rustc_typeck to rustc_hir_analysis
This commit is contained in:
parent
de0b511daa
commit
1fc86a63f4
140 changed files with 101 additions and 102 deletions
221
compiler/rustc_hir_analysis/src/constrained_generic_params.rs
Normal file
221
compiler/rustc_hir_analysis/src/constrained_generic_params.rs
Normal file
|
@ -0,0 +1,221 @@
|
|||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_span::source_map::Span;
|
||||
use std::ops::ControlFlow;
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
|
||||
pub struct Parameter(pub u32);
|
||||
|
||||
impl From<ty::ParamTy> for Parameter {
|
||||
fn from(param: ty::ParamTy) -> Self {
|
||||
Parameter(param.index)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ty::EarlyBoundRegion> for Parameter {
|
||||
fn from(param: ty::EarlyBoundRegion) -> Self {
|
||||
Parameter(param.index)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ty::ParamConst> for Parameter {
|
||||
fn from(param: ty::ParamConst) -> Self {
|
||||
Parameter(param.index)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the set of parameters constrained by the impl header.
|
||||
pub fn parameters_for_impl<'tcx>(
|
||||
impl_self_ty: Ty<'tcx>,
|
||||
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
|
||||
) -> FxHashSet<Parameter> {
|
||||
let vec = match impl_trait_ref {
|
||||
Some(tr) => parameters_for(&tr, false),
|
||||
None => parameters_for(&impl_self_ty, false),
|
||||
};
|
||||
vec.into_iter().collect()
|
||||
}
|
||||
|
||||
/// If `include_nonconstraining` is false, returns the list of parameters that are
|
||||
/// constrained by `t` - i.e., the value of each parameter in the list is
|
||||
/// uniquely determined by `t` (see RFC 447). If it is true, return the list
|
||||
/// of parameters whose values are needed in order to constrain `ty` - these
|
||||
/// differ, with the latter being a superset, in the presence of projections.
|
||||
pub fn parameters_for<'tcx>(
|
||||
t: &impl TypeVisitable<'tcx>,
|
||||
include_nonconstraining: bool,
|
||||
) -> Vec<Parameter> {
|
||||
let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining };
|
||||
t.visit_with(&mut collector);
|
||||
collector.parameters
|
||||
}
|
||||
|
||||
struct ParameterCollector {
|
||||
parameters: Vec<Parameter>,
|
||||
include_nonconstraining: bool,
|
||||
}
|
||||
|
||||
impl<'tcx> TypeVisitor<'tcx> for ParameterCollector {
|
||||
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
|
||||
match *t.kind() {
|
||||
ty::Projection(..) if !self.include_nonconstraining => {
|
||||
// projections are not injective
|
||||
return ControlFlow::CONTINUE;
|
||||
}
|
||||
ty::Param(data) => {
|
||||
self.parameters.push(Parameter::from(data));
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
t.super_visit_with(self)
|
||||
}
|
||||
|
||||
fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
|
||||
if let ty::ReEarlyBound(data) = *r {
|
||||
self.parameters.push(Parameter::from(data));
|
||||
}
|
||||
ControlFlow::CONTINUE
|
||||
}
|
||||
|
||||
fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
|
||||
match c.kind() {
|
||||
ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
|
||||
// Constant expressions are not injective
|
||||
return c.ty().visit_with(self);
|
||||
}
|
||||
ty::ConstKind::Param(data) => {
|
||||
self.parameters.push(Parameter::from(data));
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
c.super_visit_with(self)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn identify_constrained_generic_params<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
predicates: ty::GenericPredicates<'tcx>,
|
||||
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
|
||||
input_parameters: &mut FxHashSet<Parameter>,
|
||||
) {
|
||||
let mut predicates = predicates.predicates.to_vec();
|
||||
setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters);
|
||||
}
|
||||
|
||||
/// Order the predicates in `predicates` such that each parameter is
|
||||
/// constrained before it is used, if that is possible, and add the
|
||||
/// parameters so constrained to `input_parameters`. For example,
|
||||
/// imagine the following impl:
|
||||
/// ```ignore (illustrative)
|
||||
/// impl<T: Debug, U: Iterator<Item = T>> Trait for U
|
||||
/// ```
|
||||
/// The impl's predicates are collected from left to right. Ignoring
|
||||
/// the implicit `Sized` bounds, these are
|
||||
/// * T: Debug
|
||||
/// * U: Iterator
|
||||
/// * <U as Iterator>::Item = T -- a desugared ProjectionPredicate
|
||||
///
|
||||
/// When we, for example, try to go over the trait-reference
|
||||
/// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
|
||||
/// variables and match them with the impl trait-ref, so we know that
|
||||
/// `$U = IntoIter<u32>`.
|
||||
///
|
||||
/// However, in order to process the `$T: Debug` predicate, we must first
|
||||
/// know the value of `$T` - which is only given by processing the
|
||||
/// projection. As we occasionally want to process predicates in a single
|
||||
/// pass, we want the projection to come first. In fact, as projections
|
||||
/// can (acyclically) depend on one another - see RFC447 for details - we
|
||||
/// need to topologically sort them.
|
||||
///
|
||||
/// We *do* have to be somewhat careful when projection targets contain
|
||||
/// projections themselves, for example in
|
||||
/// impl<S,U,V,W> Trait for U where
|
||||
/// /* 0 */ S: Iterator<Item = U>,
|
||||
/// /* - */ U: Iterator,
|
||||
/// /* 1 */ <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
|
||||
/// /* 2 */ W: Iterator<Item = V>
|
||||
/// /* 3 */ V: Debug
|
||||
/// we have to evaluate the projections in the order I wrote them:
|
||||
/// `V: Debug` requires `V` to be evaluated. The only projection that
|
||||
/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
|
||||
/// as it is only contained within a projection), but that requires `W`
|
||||
/// which is determined by 1, which requires `U`, that is determined
|
||||
/// by 0. I should probably pick a less tangled example, but I can't
|
||||
/// think of any.
|
||||
pub fn setup_constraining_predicates<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
predicates: &mut [(ty::Predicate<'tcx>, Span)],
|
||||
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
|
||||
input_parameters: &mut FxHashSet<Parameter>,
|
||||
) {
|
||||
// The canonical way of doing the needed topological sort
|
||||
// would be a DFS, but getting the graph and its ownership
|
||||
// right is annoying, so I am using an in-place fixed-point iteration,
|
||||
// which is `O(nt)` where `t` is the depth of type-parameter constraints,
|
||||
// remembering that `t` should be less than 7 in practice.
|
||||
//
|
||||
// Basically, I iterate over all projections and swap every
|
||||
// "ready" projection to the start of the list, such that
|
||||
// all of the projections before `i` are topologically sorted
|
||||
// and constrain all the parameters in `input_parameters`.
|
||||
//
|
||||
// In the example, `input_parameters` starts by containing `U` - which
|
||||
// is constrained by the trait-ref - and so on the first pass we
|
||||
// observe that `<U as Iterator>::Item = T` is a "ready" projection that
|
||||
// constrains `T` and swap it to front. As it is the sole projection,
|
||||
// no more swaps can take place afterwards, with the result being
|
||||
// * <U as Iterator>::Item = T
|
||||
// * T: Debug
|
||||
// * U: Iterator
|
||||
debug!(
|
||||
"setup_constraining_predicates: predicates={:?} \
|
||||
impl_trait_ref={:?} input_parameters={:?}",
|
||||
predicates, impl_trait_ref, input_parameters
|
||||
);
|
||||
let mut i = 0;
|
||||
let mut changed = true;
|
||||
while changed {
|
||||
changed = false;
|
||||
|
||||
for j in i..predicates.len() {
|
||||
// Note that we don't have to care about binders here,
|
||||
// as the impl trait ref never contains any late-bound regions.
|
||||
if let ty::PredicateKind::Projection(projection) = predicates[j].0.kind().skip_binder()
|
||||
{
|
||||
// Special case: watch out for some kind of sneaky attempt
|
||||
// to project out an associated type defined by this very
|
||||
// trait.
|
||||
let unbound_trait_ref = projection.projection_ty.trait_ref(tcx);
|
||||
if Some(unbound_trait_ref) == impl_trait_ref {
|
||||
continue;
|
||||
}
|
||||
|
||||
// A projection depends on its input types and determines its output
|
||||
// type. For example, if we have
|
||||
// `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
|
||||
// Then the projection only applies if `T` is known, but it still
|
||||
// does not determine `U`.
|
||||
let inputs = parameters_for(&projection.projection_ty, true);
|
||||
let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p));
|
||||
if !relies_only_on_inputs {
|
||||
continue;
|
||||
}
|
||||
input_parameters.extend(parameters_for(&projection.term, false));
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
// fancy control flow to bypass borrow checker
|
||||
predicates.swap(i, j);
|
||||
i += 1;
|
||||
changed = true;
|
||||
}
|
||||
debug!(
|
||||
"setup_constraining_predicates: predicates={:?} \
|
||||
i={} impl_trait_ref={:?} input_parameters={:?}",
|
||||
predicates, i, impl_trait_ref, input_parameters
|
||||
);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue