Rollup merge of #115972 - RalfJung:const-consistency, r=oli-obk

rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const

Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.

Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.

However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...

``@oli-obk`` any ideas?
This commit is contained in:
Guillaume Gomez 2023-09-21 13:25:39 +02:00 committed by GitHub
commit 208f6ed95c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
76 changed files with 461 additions and 493 deletions

View file

@ -660,12 +660,12 @@ fn push_const_param<'tcx>(tcx: TyCtxt<'tcx>, ct: ty::Const<'tcx>, output: &mut S
}
_ => match ct.ty().kind() {
ty::Int(ity) => {
let bits = ct.eval_bits(tcx, ty::ParamEnv::reveal_all(), ct.ty());
let bits = ct.eval_bits(tcx, ty::ParamEnv::reveal_all());
let val = Integer::from_int_ty(&tcx, *ity).size().sign_extend(bits) as i128;
write!(output, "{val}")
}
ty::Uint(_) => {
let val = ct.eval_bits(tcx, ty::ParamEnv::reveal_all(), ct.ty());
let val = ct.eval_bits(tcx, ty::ParamEnv::reveal_all());
write!(output, "{val}")
}
ty::Bool => {

View file

@ -1098,8 +1098,8 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
InlineAsmOperandRef::Const { string }
}
mir::InlineAsmOperand::SymFn { ref value } => {
let literal = self.monomorphize(value.literal);
if let ty::FnDef(def_id, args) = *literal.ty().kind() {
let const_ = self.monomorphize(value.const_);
if let ty::FnDef(def_id, args) = *const_.ty().kind() {
let instance = ty::Instance::resolve_for_fn_ptr(
bx.tcx(),
ty::ParamEnv::reveal_all(),

View file

@ -13,37 +13,37 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
pub fn eval_mir_constant_to_operand(
&self,
bx: &mut Bx,
constant: &mir::Constant<'tcx>,
constant: &mir::ConstOperand<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
let val = self.eval_mir_constant(constant);
let ty = self.monomorphize(constant.ty());
OperandRef::from_const(bx, val, ty)
}
pub fn eval_mir_constant(&self, constant: &mir::Constant<'tcx>) -> mir::ConstValue<'tcx> {
self.monomorphize(constant.literal)
pub fn eval_mir_constant(&self, constant: &mir::ConstOperand<'tcx>) -> mir::ConstValue<'tcx> {
self.monomorphize(constant.const_)
.eval(self.cx.tcx(), ty::ParamEnv::reveal_all(), Some(constant.span))
.expect("erroneous constant not captured by required_consts")
}
/// This is a convenience helper for `simd_shuffle_indices`. It has the precondition
/// that the given `constant` is an `ConstantKind::Unevaluated` and must be convertible to
/// that the given `constant` is an `Const::Unevaluated` and must be convertible to
/// a `ValTree`. If you want a more general version of this, talk to `wg-const-eval` on zulip.
///
/// Note that this function is cursed, since usually MIR consts should not be evaluated to valtrees!
pub fn eval_unevaluated_mir_constant_to_valtree(
&self,
constant: &mir::Constant<'tcx>,
constant: &mir::ConstOperand<'tcx>,
) -> Result<Option<ty::ValTree<'tcx>>, ErrorHandled> {
let uv = match self.monomorphize(constant.literal) {
mir::ConstantKind::Unevaluated(uv, _) => uv.shrink(),
mir::ConstantKind::Ty(c) => match c.kind() {
let uv = match self.monomorphize(constant.const_) {
mir::Const::Unevaluated(uv, _) => uv.shrink(),
mir::Const::Ty(c) => match c.kind() {
// A constant that came from a const generic but was then used as an argument to old-style
// simd_shuffle (passing as argument instead of as a generic param).
rustc_type_ir::ConstKind::Value(valtree) => return Ok(Some(valtree)),
other => span_bug!(constant.span, "{other:#?}"),
},
// We should never encounter `ConstantKind::Val` unless MIR opts (like const prop) evaluate
// We should never encounter `Const::Val` unless MIR opts (like const prop) evaluate
// a constant and write that value back into `Operand`s. This could happen, but is unlikely.
// Also: all users of `simd_shuffle` are on unstable and already need to take a lot of care
// around intrinsics. For an issue to happen here, it would require a macro expanding to a
@ -65,7 +65,7 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
pub fn simd_shuffle_indices(
&mut self,
bx: &Bx,
constant: &mir::Constant<'tcx>,
constant: &mir::ConstOperand<'tcx>,
) -> (Bx::Value, Ty<'tcx>) {
let ty = self.monomorphize(constant.ty());
let val = self