1
Fork 0

Rollup merge of #95179 - b-naber:eval-in-try-unify, r=lcnr

Try to evaluate in try unify and postpone resolution of constants that contain inference variables

We want code like that in [`ui/const-generics/generic_const_exprs/eval-try-unify.rs`](https://github.com/rust-lang/rust/compare/master...b-naber:eval-in-try-unify?expand=1#diff-8027038201cf07a6c96abf3cbf0b0f4fdd8a64ce6292435f01c8ed995b87fe9b) to compile. To do that we need to try to evaluate constants in `try_unify_abstract_consts`, this requires us to be more careful about what constants we try to resolve, specifically we cannot try to resolve constants that still contain inference variables.

r? `@lcnr`
This commit is contained in:
Dylan DPC 2022-03-25 01:34:30 +01:00 committed by GitHub
commit 1fcb8fc3e0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 283 additions and 287 deletions

View file

@ -188,6 +188,7 @@ pub fn is_const_evaluatable<'cx, 'tcx>(
}
}
#[instrument(skip(tcx), level = "debug")]
fn satisfied_from_param_env<'tcx>(
tcx: TyCtxt<'tcx>,
ct: AbstractConst<'tcx>,
@ -197,14 +198,17 @@ fn satisfied_from_param_env<'tcx>(
match pred.kind().skip_binder() {
ty::PredicateKind::ConstEvaluatable(uv) => {
if let Some(b_ct) = AbstractConst::new(tcx, uv)? {
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
// Try to unify with each subtree in the AbstractConst to allow for
// `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
// predicate for `(N + 1) * 2`
let result =
walk_abstract_const(tcx, b_ct, |b_ct| match try_unify(tcx, ct, b_ct) {
let result = walk_abstract_const(tcx, b_ct, |b_ct| {
match const_unify_ctxt.try_unify(ct, b_ct) {
true => ControlFlow::BREAK,
false => ControlFlow::CONTINUE,
});
}
});
if let ControlFlow::Break(()) = result {
debug!("is_const_evaluatable: abstract_const ~~> ok");
@ -637,11 +641,13 @@ pub(super) fn thir_abstract_const<'tcx>(
pub(super) fn try_unify_abstract_consts<'tcx>(
tcx: TyCtxt<'tcx>,
(a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>),
param_env: ty::ParamEnv<'tcx>,
) -> bool {
(|| {
if let Some(a) = AbstractConst::new(tcx, a)? {
if let Some(b) = AbstractConst::new(tcx, b)? {
return Ok(try_unify(tcx, a, b));
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
return Ok(const_unify_ctxt.try_unify(a, b));
}
}
@ -689,88 +695,115 @@ where
recurse(tcx, ct, &mut f)
}
/// Tries to unify two abstract constants using structural equality.
pub(super) fn try_unify<'tcx>(
struct ConstUnifyCtxt<'tcx> {
tcx: TyCtxt<'tcx>,
mut a: AbstractConst<'tcx>,
mut b: AbstractConst<'tcx>,
) -> bool {
// We substitute generics repeatedly to allow AbstractConsts to unify where a
param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> ConstUnifyCtxt<'tcx> {
// Substitutes generics repeatedly to allow AbstractConsts to unify where a
// ConstKind::Unevalated could be turned into an AbstractConst that would unify e.g.
// Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
while let Node::Leaf(a_ct) = a.root(tcx) {
match AbstractConst::from_const(tcx, a_ct) {
Ok(Some(a_act)) => a = a_act,
Ok(None) => break,
Err(_) => return true,
}
}
while let Node::Leaf(b_ct) = b.root(tcx) {
match AbstractConst::from_const(tcx, b_ct) {
Ok(Some(b_act)) => b = b_act,
Ok(None) => break,
Err(_) => return true,
}
}
match (a.root(tcx), b.root(tcx)) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
if a_ct.ty() != b_ct.ty() {
return false;
}
match (a_ct.val(), b_ct.val()) {
// We can just unify errors with everything to reduce the amount of
// emitted errors here.
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we only allow inference variables if they are equal.
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
// We expand generic anonymous constants at the start of this function, so this
// branch should only be taking when dealing with associated constants, at
// which point directly comparing them seems like the desired behavior.
//
// FIXME(generic_const_exprs): This isn't actually the case.
// We also take this branch for concrete anonymous constants and
// expand generic anonymous constants with concrete substs.
(ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
a_uv == b_uv
}
// FIXME(generic_const_exprs): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
// this, for now we just return false here.
_ => false,
#[inline]
#[instrument(skip(self), level = "debug")]
fn try_replace_substs_in_root(
&self,
mut abstr_const: AbstractConst<'tcx>,
) -> Option<AbstractConst<'tcx>> {
while let Node::Leaf(ct) = abstr_const.root(self.tcx) {
match AbstractConst::from_const(self.tcx, ct) {
Ok(Some(act)) => abstr_const = act,
Ok(None) => break,
Err(_) => return None,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
try_unify(tcx, a.subtree(al), b.subtree(bl))
&& try_unify(tcx, a.subtree(ar), b.subtree(br))
Some(abstr_const)
}
/// Tries to unify two abstract constants using structural equality.
#[instrument(skip(self), level = "debug")]
fn try_unify(&self, a: AbstractConst<'tcx>, b: AbstractConst<'tcx>) -> bool {
let a = if let Some(a) = self.try_replace_substs_in_root(a) {
a
} else {
return true;
};
let b = if let Some(b) = self.try_replace_substs_in_root(b) {
b
} else {
return true;
};
let a_root = a.root(self.tcx);
let b_root = b.root(self.tcx);
debug!(?a_root, ?b_root);
match (a_root, b_root) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
let a_ct = a_ct.eval(self.tcx, self.param_env);
debug!("a_ct evaluated: {:?}", a_ct);
let b_ct = b_ct.eval(self.tcx, self.param_env);
debug!("b_ct evaluated: {:?}", b_ct);
if a_ct.ty() != b_ct.ty() {
return false;
}
match (a_ct.val(), b_ct.val()) {
// We can just unify errors with everything to reduce the amount of
// emitted errors here.
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we only allow inference variables if they are equal.
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
// We expand generic anonymous constants at the start of this function, so this
// branch should only be taking when dealing with associated constants, at
// which point directly comparing them seems like the desired behavior.
//
// FIXME(generic_const_exprs): This isn't actually the case.
// We also take this branch for concrete anonymous constants and
// expand generic anonymous constants with concrete substs.
(ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
a_uv == b_uv
}
// FIXME(generic_const_exprs): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
// this, for now we just return false here.
_ => false,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
self.try_unify(a.subtree(al), b.subtree(bl))
&& self.try_unify(a.subtree(ar), b.subtree(br))
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
self.try_unify(a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
self.try_unify(a.subtree(a_f), b.subtree(b_f))
&& iter::zip(a_args, b_args)
.all(|(&an, &bn)| self.try_unify(a.subtree(an), b.subtree(bn)))
}
(Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
if (a_ty == b_ty) && (a_kind == b_kind) =>
{
self.try_unify(a.subtree(a_operand), b.subtree(b_operand))
}
// use this over `_ => false` to make adding variants to `Node` less error prone
(Node::Cast(..), _)
| (Node::FunctionCall(..), _)
| (Node::UnaryOp(..), _)
| (Node::Binop(..), _)
| (Node::Leaf(..), _) => false,
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
try_unify(tcx, a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
try_unify(tcx, a.subtree(a_f), b.subtree(b_f))
&& iter::zip(a_args, b_args)
.all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn)))
}
(Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
if (a_ty == b_ty) && (a_kind == b_kind) =>
{
try_unify(tcx, a.subtree(a_operand), b.subtree(b_operand))
}
// use this over `_ => false` to make adding variants to `Node` less error prone
(Node::Cast(..), _)
| (Node::FunctionCall(..), _)
| (Node::UnaryOp(..), _)
| (Node::Binop(..), _)
| (Node::Leaf(..), _) => false,
}
}

View file

@ -580,7 +580,11 @@ impl<'a, 'b, 'tcx> FulfillProcessor<'a, 'b, 'tcx> {
if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
(c1.val(), c2.val())
{
if infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
if infcx.try_unify_abstract_consts(
a.shrink(),
b.shrink(),
obligation.param_env,
) {
return ProcessResult::Changed(vec![]);
}
}

View file

@ -862,7 +862,10 @@ pub fn provide(providers: &mut ty::query::Providers) {
ty::WithOptConstParam { did, const_param_did: Some(param_did) },
)
},
try_unify_abstract_consts: const_evaluatable::try_unify_abstract_consts,
try_unify_abstract_consts: |tcx, param_env_and| {
let (param_env, (a, b)) = param_env_and.into_parts();
const_evaluatable::try_unify_abstract_consts(tcx, (a, b), param_env)
},
..*providers
};
}

View file

@ -639,7 +639,11 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
(c1.val(), c2.val())
{
if self.infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
if self.infcx.try_unify_abstract_consts(
a.shrink(),
b.shrink(),
obligation.param_env,
) {
return Ok(EvaluatedToOk);
}
}