.filter(|field| {
let ty_a = field.ty(tcx, substs_a);
let ty_b = field.ty(tcx, substs_b);
let coerced_fields = fields
.iter()
.filter(|field| {
let ty_a = field.ty(tcx, substs_a);
let ty_b = field.ty(tcx, substs_b);
if let Ok(layout) = tcx.layout_of(param_env.and(ty_a)) {
if layout.is_zst() && layout.align.abi.bytes() == 1 {
// ignore ZST fields with alignment of 1 byte
return false;
}
if let Ok(layout) = tcx.layout_of(param_env.and(ty_a)) {
if layout.is_zst() && layout.align.abi.bytes() == 1 {
// ignore ZST fields with alignment of 1 byte
return false;
}
}
if let Ok(ok) = infcx.at(&cause, param_env).eq(ty_a, ty_b) {
if ok.obligations.is_empty() {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for structs containing the field being coerced, \
ZST fields with 1 byte alignment, and nothing else",
)
.note(&format!(
"extra field `{}` of type `{}` is not allowed",
field.name, ty_a,
))
.emit();
if let Ok(ok) = infcx.at(&cause, param_env).eq(ty_a, ty_b) {
if ok.obligations.is_empty() {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for structs containing the field being coerced, \
ZST fields with 1 byte alignment, and nothing else",
)
.note(&format!(
"extra field `{}` of type `{}` is not allowed",
field.name, ty_a,
))
.emit();
return false;
}
return false;
}
}
return true;
})
.collect::<Vec<_>>();
return true;
})
.collect::<Vec<_>>();
if coerced_fields.is_empty() {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with a single field \
being coerced, none found",
)
.emit();
} else if coerced_fields.len() > 1 {
create_err(
"implementing the `DispatchFromDyn` trait requires multiple coercions",
)
if coerced_fields.is_empty() {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with a single field \
being coerced, none found",
)
.emit();
} else if coerced_fields.len() > 1 {
create_err("implementing the `DispatchFromDyn` trait requires multiple coercions")
.note(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with a single field \
being coerced",
for a coercion between structures with a single field \
being coerced",
)
.note(&format!(
"currently, {} fields need coercions: {}",
@ -308,39 +305,38 @@ fn visit_implementation_of_dispatch_from_dyn<'tcx>(tcx: TyCtxt<'tcx>, impl_did:
.join(", ")
))
.emit();
} else {
let errors = traits::fully_solve_obligations(
&infcx,
coerced_fields.into_iter().map(|field| {
predicate_for_trait_def(
tcx,
param_env,
cause.clone(),
dispatch_from_dyn_trait,
0,
field.ty(tcx, substs_a),
&[field.ty(tcx, substs_b).into()],
)
}),
);
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
}
// Finally, resolve all regions.
let outlives_env = OutlivesEnvironment::new(param_env);
infcx.check_region_obligations_and_report_errors(impl_did, &outlives_env);
} else {
let errors = traits::fully_solve_obligations(
&infcx,
coerced_fields.into_iter().map(|field| {
predicate_for_trait_def(
tcx,
param_env,
cause.clone(),
dispatch_from_dyn_trait,
0,
field.ty(tcx, substs_a),
&[field.ty(tcx, substs_b).into()],
)
}),
);
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
}
}
_ => {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures",
)
.emit();
// Finally, resolve all regions.
let outlives_env = OutlivesEnvironment::new(param_env);
infcx.check_region_obligations_and_report_errors(impl_did, &outlives_env);
}
}
})
_ => {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures",
)
.emit();
}
}
}
pub fn coerce_unsized_info<'tcx>(tcx: TyCtxt<'tcx>, impl_did: DefId) -> CoerceUnsizedInfo {
@ -369,221 +365,208 @@ pub fn coerce_unsized_info<'tcx>(tcx: TyCtxt<'tcx>, impl_did: DefId) -> CoerceUn
debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (free)", source, target);
tcx.infer_ctxt().enter(|infcx| {
let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_did);
let cause = ObligationCause::misc(span, impl_hir_id);
let check_mutbl = |mt_a: ty::TypeAndMut<'tcx>,
mt_b: ty::TypeAndMut<'tcx>,
mk_ptr: &dyn Fn(Ty<'tcx>) -> Ty<'tcx>| {
if (mt_a.mutbl, mt_b.mutbl) == (hir::Mutability::Not, hir::Mutability::Mut) {
infcx
.err_ctxt()
.report_mismatched_types(
&cause,
mk_ptr(mt_b.ty),
target,
ty::error::TypeError::Mutability,
)
.emit();
}
(mt_a.ty, mt_b.ty, unsize_trait, None)
};
let (source, target, trait_def_id, kind) = match (source.kind(), target.kind()) {
(&ty::Ref(r_a, ty_a, mutbl_a), &ty::Ref(r_b, ty_b, mutbl_b)) => {
infcx.sub_regions(infer::RelateObjectBound(span), r_b, r_a);
let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
let mt_b = ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b };
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ref(r_b, ty))
let infcx = tcx.infer_ctxt().build();
let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_did);
let cause = ObligationCause::misc(span, impl_hir_id);
let check_mutbl = |mt_a: ty::TypeAndMut<'tcx>,
mt_b: ty::TypeAndMut<'tcx>,
mk_ptr: &dyn Fn(Ty<'tcx>) -> Ty<'tcx>| {
if (mt_a.mutbl, mt_b.mutbl) == (hir::Mutability::Not, hir::Mutability::Mut) {
infcx
.err_ctxt()
.report_mismatched_types(
&cause,
mk_ptr(mt_b.ty),
target,
ty::error::TypeError::Mutability,
)
.emit();
}
(mt_a.ty, mt_b.ty, unsize_trait, None)
};
let (source, target, trait_def_id, kind) = match (source.kind(), target.kind()) {
(&ty::Ref(r_a, ty_a, mutbl_a), &ty::Ref(r_b, ty_b, mutbl_b)) => {
infcx.sub_regions(infer::RelateObjectBound(span), r_b, r_a);
let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
let mt_b = ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b };
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ref(r_b, ty))
}
(&ty::Ref(_, ty_a, mutbl_a), &ty::RawPtr(mt_b)) => {
let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
}
(&ty::RawPtr(mt_a), &ty::RawPtr(mt_b)) => check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty)),
(&ty::Adt(def_a, substs_a), &ty::Adt(def_b, substs_b))
if def_a.is_struct() && def_b.is_struct() =>
{
if def_a != def_b {
let source_path = tcx.def_path_str(def_a.did());
let target_path = tcx.def_path_str(def_b.did());
struct_span_err!(
tcx.sess,
span,
E0377,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures with the same \
definition; expected `{}`, found `{}`",
source_path,
target_path
)
.emit();
return err_info;
}
(&ty::Ref(_, ty_a, mutbl_a), &ty::RawPtr(mt_b)) => {
let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
}
// Here we are considering a case of converting
// `S<P0...Pn>` to S<Q0...Qn>`. As an example, let's imagine a struct `Foo<T, U>`,
// which acts like a pointer to `U`, but carries along some extra data of type `T`:
//
// struct Foo<T, U> {
// extra: T,
// ptr: *mut U,
// }
//
// We might have an impl that allows (e.g.) `Foo<T, [i32; 3]>` to be unsized
// to `Foo<T, [i32]>`. That impl would look like:
//
// impl<T, U: Unsize<V>, V> CoerceUnsized<Foo<T, V>> for Foo<T, U> {}
//
// Here `U = [i32; 3]` and `V = [i32]`. At runtime,
// when this coercion occurs, we would be changing the
// field `ptr` from a thin pointer of type `*mut [i32;
// 3]` to a fat pointer of type `*mut [i32]` (with
// extra data `3`). **The purpose of this check is to
// make sure that we know how to do this conversion.**
//
// To check if this impl is legal, we would walk down
// the fields of `Foo` and consider their types with
// both substitutes. We are looking to find that
// exactly one (non-phantom) field has changed its
// type, which we will expect to be the pointer that
// is becoming fat (we could probably generalize this
// to multiple thin pointers of the same type becoming
// fat, but we don't). In this case:
//
// - `extra` has type `T` before and type `T` after
// - `ptr` has type `*mut U` before and type `*mut V` after
//
// Since just one field changed, we would then check
// that `*mut U: CoerceUnsized<*mut V>` is implemented
// (in other words, that we know how to do this
// conversion). This will work out because `U:
// Unsize<V>`, and we have a builtin rule that `*mut
// U` can be coerced to `*mut V` if `U: Unsize<V>`.
let fields = &def_a.non_enum_variant().fields;
let diff_fields = fields
.iter()
.enumerate()
.filter_map(|(i, f)| {
let (a, b) = (f.ty(tcx, substs_a), f.ty(tcx, substs_b));
(&ty::RawPtr(mt_a), &ty::RawPtr(mt_b)) => {
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
}
if tcx.type_of(f.did).is_phantom_data() {
// Ignore PhantomData fields
return None;
}
(&ty::Adt(def_a, substs_a), &ty::Adt(def_b, substs_b))
if def_a.is_struct() && def_b.is_struct() =>
{
if def_a != def_b {
let source_path = tcx.def_path_str(def_a.did());
let target_path = tcx.def_path_str(def_b.did());
struct_span_err!(
tcx.sess,
span,
E0377,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures with the same \
definition; expected `{}`, found `{}`",
source_path,
target_path
)
.emit();
return err_info;
}
// Here we are considering a case of converting
// `S<P0...Pn>` to S<Q0...Qn>`. As an example, let's imagine a struct `Foo<T, U>`,
// which acts like a pointer to `U`, but carries along some extra data of type `T`:
//
// struct Foo<T, U> {
// extra: T,
// ptr: *mut U,
// }
//
// We might have an impl that allows (e.g.) `Foo<T, [i32; 3]>` to be unsized
// to `Foo<T, [i32]>`. That impl would look like:
//
// impl<T, U: Unsize<V>, V> CoerceUnsized<Foo<T, V>> for Foo<T, U> {}
//
// Here `U = [i32; 3]` and `V = [i32]`. At runtime,
// when this coercion occurs, we would be changing the
// field `ptr` from a thin pointer of type `*mut [i32;
// 3]` to a fat pointer of type `*mut [i32]` (with
// extra data `3`). **The purpose of this check is to
// make sure that we know how to do this conversion.**
//
// To check if this impl is legal, we would walk down
// the fields of `Foo` and consider their types with
// both substitutes. We are looking to find that
// exactly one (non-phantom) field has changed its
// type, which we will expect to be the pointer that
// is becoming fat (we could probably generalize this
// to multiple thin pointers of the same type becoming
// fat, but we don't). In this case:
//
// - `extra` has type `T` before and type `T` after
// - `ptr` has type `*mut U` before and type `*mut V` after
//
// Since just one field changed, we would then check
// that `*mut U: CoerceUnsized<*mut V>` is implemented
// (in other words, that we know how to do this
// conversion). This will work out because `U:
// Unsize<V>`, and we have a builtin rule that `*mut
// U` can be coerced to `*mut V` if `U: Unsize<V>`.
let fields = &def_a.non_enum_variant().fields;
let diff_fields = fields
.iter()
.enumerate()
.filter_map(|(i, f)| {
let (a, b) = (f.ty(tcx, substs_a), f.ty(tcx, substs_b));
if tcx.type_of(f.did).is_phantom_data() {
// Ignore PhantomData fields
// Ignore fields that aren't changed; it may
// be that we could get away with subtyping or
// something more accepting, but we use
// equality because we want to be able to
// perform this check without computing
// variance where possible. (This is because
// we may have to evaluate constraint
// expressions in the course of execution.)
// See e.g., #41936.
if let Ok(ok) = infcx.at(&cause, param_env).eq(a, b) {
if ok.obligations.is_empty() {
return None;
}
}
// Ignore fields that aren't changed; it may
// be that we could get away with subtyping or
// something more accepting, but we use
// equality because we want to be able to
// perform this check without computing
// variance where possible. (This is because
// we may have to evaluate constraint
// expressions in the course of execution.)
// See e.g., #41936.
if let Ok(ok) = infcx.at(&cause, param_env).eq(a, b) {
if ok.obligations.is_empty() {
return None;
}
}
// Collect up all fields that were significantly changed
// i.e., those that contain T in coerce_unsized T -> U
Some((i, a, b))
})
.collect::<Vec<_>>();
// Collect up all fields that were significantly changed
// i.e., those that contain T in coerce_unsized T -> U
Some((i, a, b))
})
.collect::<Vec<_>>();
if diff_fields.is_empty() {
struct_span_err!(
tcx.sess,
span,
E0374,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures with one field \
being coerced, none found"
)
.emit();
return err_info;
} else if diff_fields.len() > 1 {
let item = tcx.hir().expect_item(impl_did);
let span = if let ItemKind::Impl(hir::Impl { of_trait: Some(ref t), .. }) =
item.kind
{
if diff_fields.is_empty() {
struct_span_err!(
tcx.sess,
span,
E0374,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures with one field \
being coerced, none found"
)
.emit();
return err_info;
} else if diff_fields.len() > 1 {
let item = tcx.hir().expect_item(impl_did);
let span =
if let ItemKind::Impl(hir::Impl { of_trait: Some(ref t), .. }) = item.kind {
t.path.span
} else {
tcx.def_span(impl_did)
};
struct_span_err!(
tcx.sess,
span,
E0375,
"implementing the trait \
`CoerceUnsized` requires multiple \
coercions"
)
.note(
"`CoerceUnsized` may only be implemented for \
a coercion between structures with one field being coerced",
)
.note(&format!(
"currently, {} fields need coercions: {}",
diff_fields.len(),
diff_fields
.iter()
.map(|&(i, a, b)| {
format!("`{}` (`{}` to `{}`)", fields[i].name, a, b)
})
.collect::<Vec<_>>()
.join(", ")
))
.span_label(span, "requires multiple coercions")
.emit();
return err_info;
}
let (i, a, b) = diff_fields[0];
let kind = ty::adjustment::CustomCoerceUnsized::Struct(i);
(a, b, coerce_unsized_trait, Some(kind))
}
_ => {
struct_span_err!(
tcx.sess,
span,
E0376,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures"
E0375,
"implementing the trait \
`CoerceUnsized` requires multiple \
coercions"
)
.note(
"`CoerceUnsized` may only be implemented for \
a coercion between structures with one field being coerced",
)
.note(&format!(
"currently, {} fields need coercions: {}",
diff_fields.len(),
diff_fields
.iter()
.map(|&(i, a, b)| { format!("`{}` (`{}` to `{}`)", fields[i].name, a, b) })
.collect::<Vec<_>>()
.join(", ")
))
.span_label(span, "requires multiple coercions")
.emit();
return err_info;
}
};
// Register an obligation for `A: Trait<B>`.
let cause = traits::ObligationCause::misc(span, impl_hir_id);
let predicate = predicate_for_trait_def(
tcx,
param_env,
cause,
trait_def_id,
0,
source,
&[target.into()],
);
let errors = traits::fully_solve_obligation(&infcx, predicate);
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
let (i, a, b) = diff_fields[0];
let kind = ty::adjustment::CustomCoerceUnsized::Struct(i);
(a, b, coerce_unsized_trait, Some(kind))
}
// Finally, resolve all regions.
let outlives_env = OutlivesEnvironment::new(param_env);
infcx.check_region_obligations_and_report_errors(impl_did, &outlives_env);
_ => {
struct_span_err!(
tcx.sess,
span,
E0376,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures"
)
.emit();
return err_info;
}
};
CoerceUnsizedInfo { custom_kind: kind }
})
// Register an obligation for `A: Trait<B>`.
let cause = traits::ObligationCause::misc(span, impl_hir_id);
let predicate =
predicate_for_trait_def(tcx, param_env, cause, trait_def_id, 0, source, &[target.into()]);
let errors = traits::fully_solve_obligation(&infcx, predicate);
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
}
// Finally, resolve all regions.
let outlives_env = OutlivesEnvironment::new(param_env);
infcx.check_region_obligations_and_report_errors(impl_did, &outlives_env);
CoerceUnsizedInfo { custom_kind: kind }
}