1
Fork 0

Rework upcasting

This commit is contained in:
Michael Goulet 2023-07-26 23:54:55 +00:00
parent fcf3006e01
commit 1bb6ae5874
12 changed files with 297 additions and 104 deletions

View file

@ -444,7 +444,7 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
Err(NoSolution) => vec![],
};
ecx.probe(|_| CandidateKind::DynUpcastingAssembly).enter(|ecx| {
ecx.probe(|_| CandidateKind::UnsizeAssembly).enter(|ecx| {
let a_ty = goal.predicate.self_ty();
// We need to normalize the b_ty since it's matched structurally
// in the other functions below.
@ -526,7 +526,7 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
b_region: ty::Region<'tcx>,
) -> Vec<(CanonicalResponse<'tcx>, BuiltinImplSource)> {
let tcx = self.tcx();
let Goal { predicate: (a_ty, b_ty), .. } = goal;
let Goal { predicate: (a_ty, _b_ty), .. } = goal;
// All of a's auto traits need to be in b's auto traits.
let auto_traits_compatible =
@ -535,51 +535,30 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
return vec![];
}
// Try to match `a_ty` against `b_ty`, replacing `a_ty`'s principal trait ref with
// the supertrait principal and subtyping the types.
let unsize_dyn_to_principal =
|ecx: &mut Self, principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
ecx.probe_candidate("upcast dyn to principle").enter(
|ecx| -> Result<_, NoSolution> {
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
let new_a_data = principal
.into_iter()
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait))
.chain(a_data.iter().filter(|a| {
matches!(a.skip_binder(), ty::ExistentialPredicate::Projection(_))
}))
.chain(
b_data
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let new_a_data = tcx.mk_poly_existential_predicates_from_iter(new_a_data);
let new_a_ty = Ty::new_dynamic(tcx, new_a_data, b_region, ty::Dyn);
// We also require that A's lifetime outlives B's lifetime.
ecx.eq(goal.param_env, new_a_ty, b_ty)?;
ecx.add_goal(goal.with(tcx, ty::OutlivesPredicate(a_region, b_region)));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
},
)
};
let mut responses = vec![];
// If the principal def ids match (or are both none), then we're not doing
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
if a_data.principal_def_id() == b_data.principal_def_id() {
if let Ok(resp) = unsize_dyn_to_principal(self, a_data.principal()) {
if let Ok(resp) = self.consider_builtin_upcast_to_principal(
goal,
a_data,
a_region,
b_data,
b_region,
a_data.principal(),
) {
responses.push((resp, BuiltinImplSource::Misc));
}
} else if let Some(a_principal) = a_data.principal() {
self.walk_vtable(
a_principal.with_self_ty(tcx, a_ty),
|ecx, new_a_principal, _, vtable_vptr_slot| {
if let Ok(resp) = unsize_dyn_to_principal(
ecx,
if let Ok(resp) = ecx.consider_builtin_upcast_to_principal(
goal,
a_data,
a_region,
b_data,
b_region,
Some(new_a_principal.map_bound(|trait_ref| {
ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
})),
@ -631,6 +610,78 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
fn consider_builtin_upcast_to_principal(
&mut self,
goal: Goal<'tcx, (Ty<'tcx>, Ty<'tcx>)>,
a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
a_region: ty::Region<'tcx>,
b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
b_region: ty::Region<'tcx>,
upcast_principal: Option<ty::PolyExistentialTraitRef<'tcx>>,
) -> QueryResult<'tcx> {
let param_env = goal.param_env;
// More than one projection in a_ty's bounds may match the projection
// in b_ty's bound. Use this to first determine *which* apply without
// having any inference side-effects. We process obligations because
// unification may initially succeed due to deferred projection equality.
let projection_may_match = |ecx: &mut Self, source_projection, target_projection| {
ecx.probe(|_| CandidateKind::UpcastProbe)
.enter(|ecx| -> Result<(), NoSolution> {
ecx.eq(param_env, source_projection, target_projection)?;
let _ = ecx.try_evaluate_added_goals()?;
Ok(())
})
.is_ok()
};
for bound in b_data {
match bound.skip_binder() {
// Check that a's supertrait (upcast_principal) is compatible
// with the target (b_ty).
ty::ExistentialPredicate::Trait(target_principal) => {
self.eq(param_env, upcast_principal.unwrap(), bound.rebind(target_principal))?;
}
// Check that b_ty's projection is satisfied by exactly one of
// a_ty's projections. First, we look through the list to see if
// any match. If not, error. Then, if *more* than one matches, we
// return ambiguity. Otherwise, if exactly one matches, equate
// it with b_ty's projection.
ty::ExistentialPredicate::Projection(target_projection) => {
let target_projection = bound.rebind(target_projection);
let mut matching_projections =
a_data.projection_bounds().filter(|source_projection| {
projection_may_match(self, *source_projection, target_projection)
});
let Some(source_projection) = matching_projections.next() else {
return Err(NoSolution);
};
if matching_projections.next().is_some() {
return self.evaluate_added_goals_and_make_canonical_response(
Certainty::AMBIGUOUS,
);
}
self.eq(param_env, source_projection, target_projection)?;
}
// Check that b_ty's auto traits are present in a_ty's bounds.
ty::ExistentialPredicate::AutoTrait(def_id) => {
if !a_data.auto_traits().any(|source_def_id| source_def_id == def_id) {
return Err(NoSolution);
}
}
}
}
// Also require that a_ty's lifetime outlives b_ty's lifetime.
self.add_goal(Goal::new(
self.tcx(),
param_env,
ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
));
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
/// We have the following builtin impls for arrays:
/// ```ignore (builtin impl example)
/// impl<T: ?Sized, const N: usize> Unsize<[T]> for [T; N] {}