rustc_typeck to rustc_hir_analysis
This commit is contained in:
parent
de0b511daa
commit
1fc86a63f4
140 changed files with 101 additions and 102 deletions
531
compiler/rustc_hir_analysis/src/check/intrinsicck.rs
Normal file
531
compiler/rustc_hir_analysis/src/check/intrinsicck.rs
Normal file
|
@ -0,0 +1,531 @@
|
|||
use rustc_ast::InlineAsmTemplatePiece;
|
||||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_errors::struct_span_err;
|
||||
use rustc_hir as hir;
|
||||
use rustc_index::vec::Idx;
|
||||
use rustc_middle::ty::layout::{LayoutError, SizeSkeleton};
|
||||
use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitable, UintTy};
|
||||
use rustc_session::lint;
|
||||
use rustc_span::{Span, Symbol, DUMMY_SP};
|
||||
use rustc_target::abi::{Pointer, VariantIdx};
|
||||
use rustc_target::asm::{InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType};
|
||||
|
||||
use super::FnCtxt;
|
||||
|
||||
/// If the type is `Option<T>`, it will return `T`, otherwise
|
||||
/// the type itself. Works on most `Option`-like types.
|
||||
fn unpack_option_like<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
|
||||
let ty::Adt(def, substs) = *ty.kind() else { return ty };
|
||||
|
||||
if def.variants().len() == 2 && !def.repr().c() && def.repr().int.is_none() {
|
||||
let data_idx;
|
||||
|
||||
let one = VariantIdx::new(1);
|
||||
let zero = VariantIdx::new(0);
|
||||
|
||||
if def.variant(zero).fields.is_empty() {
|
||||
data_idx = one;
|
||||
} else if def.variant(one).fields.is_empty() {
|
||||
data_idx = zero;
|
||||
} else {
|
||||
return ty;
|
||||
}
|
||||
|
||||
if def.variant(data_idx).fields.len() == 1 {
|
||||
return def.variant(data_idx).fields[0].ty(tcx, substs);
|
||||
}
|
||||
}
|
||||
|
||||
ty
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
||||
pub fn check_transmute(&self, span: Span, from: Ty<'tcx>, to: Ty<'tcx>) {
|
||||
let convert = |ty: Ty<'tcx>| {
|
||||
let ty = self.resolve_vars_if_possible(ty);
|
||||
let ty = self.tcx.normalize_erasing_regions(self.param_env, ty);
|
||||
(SizeSkeleton::compute(ty, self.tcx, self.param_env), ty)
|
||||
};
|
||||
let (sk_from, from) = convert(from);
|
||||
let (sk_to, to) = convert(to);
|
||||
|
||||
// Check for same size using the skeletons.
|
||||
if let (Ok(sk_from), Ok(sk_to)) = (sk_from, sk_to) {
|
||||
if sk_from.same_size(sk_to) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Special-case transmuting from `typeof(function)` and
|
||||
// `Option<typeof(function)>` to present a clearer error.
|
||||
let from = unpack_option_like(self.tcx, from);
|
||||
if let (&ty::FnDef(..), SizeSkeleton::Known(size_to)) = (from.kind(), sk_to) && size_to == Pointer.size(&self.tcx) {
|
||||
struct_span_err!(self.tcx.sess, span, E0591, "can't transmute zero-sized type")
|
||||
.note(&format!("source type: {from}"))
|
||||
.note(&format!("target type: {to}"))
|
||||
.help("cast with `as` to a pointer instead")
|
||||
.emit();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Try to display a sensible error with as much information as possible.
|
||||
let skeleton_string = |ty: Ty<'tcx>, sk| match sk {
|
||||
Ok(SizeSkeleton::Known(size)) => format!("{} bits", size.bits()),
|
||||
Ok(SizeSkeleton::Pointer { tail, .. }) => format!("pointer to `{tail}`"),
|
||||
Err(LayoutError::Unknown(bad)) => {
|
||||
if bad == ty {
|
||||
"this type does not have a fixed size".to_owned()
|
||||
} else {
|
||||
format!("size can vary because of {bad}")
|
||||
}
|
||||
}
|
||||
Err(err) => err.to_string(),
|
||||
};
|
||||
|
||||
let mut err = struct_span_err!(
|
||||
self.tcx.sess,
|
||||
span,
|
||||
E0512,
|
||||
"cannot transmute between types of different sizes, \
|
||||
or dependently-sized types"
|
||||
);
|
||||
if from == to {
|
||||
err.note(&format!("`{from}` does not have a fixed size"));
|
||||
} else {
|
||||
err.note(&format!("source type: `{}` ({})", from, skeleton_string(from, sk_from)))
|
||||
.note(&format!("target type: `{}` ({})", to, skeleton_string(to, sk_to)));
|
||||
}
|
||||
err.emit();
|
||||
}
|
||||
}
|
||||
|
||||
pub struct InlineAsmCtxt<'a, 'tcx> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
get_operand_ty: Box<dyn Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a>,
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
|
||||
pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self {
|
||||
InlineAsmCtxt {
|
||||
tcx,
|
||||
param_env: ty::ParamEnv::empty(),
|
||||
get_operand_ty: Box::new(|e| bug!("asm operand in global asm: {e:?}")),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_in_fn(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
get_operand_ty: impl Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a,
|
||||
) -> Self {
|
||||
InlineAsmCtxt { tcx, param_env, get_operand_ty: Box::new(get_operand_ty) }
|
||||
}
|
||||
|
||||
// FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()`
|
||||
fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
|
||||
// Type still may have region variables, but `Sized` does not depend
|
||||
// on those, so just erase them before querying.
|
||||
if ty.is_sized(self.tcx.at(DUMMY_SP), self.param_env) {
|
||||
return true;
|
||||
}
|
||||
if let ty::Foreign(..) = ty.kind() {
|
||||
return true;
|
||||
}
|
||||
false
|
||||
}
|
||||
|
||||
fn check_asm_operand_type(
|
||||
&self,
|
||||
idx: usize,
|
||||
reg: InlineAsmRegOrRegClass,
|
||||
expr: &'tcx hir::Expr<'tcx>,
|
||||
template: &[InlineAsmTemplatePiece],
|
||||
is_input: bool,
|
||||
tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
|
||||
target_features: &FxHashSet<Symbol>,
|
||||
) -> Option<InlineAsmType> {
|
||||
let ty = (self.get_operand_ty)(expr);
|
||||
if ty.has_infer_types_or_consts() {
|
||||
bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
|
||||
}
|
||||
let asm_ty_isize = match self.tcx.sess.target.pointer_width {
|
||||
16 => InlineAsmType::I16,
|
||||
32 => InlineAsmType::I32,
|
||||
64 => InlineAsmType::I64,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let asm_ty = match *ty.kind() {
|
||||
// `!` is allowed for input but not for output (issue #87802)
|
||||
ty::Never if is_input => return None,
|
||||
ty::Error(_) => return None,
|
||||
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8),
|
||||
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16),
|
||||
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32),
|
||||
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64),
|
||||
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128),
|
||||
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize),
|
||||
ty::Float(FloatTy::F32) => Some(InlineAsmType::F32),
|
||||
ty::Float(FloatTy::F64) => Some(InlineAsmType::F64),
|
||||
ty::FnPtr(_) => Some(asm_ty_isize),
|
||||
ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if self.is_thin_ptr_ty(ty) => {
|
||||
Some(asm_ty_isize)
|
||||
}
|
||||
ty::Adt(adt, substs) if adt.repr().simd() => {
|
||||
let fields = &adt.non_enum_variant().fields;
|
||||
let elem_ty = fields[0].ty(self.tcx, substs);
|
||||
match elem_ty.kind() {
|
||||
ty::Never | ty::Error(_) => return None,
|
||||
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => {
|
||||
Some(InlineAsmType::VecI8(fields.len() as u64))
|
||||
}
|
||||
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => {
|
||||
Some(InlineAsmType::VecI16(fields.len() as u64))
|
||||
}
|
||||
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => {
|
||||
Some(InlineAsmType::VecI32(fields.len() as u64))
|
||||
}
|
||||
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => {
|
||||
Some(InlineAsmType::VecI64(fields.len() as u64))
|
||||
}
|
||||
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
|
||||
Some(InlineAsmType::VecI128(fields.len() as u64))
|
||||
}
|
||||
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
|
||||
Some(match self.tcx.sess.target.pointer_width {
|
||||
16 => InlineAsmType::VecI16(fields.len() as u64),
|
||||
32 => InlineAsmType::VecI32(fields.len() as u64),
|
||||
64 => InlineAsmType::VecI64(fields.len() as u64),
|
||||
_ => unreachable!(),
|
||||
})
|
||||
}
|
||||
ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)),
|
||||
ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
ty::Infer(_) => unreachable!(),
|
||||
_ => None,
|
||||
};
|
||||
let Some(asm_ty) = asm_ty else {
|
||||
let msg = &format!("cannot use value of type `{ty}` for inline assembly");
|
||||
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
|
||||
err.note(
|
||||
"only integers, floats, SIMD vectors, pointers and function pointers \
|
||||
can be used as arguments for inline assembly",
|
||||
);
|
||||
err.emit();
|
||||
return None;
|
||||
};
|
||||
|
||||
// Check that the type implements Copy. The only case where this can
|
||||
// possibly fail is for SIMD types which don't #[derive(Copy)].
|
||||
if !ty.is_copy_modulo_regions(self.tcx.at(expr.span), self.param_env) {
|
||||
let msg = "arguments for inline assembly must be copyable";
|
||||
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
|
||||
err.note(&format!("`{ty}` does not implement the Copy trait"));
|
||||
err.emit();
|
||||
}
|
||||
|
||||
// Ideally we wouldn't need to do this, but LLVM's register allocator
|
||||
// really doesn't like it when tied operands have different types.
|
||||
//
|
||||
// This is purely an LLVM limitation, but we have to live with it since
|
||||
// there is no way to hide this with implicit conversions.
|
||||
//
|
||||
// For the purposes of this check we only look at the `InlineAsmType`,
|
||||
// which means that pointers and integers are treated as identical (modulo
|
||||
// size).
|
||||
if let Some((in_expr, Some(in_asm_ty))) = tied_input {
|
||||
if in_asm_ty != asm_ty {
|
||||
let msg = "incompatible types for asm inout argument";
|
||||
let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg);
|
||||
|
||||
let in_expr_ty = (self.get_operand_ty)(in_expr);
|
||||
err.span_label(in_expr.span, &format!("type `{in_expr_ty}`"));
|
||||
err.span_label(expr.span, &format!("type `{ty}`"));
|
||||
err.note(
|
||||
"asm inout arguments must have the same type, \
|
||||
unless they are both pointers or integers of the same size",
|
||||
);
|
||||
err.emit();
|
||||
}
|
||||
|
||||
// All of the later checks have already been done on the input, so
|
||||
// let's not emit errors and warnings twice.
|
||||
return Some(asm_ty);
|
||||
}
|
||||
|
||||
// Check the type against the list of types supported by the selected
|
||||
// register class.
|
||||
let asm_arch = self.tcx.sess.asm_arch.unwrap();
|
||||
let reg_class = reg.reg_class();
|
||||
let supported_tys = reg_class.supported_types(asm_arch);
|
||||
let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
|
||||
let msg = &format!("type `{ty}` cannot be used with this register class");
|
||||
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
|
||||
let supported_tys: Vec<_> =
|
||||
supported_tys.iter().map(|(t, _)| t.to_string()).collect();
|
||||
err.note(&format!(
|
||||
"register class `{}` supports these types: {}",
|
||||
reg_class.name(),
|
||||
supported_tys.join(", "),
|
||||
));
|
||||
if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
|
||||
err.help(&format!(
|
||||
"consider using the `{}` register class instead",
|
||||
suggest.name()
|
||||
));
|
||||
}
|
||||
err.emit();
|
||||
return Some(asm_ty);
|
||||
};
|
||||
|
||||
// Check whether the selected type requires a target feature. Note that
|
||||
// this is different from the feature check we did earlier. While the
|
||||
// previous check checked that this register class is usable at all
|
||||
// with the currently enabled features, some types may only be usable
|
||||
// with a register class when a certain feature is enabled. We check
|
||||
// this here since it depends on the results of typeck.
|
||||
//
|
||||
// Also note that this check isn't run when the operand type is never
|
||||
// (!). In that case we still need the earlier check to verify that the
|
||||
// register class is usable at all.
|
||||
if let Some(feature) = feature {
|
||||
if !target_features.contains(&feature) {
|
||||
let msg = &format!("`{}` target feature is not enabled", feature);
|
||||
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
|
||||
err.note(&format!(
|
||||
"this is required to use type `{}` with register class `{}`",
|
||||
ty,
|
||||
reg_class.name(),
|
||||
));
|
||||
err.emit();
|
||||
return Some(asm_ty);
|
||||
}
|
||||
}
|
||||
|
||||
// Check whether a modifier is suggested for using this type.
|
||||
if let Some((suggested_modifier, suggested_result)) =
|
||||
reg_class.suggest_modifier(asm_arch, asm_ty)
|
||||
{
|
||||
// Search for any use of this operand without a modifier and emit
|
||||
// the suggestion for them.
|
||||
let mut spans = vec![];
|
||||
for piece in template {
|
||||
if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
|
||||
{
|
||||
if operand_idx == idx && modifier.is_none() {
|
||||
spans.push(span);
|
||||
}
|
||||
}
|
||||
}
|
||||
if !spans.is_empty() {
|
||||
let (default_modifier, default_result) =
|
||||
reg_class.default_modifier(asm_arch).unwrap();
|
||||
self.tcx.struct_span_lint_hir(
|
||||
lint::builtin::ASM_SUB_REGISTER,
|
||||
expr.hir_id,
|
||||
spans,
|
||||
|lint| {
|
||||
let msg = "formatting may not be suitable for sub-register argument";
|
||||
let mut err = lint.build(msg);
|
||||
err.span_label(expr.span, "for this argument");
|
||||
err.help(&format!(
|
||||
"use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}`",
|
||||
));
|
||||
err.help(&format!(
|
||||
"or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}`",
|
||||
));
|
||||
err.emit();
|
||||
},
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Some(asm_ty)
|
||||
}
|
||||
|
||||
pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: hir::HirId) {
|
||||
let hir = self.tcx.hir();
|
||||
let enclosing_def_id = hir.local_def_id(enclosing_id).to_def_id();
|
||||
let target_features = self.tcx.asm_target_features(enclosing_def_id);
|
||||
let Some(asm_arch) = self.tcx.sess.asm_arch else {
|
||||
self.tcx.sess.delay_span_bug(DUMMY_SP, "target architecture does not support asm");
|
||||
return;
|
||||
};
|
||||
for (idx, (op, op_sp)) in asm.operands.iter().enumerate() {
|
||||
// Validate register classes against currently enabled target
|
||||
// features. We check that at least one type is available for
|
||||
// the enabled features.
|
||||
//
|
||||
// We ignore target feature requirements for clobbers: if the
|
||||
// feature is disabled then the compiler doesn't care what we
|
||||
// do with the registers.
|
||||
//
|
||||
// Note that this is only possible for explicit register
|
||||
// operands, which cannot be used in the asm string.
|
||||
if let Some(reg) = op.reg() {
|
||||
// Some explicit registers cannot be used depending on the
|
||||
// target. Reject those here.
|
||||
if let InlineAsmRegOrRegClass::Reg(reg) = reg {
|
||||
if let InlineAsmReg::Err = reg {
|
||||
// `validate` will panic on `Err`, as an error must
|
||||
// already have been reported.
|
||||
continue;
|
||||
}
|
||||
if let Err(msg) = reg.validate(
|
||||
asm_arch,
|
||||
self.tcx.sess.relocation_model(),
|
||||
&target_features,
|
||||
&self.tcx.sess.target,
|
||||
op.is_clobber(),
|
||||
) {
|
||||
let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
|
||||
self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if !op.is_clobber() {
|
||||
let mut missing_required_features = vec![];
|
||||
let reg_class = reg.reg_class();
|
||||
if let InlineAsmRegClass::Err = reg_class {
|
||||
continue;
|
||||
}
|
||||
for &(_, feature) in reg_class.supported_types(asm_arch) {
|
||||
match feature {
|
||||
Some(feature) => {
|
||||
if target_features.contains(&feature) {
|
||||
missing_required_features.clear();
|
||||
break;
|
||||
} else {
|
||||
missing_required_features.push(feature);
|
||||
}
|
||||
}
|
||||
None => {
|
||||
missing_required_features.clear();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We are sorting primitive strs here and can use unstable sort here
|
||||
missing_required_features.sort_unstable();
|
||||
missing_required_features.dedup();
|
||||
match &missing_required_features[..] {
|
||||
[] => {}
|
||||
[feature] => {
|
||||
let msg = format!(
|
||||
"register class `{}` requires the `{}` target feature",
|
||||
reg_class.name(),
|
||||
feature
|
||||
);
|
||||
self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
|
||||
// register isn't enabled, don't do more checks
|
||||
continue;
|
||||
}
|
||||
features => {
|
||||
let msg = format!(
|
||||
"register class `{}` requires at least one of the following target features: {}",
|
||||
reg_class.name(),
|
||||
features
|
||||
.iter()
|
||||
.map(|f| f.as_str())
|
||||
.intersperse(", ")
|
||||
.collect::<String>(),
|
||||
);
|
||||
self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
|
||||
// register isn't enabled, don't do more checks
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
match *op {
|
||||
hir::InlineAsmOperand::In { reg, ref expr } => {
|
||||
self.check_asm_operand_type(
|
||||
idx,
|
||||
reg,
|
||||
expr,
|
||||
asm.template,
|
||||
true,
|
||||
None,
|
||||
&target_features,
|
||||
);
|
||||
}
|
||||
hir::InlineAsmOperand::Out { reg, late: _, ref expr } => {
|
||||
if let Some(expr) = expr {
|
||||
self.check_asm_operand_type(
|
||||
idx,
|
||||
reg,
|
||||
expr,
|
||||
asm.template,
|
||||
false,
|
||||
None,
|
||||
&target_features,
|
||||
);
|
||||
}
|
||||
}
|
||||
hir::InlineAsmOperand::InOut { reg, late: _, ref expr } => {
|
||||
self.check_asm_operand_type(
|
||||
idx,
|
||||
reg,
|
||||
expr,
|
||||
asm.template,
|
||||
false,
|
||||
None,
|
||||
&target_features,
|
||||
);
|
||||
}
|
||||
hir::InlineAsmOperand::SplitInOut { reg, late: _, ref in_expr, ref out_expr } => {
|
||||
let in_ty = self.check_asm_operand_type(
|
||||
idx,
|
||||
reg,
|
||||
in_expr,
|
||||
asm.template,
|
||||
true,
|
||||
None,
|
||||
&target_features,
|
||||
);
|
||||
if let Some(out_expr) = out_expr {
|
||||
self.check_asm_operand_type(
|
||||
idx,
|
||||
reg,
|
||||
out_expr,
|
||||
asm.template,
|
||||
false,
|
||||
Some((in_expr, in_ty)),
|
||||
&target_features,
|
||||
);
|
||||
}
|
||||
}
|
||||
// No special checking is needed for these:
|
||||
// - Typeck has checked that Const operands are integers.
|
||||
// - AST lowering guarantees that SymStatic points to a static.
|
||||
hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymStatic { .. } => {}
|
||||
// Check that sym actually points to a function. Later passes
|
||||
// depend on this.
|
||||
hir::InlineAsmOperand::SymFn { anon_const } => {
|
||||
let ty = self.tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
|
||||
match ty.kind() {
|
||||
ty::Never | ty::Error(_) => {}
|
||||
ty::FnDef(..) => {}
|
||||
_ => {
|
||||
let mut err =
|
||||
self.tcx.sess.struct_span_err(*op_sp, "invalid `sym` operand");
|
||||
err.span_label(
|
||||
self.tcx.hir().span(anon_const.body.hir_id),
|
||||
&format!("is {} `{}`", ty.kind().article(), ty),
|
||||
);
|
||||
err.help("`sym` operands must refer to either a function or a static");
|
||||
err.emit();
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue