rustc_typeck to rustc_hir_analysis
This commit is contained in:
parent
de0b511daa
commit
1fc86a63f4
140 changed files with 101 additions and 102 deletions
|
@ -0,0 +1,441 @@
|
|||
//! # Minimal Specialization
|
||||
//!
|
||||
//! This module contains the checks for sound specialization used when the
|
||||
//! `min_specialization` feature is enabled. This requires that the impl is
|
||||
//! *always applicable*.
|
||||
//!
|
||||
//! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
|
||||
//! that all the bounds of `impl2` are satisfied, and all of the bounds of
|
||||
//! `impl1` are satisfied for some choice of lifetimes then we know that
|
||||
//! `impl1` applies for any choice of lifetimes.
|
||||
//!
|
||||
//! ## Basic approach
|
||||
//!
|
||||
//! To enforce this requirement on specializations we take the following
|
||||
//! approach:
|
||||
//!
|
||||
//! 1. Match up the substs for `impl2` so that the implemented trait and
|
||||
//! self-type match those for `impl1`.
|
||||
//! 2. Check for any direct use of `'static` in the substs of `impl2`.
|
||||
//! 3. Check that all of the generic parameters of `impl1` occur at most once
|
||||
//! in the *unconstrained* substs for `impl2`. A parameter is constrained if
|
||||
//! its value is completely determined by an associated type projection
|
||||
//! predicate.
|
||||
//! 4. Check that all predicates on `impl1` either exist on `impl2` (after
|
||||
//! matching substs), or are well-formed predicates for the trait's type
|
||||
//! arguments.
|
||||
//!
|
||||
//! ## Example
|
||||
//!
|
||||
//! Suppose we have the following always applicable impl:
|
||||
//!
|
||||
//! ```ignore (illustrative)
|
||||
//! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
|
||||
//! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
|
||||
//! ```
|
||||
//!
|
||||
//! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
|
||||
//! constrained to be `<I as Iterator>::Item`, so we check only
|
||||
//! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
|
||||
//! predicates of `impl1` are only `T: Sized`, which is also a predicate of
|
||||
//! `impl2`. So this specialization is sound.
|
||||
//!
|
||||
//! ## Extensions
|
||||
//!
|
||||
//! Unfortunately not all specializations in the standard library are allowed
|
||||
//! by this. So there are two extensions to these rules that allow specializing
|
||||
//! on some traits: that is, using them as bounds on the specializing impl,
|
||||
//! even when they don't occur in the base impl.
|
||||
//!
|
||||
//! ### rustc_specialization_trait
|
||||
//!
|
||||
//! If a trait is always applicable, then it's sound to specialize on it. We
|
||||
//! check trait is always applicable in the same way as impls, except that step
|
||||
//! 4 is now "all predicates on `impl1` are always applicable". We require that
|
||||
//! `specialization` or `min_specialization` is enabled to implement these
|
||||
//! traits.
|
||||
//!
|
||||
//! ### rustc_unsafe_specialization_marker
|
||||
//!
|
||||
//! There are also some specialization on traits with no methods, including the
|
||||
//! stable `FusedIterator` trait. We allow marking marker traits with an
|
||||
//! unstable attribute that means we ignore them in point 3 of the checks
|
||||
//! above. This is unsound, in the sense that the specialized impl may be used
|
||||
//! when it doesn't apply, but we allow it in the short term since it can't
|
||||
//! cause use after frees with purely safe code in the same way as specializing
|
||||
//! on traits with methods can.
|
||||
|
||||
use crate::constrained_generic_params as cgp;
|
||||
use crate::errors::SubstsOnOverriddenImpl;
|
||||
|
||||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_hir::def_id::{DefId, LocalDefId};
|
||||
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
|
||||
use rustc_infer::infer::TyCtxtInferExt;
|
||||
use rustc_infer::traits::specialization_graph::Node;
|
||||
use rustc_middle::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
|
||||
use rustc_middle::ty::trait_def::TraitSpecializationKind;
|
||||
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
|
||||
use rustc_span::Span;
|
||||
use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
|
||||
use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
|
||||
use rustc_trait_selection::traits::{self, translate_substs, wf, ObligationCtxt};
|
||||
|
||||
pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
|
||||
if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
|
||||
check_always_applicable(tcx, impl_def_id, node);
|
||||
}
|
||||
}
|
||||
|
||||
fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId) -> Option<Node> {
|
||||
let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
|
||||
let trait_def = tcx.trait_def(trait_ref.def_id);
|
||||
|
||||
let impl2_node = trait_def.ancestors(tcx, impl1_def_id.to_def_id()).ok()?.nth(1)?;
|
||||
|
||||
let always_applicable_trait =
|
||||
matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
|
||||
if impl2_node.is_from_trait() && !always_applicable_trait {
|
||||
// Implementing a normal trait isn't a specialization.
|
||||
return None;
|
||||
}
|
||||
Some(impl2_node)
|
||||
}
|
||||
|
||||
/// Check that `impl1` is a sound specialization
|
||||
fn check_always_applicable(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node) {
|
||||
if let Some((impl1_substs, impl2_substs)) = get_impl_substs(tcx, impl1_def_id, impl2_node) {
|
||||
let impl2_def_id = impl2_node.def_id();
|
||||
debug!(
|
||||
"check_always_applicable(\nimpl1_def_id={:?},\nimpl2_def_id={:?},\nimpl2_substs={:?}\n)",
|
||||
impl1_def_id, impl2_def_id, impl2_substs
|
||||
);
|
||||
|
||||
let parent_substs = if impl2_node.is_from_trait() {
|
||||
impl2_substs.to_vec()
|
||||
} else {
|
||||
unconstrained_parent_impl_substs(tcx, impl2_def_id, impl2_substs)
|
||||
};
|
||||
|
||||
let span = tcx.def_span(impl1_def_id);
|
||||
check_static_lifetimes(tcx, &parent_substs, span);
|
||||
check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
|
||||
check_predicates(tcx, impl1_def_id, impl1_substs, impl2_node, impl2_substs, span);
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
|
||||
/// substitutions `(S1, S2)` that equate their trait references. The returned
|
||||
/// types are expressed in terms of the generics of `impl1`.
|
||||
///
|
||||
/// Example
|
||||
///
|
||||
/// impl<A, B> Foo<A> for B { /* impl2 */ }
|
||||
/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
|
||||
///
|
||||
/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
|
||||
fn get_impl_substs<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl1_def_id: LocalDefId,
|
||||
impl2_node: Node,
|
||||
) -> Option<(SubstsRef<'tcx>, SubstsRef<'tcx>)> {
|
||||
tcx.infer_ctxt().enter(|ref infcx| {
|
||||
let ocx = ObligationCtxt::new(infcx);
|
||||
let param_env = tcx.param_env(impl1_def_id);
|
||||
let impl1_hir_id = tcx.hir().local_def_id_to_hir_id(impl1_def_id);
|
||||
|
||||
let assumed_wf_types =
|
||||
ocx.assumed_wf_types(param_env, tcx.def_span(impl1_def_id), impl1_def_id);
|
||||
|
||||
let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id.to_def_id());
|
||||
let impl2_substs =
|
||||
translate_substs(infcx, param_env, impl1_def_id.to_def_id(), impl1_substs, impl2_node);
|
||||
|
||||
let errors = ocx.select_all_or_error();
|
||||
if !errors.is_empty() {
|
||||
ocx.infcx.report_fulfillment_errors(&errors, None, false);
|
||||
return None;
|
||||
}
|
||||
|
||||
let implied_bounds = infcx.implied_bounds_tys(param_env, impl1_hir_id, assumed_wf_types);
|
||||
let outlives_env = OutlivesEnvironment::with_bounds(param_env, Some(infcx), implied_bounds);
|
||||
infcx.check_region_obligations_and_report_errors(impl1_def_id, &outlives_env);
|
||||
let Ok(impl2_substs) = infcx.fully_resolve(impl2_substs) else {
|
||||
let span = tcx.def_span(impl1_def_id);
|
||||
tcx.sess.emit_err(SubstsOnOverriddenImpl { span });
|
||||
return None;
|
||||
};
|
||||
Some((impl1_substs, impl2_substs))
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns a list of all of the unconstrained subst of the given impl.
|
||||
///
|
||||
/// For example given the impl:
|
||||
///
|
||||
/// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
|
||||
///
|
||||
/// This would return the substs corresponding to `['a, I]`, because knowing
|
||||
/// `'a` and `I` determines the value of `T`.
|
||||
fn unconstrained_parent_impl_substs<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl_def_id: DefId,
|
||||
impl_substs: SubstsRef<'tcx>,
|
||||
) -> Vec<GenericArg<'tcx>> {
|
||||
let impl_generic_predicates = tcx.predicates_of(impl_def_id);
|
||||
let mut unconstrained_parameters = FxHashSet::default();
|
||||
let mut constrained_params = FxHashSet::default();
|
||||
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
|
||||
|
||||
// Unfortunately the functions in `constrained_generic_parameters` don't do
|
||||
// what we want here. We want only a list of constrained parameters while
|
||||
// the functions in `cgp` add the constrained parameters to a list of
|
||||
// unconstrained parameters.
|
||||
for (predicate, _) in impl_generic_predicates.predicates.iter() {
|
||||
if let ty::PredicateKind::Projection(proj) = predicate.kind().skip_binder() {
|
||||
let projection_ty = proj.projection_ty;
|
||||
let projected_ty = proj.term;
|
||||
|
||||
let unbound_trait_ref = projection_ty.trait_ref(tcx);
|
||||
if Some(unbound_trait_ref) == impl_trait_ref {
|
||||
continue;
|
||||
}
|
||||
|
||||
unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
|
||||
|
||||
for param in cgp::parameters_for(&projected_ty, false) {
|
||||
if !unconstrained_parameters.contains(¶m) {
|
||||
constrained_params.insert(param.0);
|
||||
}
|
||||
}
|
||||
|
||||
unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
|
||||
}
|
||||
}
|
||||
|
||||
impl_substs
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
|
||||
.map(|(_, arg)| arg)
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Check that parameters of the derived impl don't occur more than once in the
|
||||
/// equated substs of the base impl.
|
||||
///
|
||||
/// For example forbid the following:
|
||||
///
|
||||
/// impl<A> Tr for A { }
|
||||
/// impl<B> Tr for (B, B) { }
|
||||
///
|
||||
/// Note that only consider the unconstrained parameters of the base impl:
|
||||
///
|
||||
/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
|
||||
/// impl<T> Tr<T> for Vec<T> { }
|
||||
///
|
||||
/// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
|
||||
/// but `S` is constrained in the parent impl, so `parent_substs` is only
|
||||
/// `[Vec<T>]`. This means we allow this impl.
|
||||
fn check_duplicate_params<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl1_substs: SubstsRef<'tcx>,
|
||||
parent_substs: &Vec<GenericArg<'tcx>>,
|
||||
span: Span,
|
||||
) {
|
||||
let mut base_params = cgp::parameters_for(parent_substs, true);
|
||||
base_params.sort_by_key(|param| param.0);
|
||||
if let (_, [duplicate, ..]) = base_params.partition_dedup() {
|
||||
let param = impl1_substs[duplicate.0 as usize];
|
||||
tcx.sess
|
||||
.struct_span_err(span, &format!("specializing impl repeats parameter `{}`", param))
|
||||
.emit();
|
||||
}
|
||||
}
|
||||
|
||||
/// Check that `'static` lifetimes are not introduced by the specializing impl.
|
||||
///
|
||||
/// For example forbid the following:
|
||||
///
|
||||
/// impl<A> Tr for A { }
|
||||
/// impl Tr for &'static i32 { }
|
||||
fn check_static_lifetimes<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
parent_substs: &Vec<GenericArg<'tcx>>,
|
||||
span: Span,
|
||||
) {
|
||||
if tcx.any_free_region_meets(parent_substs, |r| r.is_static()) {
|
||||
tcx.sess.struct_span_err(span, "cannot specialize on `'static` lifetime").emit();
|
||||
}
|
||||
}
|
||||
|
||||
/// Check whether predicates on the specializing impl (`impl1`) are allowed.
|
||||
///
|
||||
/// Each predicate `P` must be:
|
||||
///
|
||||
/// * global (not reference any parameters)
|
||||
/// * `T: Tr` predicate where `Tr` is an always-applicable trait
|
||||
/// * on the base `impl impl2`
|
||||
/// * Currently this check is done using syntactic equality, which is
|
||||
/// conservative but generally sufficient.
|
||||
/// * a well-formed predicate of a type argument of the trait being implemented,
|
||||
/// including the `Self`-type.
|
||||
fn check_predicates<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl1_def_id: LocalDefId,
|
||||
impl1_substs: SubstsRef<'tcx>,
|
||||
impl2_node: Node,
|
||||
impl2_substs: SubstsRef<'tcx>,
|
||||
span: Span,
|
||||
) {
|
||||
let instantiated = tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs);
|
||||
let impl1_predicates: Vec<_> = traits::elaborate_predicates_with_span(
|
||||
tcx,
|
||||
std::iter::zip(
|
||||
instantiated.predicates,
|
||||
// Don't drop predicates (unsound!) because `spans` is too short
|
||||
instantiated.spans.into_iter().chain(std::iter::repeat(span)),
|
||||
),
|
||||
)
|
||||
.map(|obligation| (obligation.predicate, obligation.cause.span))
|
||||
.collect();
|
||||
|
||||
let mut impl2_predicates = if impl2_node.is_from_trait() {
|
||||
// Always applicable traits have to be always applicable without any
|
||||
// assumptions.
|
||||
Vec::new()
|
||||
} else {
|
||||
traits::elaborate_predicates(
|
||||
tcx,
|
||||
tcx.predicates_of(impl2_node.def_id())
|
||||
.instantiate(tcx, impl2_substs)
|
||||
.predicates
|
||||
.into_iter(),
|
||||
)
|
||||
.map(|obligation| obligation.predicate)
|
||||
.collect()
|
||||
};
|
||||
debug!(
|
||||
"check_always_applicable(\nimpl1_predicates={:?},\nimpl2_predicates={:?}\n)",
|
||||
impl1_predicates, impl2_predicates,
|
||||
);
|
||||
|
||||
// Since impls of always applicable traits don't get to assume anything, we
|
||||
// can also assume their supertraits apply.
|
||||
//
|
||||
// For example, we allow:
|
||||
//
|
||||
// #[rustc_specialization_trait]
|
||||
// trait AlwaysApplicable: Debug { }
|
||||
//
|
||||
// impl<T> Tr for T { }
|
||||
// impl<T: AlwaysApplicable> Tr for T { }
|
||||
//
|
||||
// Specializing on `AlwaysApplicable` allows also specializing on `Debug`
|
||||
// which is sound because we forbid impls like the following
|
||||
//
|
||||
// impl<D: Debug> AlwaysApplicable for D { }
|
||||
let always_applicable_traits = impl1_predicates.iter().copied().filter(|&(predicate, _)| {
|
||||
matches!(
|
||||
trait_predicate_kind(tcx, predicate),
|
||||
Some(TraitSpecializationKind::AlwaysApplicable)
|
||||
)
|
||||
});
|
||||
|
||||
// Include the well-formed predicates of the type parameters of the impl.
|
||||
for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().substs {
|
||||
tcx.infer_ctxt().enter(|ref infcx| {
|
||||
let obligations = wf::obligations(
|
||||
infcx,
|
||||
tcx.param_env(impl1_def_id),
|
||||
tcx.hir().local_def_id_to_hir_id(impl1_def_id),
|
||||
0,
|
||||
arg,
|
||||
span,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
assert!(!obligations.needs_infer());
|
||||
impl2_predicates.extend(
|
||||
traits::elaborate_obligations(tcx, obligations)
|
||||
.map(|obligation| obligation.predicate),
|
||||
)
|
||||
})
|
||||
}
|
||||
impl2_predicates.extend(
|
||||
traits::elaborate_predicates_with_span(tcx, always_applicable_traits)
|
||||
.map(|obligation| obligation.predicate),
|
||||
);
|
||||
|
||||
for (predicate, span) in impl1_predicates {
|
||||
if !impl2_predicates.contains(&predicate) {
|
||||
check_specialization_on(tcx, predicate, span)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, predicate: ty::Predicate<'tcx>, span: Span) {
|
||||
debug!("can_specialize_on(predicate = {:?})", predicate);
|
||||
match predicate.kind().skip_binder() {
|
||||
// Global predicates are either always true or always false, so we
|
||||
// are fine to specialize on.
|
||||
_ if predicate.is_global() => (),
|
||||
// We allow specializing on explicitly marked traits with no associated
|
||||
// items.
|
||||
ty::PredicateKind::Trait(ty::TraitPredicate {
|
||||
trait_ref,
|
||||
constness: ty::BoundConstness::NotConst,
|
||||
polarity: _,
|
||||
}) => {
|
||||
if !matches!(
|
||||
trait_predicate_kind(tcx, predicate),
|
||||
Some(TraitSpecializationKind::Marker)
|
||||
) {
|
||||
tcx.sess
|
||||
.struct_span_err(
|
||||
span,
|
||||
&format!(
|
||||
"cannot specialize on trait `{}`",
|
||||
tcx.def_path_str(trait_ref.def_id),
|
||||
),
|
||||
)
|
||||
.emit();
|
||||
}
|
||||
}
|
||||
ty::PredicateKind::Projection(ty::ProjectionPredicate { projection_ty, term }) => {
|
||||
tcx.sess
|
||||
.struct_span_err(
|
||||
span,
|
||||
&format!("cannot specialize on associated type `{projection_ty} == {term}`",),
|
||||
)
|
||||
.emit();
|
||||
}
|
||||
_ => {
|
||||
tcx.sess
|
||||
.struct_span_err(span, &format!("cannot specialize on predicate `{}`", predicate))
|
||||
.emit();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn trait_predicate_kind<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
predicate: ty::Predicate<'tcx>,
|
||||
) -> Option<TraitSpecializationKind> {
|
||||
match predicate.kind().skip_binder() {
|
||||
ty::PredicateKind::Trait(ty::TraitPredicate { trait_ref, constness: _, polarity: _ }) => {
|
||||
Some(tcx.trait_def(trait_ref.def_id).specialization_kind)
|
||||
}
|
||||
ty::PredicateKind::RegionOutlives(_)
|
||||
| ty::PredicateKind::TypeOutlives(_)
|
||||
| ty::PredicateKind::Projection(_)
|
||||
| ty::PredicateKind::WellFormed(_)
|
||||
| ty::PredicateKind::Subtype(_)
|
||||
| ty::PredicateKind::Coerce(_)
|
||||
| ty::PredicateKind::ObjectSafe(_)
|
||||
| ty::PredicateKind::ClosureKind(..)
|
||||
| ty::PredicateKind::ConstEvaluatable(..)
|
||||
| ty::PredicateKind::ConstEquate(..)
|
||||
| ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue