1
Fork 0

Remove inverse example from generics part of TRPL

Fixes #24325.
This commit is contained in:
Steve Klabnik 2015-04-18 17:23:00 -04:00
parent e289b689d4
commit 1c48227b3c

View file

@ -90,88 +90,3 @@ if we wanted to. Convention says that the first generic parameter should be
The `Result<T, E>` type is intended to be used to return the result of a The `Result<T, E>` type is intended to be used to return the result of a
computation, and to have the ability to return an error if it didn't work out. computation, and to have the ability to return an error if it didn't work out.
Here's an example:
```{rust}
let x: Result<f64, String> = Ok(2.3f64);
let y: Result<f64, String> = Err("There was an error.".to_string());
```
This particular Result will return an `f64` if there's a success, and a
`String` if there's a failure. Let's write a function that uses `Result<T, E>`:
```{rust}
fn inverse(x: f64) -> Result<f64, String> {
if x == 0.0f64 { return Err("x cannot be zero!".to_string()); }
Ok(1.0f64 / x)
}
```
We don't want to take the inverse of zero, so we check to make sure that we
weren't passed zero. If we were, then we return an `Err`, with a message. If
it's okay, we return an `Ok`, with the answer.
Why does this matter? Well, remember how `match` does exhaustive matches?
Here's how this function gets used:
```{rust}
# fn inverse(x: f64) -> Result<f64, String> {
# if x == 0.0f64 { return Err("x cannot be zero!".to_string()); }
# Ok(1.0f64 / x)
# }
let x = inverse(25.0f64);
match x {
Ok(x) => println!("The inverse of 25 is {}", x),
Err(msg) => println!("Error: {}", msg),
}
```
The `match` enforces that we handle the `Err` case. In addition, because the
answer is wrapped up in an `Ok`, we can't just use the result without doing
the match:
```{rust,ignore}
let x = inverse(25.0f64);
println!("{}", x + 2.0f64); // error: binary operation `+` cannot be applied
// to type `core::result::Result<f64,collections::string::String>`
```
This function is great, but there's one other problem: it only works for 64 bit
floating point values. What if we wanted to handle 32 bit floating point as
well? We'd have to write this:
```{rust}
fn inverse32(x: f32) -> Result<f32, String> {
if x == 0.0f32 { return Err("x cannot be zero!".to_string()); }
Ok(1.0f32 / x)
}
```
Bummer. What we need is a *generic function*. Luckily, we can write one!
However, it won't _quite_ work yet. Before we get into that, let's talk syntax.
A generic version of `inverse` would look something like this:
```{rust,ignore}
fn inverse<T>(x: T) -> Result<T, String> {
if x == 0.0 { return Err("x cannot be zero!".to_string()); }
Ok(1.0 / x)
}
```
Just like how we had `Option<T>`, we use a similar syntax for `inverse<T>`.
We can then use `T` inside the rest of the signature: `x` has type `T`, and half
of the `Result` has type `T`. However, if we try to compile that example, we'll get
an error:
```text
error: binary operation `==` cannot be applied to type `T`
```
Because `T` can be _any_ type, it may be a type that doesn't implement `==`,
and therefore, the first line would be wrong. What do we do?
To fix this example, we need to learn about another Rust feature: traits.