Implement Offset like the other binary operators, share code with the intrinsic
Also improve drop glue tests
This commit is contained in:
parent
31cf66d0e8
commit
1b5f77e4c1
4 changed files with 135 additions and 127 deletions
|
@ -451,18 +451,6 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
self.write_value(value, dest, dest_ty)?;
|
||||
}
|
||||
|
||||
BinaryOp(mir::BinOp::Offset, ref left, ref right) => {
|
||||
let pointer_ty = self.operand_ty(left);
|
||||
let pointee_ty = pointer_ty.builtin_deref(true, ty::LvaluePreference::NoPreference).expect("Offset called on non-ptr type").ty;
|
||||
// FIXME: assuming here that type size is < i64::max_value()
|
||||
let pointee_size = self.type_size(pointee_ty)?.expect("cannot offset a pointer to an unsized type") as i64;
|
||||
let offset = self.eval_operand_to_primval(right)?.to_i128()? as i64;
|
||||
|
||||
let ptr = self.eval_operand_to_primval(left)?.to_ptr()?;
|
||||
let result_ptr = ptr.signed_offset(offset * pointee_size);
|
||||
self.write_primval(dest, PrimVal::Ptr(result_ptr), dest_ty)?;
|
||||
}
|
||||
|
||||
BinaryOp(bin_op, ref left, ref right) => {
|
||||
// ignore overflow bit, rustc inserts check branches for us
|
||||
self.intrinsic_overflowing(bin_op, left, right, dest, dest_ty)?;
|
||||
|
@ -853,6 +841,13 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
pub(super) fn pointer_offset(&self, ptr: Pointer, pointee_ty: Ty<'tcx>, offset: i64) -> EvalResult<'tcx, Pointer> {
|
||||
// FIXME: assuming here that type size is < i64::max_value()
|
||||
let pointee_size = self.type_size(pointee_ty)?.expect("cannot offset a pointer to an unsized type") as i64;
|
||||
// FIXME: Check overflow, out-of-bounds
|
||||
Ok(ptr.signed_offset(offset * pointee_size))
|
||||
}
|
||||
|
||||
pub(super) fn eval_operand_to_primval(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<'tcx, PrimVal> {
|
||||
let value = self.eval_operand(op)?;
|
||||
let ty = self.operand_ty(op);
|
||||
|
|
222
src/operator.rs
222
src/operator.rs
|
@ -1,5 +1,5 @@
|
|||
use rustc::mir;
|
||||
use rustc::ty::Ty;
|
||||
use rustc::ty::{self, Ty};
|
||||
|
||||
use error::{EvalError, EvalResult};
|
||||
use eval_context::EvalContext;
|
||||
|
@ -25,11 +25,9 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
) -> EvalResult<'tcx, (PrimVal, bool)> {
|
||||
let left_ty = self.operand_ty(left);
|
||||
let right_ty = self.operand_ty(right);
|
||||
let left_kind = self.ty_to_primval_kind(left_ty)?;
|
||||
let right_kind = self.ty_to_primval_kind(right_ty)?;
|
||||
let left_val = self.eval_operand_to_primval(left)?;
|
||||
let right_val = self.eval_operand_to_primval(right)?;
|
||||
binary_op(op, left_val, left_kind, right_val, right_kind)
|
||||
self.binary_op(op, left_val, left_ty, right_val, right_ty)
|
||||
}
|
||||
|
||||
/// Applies the binary operation `op` to the two operands and writes a tuple of the result
|
||||
|
@ -132,119 +130,141 @@ macro_rules! f64_arithmetic {
|
|||
)
|
||||
}
|
||||
|
||||
/// Returns the result of the specified operation and whether it overflowed.
|
||||
pub fn binary_op<'tcx>(
|
||||
bin_op: mir::BinOp,
|
||||
left: PrimVal,
|
||||
left_kind: PrimValKind,
|
||||
right: PrimVal,
|
||||
right_kind: PrimValKind,
|
||||
) -> EvalResult<'tcx, (PrimVal, bool)> {
|
||||
use rustc::mir::BinOp::*;
|
||||
use value::PrimValKind::*;
|
||||
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
||||
/// Returns the result of the specified operation and whether it overflowed.
|
||||
pub fn binary_op(
|
||||
&self,
|
||||
bin_op: mir::BinOp,
|
||||
left: PrimVal,
|
||||
left_ty: Ty<'tcx>,
|
||||
right: PrimVal,
|
||||
right_ty: Ty<'tcx>,
|
||||
) -> EvalResult<'tcx, (PrimVal, bool)> {
|
||||
use rustc::mir::BinOp::*;
|
||||
use value::PrimValKind::*;
|
||||
|
||||
// FIXME(solson): Temporary hack. It will go away when we get rid of Pointer's ability to store
|
||||
// plain bytes, and leave that to PrimVal::Bytes.
|
||||
fn normalize(val: PrimVal) -> PrimVal {
|
||||
if let PrimVal::Ptr(ptr) = val {
|
||||
if let Ok(bytes) = ptr.to_int() {
|
||||
return PrimVal::Bytes(bytes as u128);
|
||||
// FIXME(solson): Temporary hack. It will go away when we get rid of Pointer's ability to store
|
||||
// plain bytes, and leave that to PrimVal::Bytes.
|
||||
fn normalize(val: PrimVal) -> PrimVal {
|
||||
if let PrimVal::Ptr(ptr) = val {
|
||||
if let Ok(bytes) = ptr.to_int() {
|
||||
return PrimVal::Bytes(bytes as u128);
|
||||
}
|
||||
}
|
||||
val
|
||||
}
|
||||
val
|
||||
}
|
||||
let (left, right) = (normalize(left), normalize(right));
|
||||
let (left, right) = (normalize(left), normalize(right));
|
||||
|
||||
let (l, r) = match (left, right) {
|
||||
(PrimVal::Bytes(left_bytes), PrimVal::Bytes(right_bytes)) => (left_bytes, right_bytes),
|
||||
// Offset is handled early, before we dispatch to unrelated_ptr_ops. We have to also catch the case where both arguments *are* convertible to integers.
|
||||
if bin_op == Offset {
|
||||
let pointee_ty = left_ty.builtin_deref(true, ty::LvaluePreference::NoPreference).expect("Offset called on non-ptr type").ty;
|
||||
let ptr = self.pointer_offset(left.to_ptr()?, pointee_ty, right.to_bytes()? as i64)?;
|
||||
return Ok((PrimVal::Ptr(ptr), false));
|
||||
}
|
||||
|
||||
(PrimVal::Ptr(left_ptr), PrimVal::Ptr(right_ptr)) => {
|
||||
if left_ptr.alloc_id == right_ptr.alloc_id {
|
||||
// If the pointers are into the same allocation, fall through to the more general
|
||||
// match later, which will do comparisons on the pointer offsets.
|
||||
(left_ptr.offset as u128, right_ptr.offset as u128)
|
||||
} else {
|
||||
return Ok((unrelated_ptr_ops(bin_op, left_ptr, right_ptr)?, false));
|
||||
let (l, r) = match (left, right) {
|
||||
(PrimVal::Bytes(left_bytes), PrimVal::Bytes(right_bytes)) => (left_bytes, right_bytes),
|
||||
|
||||
(PrimVal::Ptr(left_ptr), PrimVal::Ptr(right_ptr)) => {
|
||||
if left_ptr.alloc_id == right_ptr.alloc_id {
|
||||
// If the pointers are into the same allocation, fall through to the more general
|
||||
// match later, which will do comparisons on the pointer offsets.
|
||||
(left_ptr.offset as u128, right_ptr.offset as u128)
|
||||
} else {
|
||||
return Ok((unrelated_ptr_ops(bin_op, left_ptr, right_ptr)?, false));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
(PrimVal::Ptr(ptr), PrimVal::Bytes(bytes)) |
|
||||
(PrimVal::Bytes(bytes), PrimVal::Ptr(ptr)) => {
|
||||
return Ok((unrelated_ptr_ops(bin_op, ptr, Pointer::from_int(bytes as u64))?, false));
|
||||
}
|
||||
(PrimVal::Ptr(ptr), PrimVal::Bytes(bytes)) |
|
||||
(PrimVal::Bytes(bytes), PrimVal::Ptr(ptr)) => {
|
||||
return Ok((unrelated_ptr_ops(bin_op, ptr, Pointer::from_int(bytes as u64))?, false));
|
||||
}
|
||||
|
||||
(PrimVal::Undef, _) | (_, PrimVal::Undef) => return Err(EvalError::ReadUndefBytes),
|
||||
};
|
||||
|
||||
// These ops can have an RHS with a different numeric type.
|
||||
if bin_op == Shl || bin_op == Shr {
|
||||
return match bin_op {
|
||||
Shl => int_shift!(left_kind, overflowing_shl, l, r as u32),
|
||||
Shr => int_shift!(left_kind, overflowing_shr, l, r as u32),
|
||||
_ => bug!("it has already been checked that this is a shift op"),
|
||||
(PrimVal::Undef, _) | (_, PrimVal::Undef) => return Err(EvalError::ReadUndefBytes),
|
||||
};
|
||||
}
|
||||
|
||||
if left_kind != right_kind {
|
||||
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
|
||||
return Err(EvalError::Unimplemented(msg));
|
||||
}
|
||||
let left_kind = self.ty_to_primval_kind(left_ty)?;
|
||||
let right_kind = self.ty_to_primval_kind(right_ty)?;
|
||||
|
||||
let val = match (bin_op, left_kind) {
|
||||
(Eq, F32) => PrimVal::from_bool(bytes_to_f32(l) == bytes_to_f32(r)),
|
||||
(Ne, F32) => PrimVal::from_bool(bytes_to_f32(l) != bytes_to_f32(r)),
|
||||
(Lt, F32) => PrimVal::from_bool(bytes_to_f32(l) < bytes_to_f32(r)),
|
||||
(Le, F32) => PrimVal::from_bool(bytes_to_f32(l) <= bytes_to_f32(r)),
|
||||
(Gt, F32) => PrimVal::from_bool(bytes_to_f32(l) > bytes_to_f32(r)),
|
||||
(Ge, F32) => PrimVal::from_bool(bytes_to_f32(l) >= bytes_to_f32(r)),
|
||||
// These ops can have an RHS with a different numeric type.
|
||||
if bin_op == Shl || bin_op == Shr {
|
||||
return match bin_op {
|
||||
Shl => int_shift!(left_kind, overflowing_shl, l, r as u32),
|
||||
Shr => int_shift!(left_kind, overflowing_shr, l, r as u32),
|
||||
_ => bug!("it has already been checked that this is a shift op"),
|
||||
};
|
||||
}
|
||||
if bin_op == Offset {
|
||||
// We permit offset-by-0 in any case. Drop glue actually does this, and it's probably (TM) fine for LLVM.
|
||||
if left_kind == PrimValKind::Ptr && right_kind.is_int() && r == 0 {
|
||||
return Ok((PrimVal::Bytes(l), false));
|
||||
} else {
|
||||
let msg = format!("unimplemented Offset: {:?}, {:?}", left, right);
|
||||
return Err(EvalError::Unimplemented(msg));
|
||||
}
|
||||
}
|
||||
|
||||
(Eq, F64) => PrimVal::from_bool(bytes_to_f64(l) == bytes_to_f64(r)),
|
||||
(Ne, F64) => PrimVal::from_bool(bytes_to_f64(l) != bytes_to_f64(r)),
|
||||
(Lt, F64) => PrimVal::from_bool(bytes_to_f64(l) < bytes_to_f64(r)),
|
||||
(Le, F64) => PrimVal::from_bool(bytes_to_f64(l) <= bytes_to_f64(r)),
|
||||
(Gt, F64) => PrimVal::from_bool(bytes_to_f64(l) > bytes_to_f64(r)),
|
||||
(Ge, F64) => PrimVal::from_bool(bytes_to_f64(l) >= bytes_to_f64(r)),
|
||||
|
||||
(Add, F32) => f32_arithmetic!(+, l, r),
|
||||
(Sub, F32) => f32_arithmetic!(-, l, r),
|
||||
(Mul, F32) => f32_arithmetic!(*, l, r),
|
||||
(Div, F32) => f32_arithmetic!(/, l, r),
|
||||
(Rem, F32) => f32_arithmetic!(%, l, r),
|
||||
|
||||
(Add, F64) => f64_arithmetic!(+, l, r),
|
||||
(Sub, F64) => f64_arithmetic!(-, l, r),
|
||||
(Mul, F64) => f64_arithmetic!(*, l, r),
|
||||
(Div, F64) => f64_arithmetic!(/, l, r),
|
||||
(Rem, F64) => f64_arithmetic!(%, l, r),
|
||||
|
||||
(Eq, _) => PrimVal::from_bool(l == r),
|
||||
(Ne, _) => PrimVal::from_bool(l != r),
|
||||
(Lt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) < (r as i128)),
|
||||
(Lt, _) => PrimVal::from_bool(l < r),
|
||||
(Le, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) <= (r as i128)),
|
||||
(Le, _) => PrimVal::from_bool(l <= r),
|
||||
(Gt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) > (r as i128)),
|
||||
(Gt, _) => PrimVal::from_bool(l > r),
|
||||
(Ge, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) >= (r as i128)),
|
||||
(Ge, _) => PrimVal::from_bool(l >= r),
|
||||
|
||||
(BitOr, _) => PrimVal::Bytes(l | r),
|
||||
(BitAnd, _) => PrimVal::Bytes(l & r),
|
||||
(BitXor, _) => PrimVal::Bytes(l ^ r),
|
||||
|
||||
(Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r),
|
||||
(Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r),
|
||||
(Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r),
|
||||
(Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r),
|
||||
(Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r),
|
||||
|
||||
_ => {
|
||||
if left_kind != right_kind {
|
||||
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
|
||||
return Err(EvalError::Unimplemented(msg));
|
||||
}
|
||||
};
|
||||
|
||||
Ok((val, false))
|
||||
let val = match (bin_op, left_kind) {
|
||||
(Eq, F32) => PrimVal::from_bool(bytes_to_f32(l) == bytes_to_f32(r)),
|
||||
(Ne, F32) => PrimVal::from_bool(bytes_to_f32(l) != bytes_to_f32(r)),
|
||||
(Lt, F32) => PrimVal::from_bool(bytes_to_f32(l) < bytes_to_f32(r)),
|
||||
(Le, F32) => PrimVal::from_bool(bytes_to_f32(l) <= bytes_to_f32(r)),
|
||||
(Gt, F32) => PrimVal::from_bool(bytes_to_f32(l) > bytes_to_f32(r)),
|
||||
(Ge, F32) => PrimVal::from_bool(bytes_to_f32(l) >= bytes_to_f32(r)),
|
||||
|
||||
(Eq, F64) => PrimVal::from_bool(bytes_to_f64(l) == bytes_to_f64(r)),
|
||||
(Ne, F64) => PrimVal::from_bool(bytes_to_f64(l) != bytes_to_f64(r)),
|
||||
(Lt, F64) => PrimVal::from_bool(bytes_to_f64(l) < bytes_to_f64(r)),
|
||||
(Le, F64) => PrimVal::from_bool(bytes_to_f64(l) <= bytes_to_f64(r)),
|
||||
(Gt, F64) => PrimVal::from_bool(bytes_to_f64(l) > bytes_to_f64(r)),
|
||||
(Ge, F64) => PrimVal::from_bool(bytes_to_f64(l) >= bytes_to_f64(r)),
|
||||
|
||||
(Add, F32) => f32_arithmetic!(+, l, r),
|
||||
(Sub, F32) => f32_arithmetic!(-, l, r),
|
||||
(Mul, F32) => f32_arithmetic!(*, l, r),
|
||||
(Div, F32) => f32_arithmetic!(/, l, r),
|
||||
(Rem, F32) => f32_arithmetic!(%, l, r),
|
||||
|
||||
(Add, F64) => f64_arithmetic!(+, l, r),
|
||||
(Sub, F64) => f64_arithmetic!(-, l, r),
|
||||
(Mul, F64) => f64_arithmetic!(*, l, r),
|
||||
(Div, F64) => f64_arithmetic!(/, l, r),
|
||||
(Rem, F64) => f64_arithmetic!(%, l, r),
|
||||
|
||||
(Eq, _) => PrimVal::from_bool(l == r),
|
||||
(Ne, _) => PrimVal::from_bool(l != r),
|
||||
(Lt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) < (r as i128)),
|
||||
(Lt, _) => PrimVal::from_bool(l < r),
|
||||
(Le, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) <= (r as i128)),
|
||||
(Le, _) => PrimVal::from_bool(l <= r),
|
||||
(Gt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) > (r as i128)),
|
||||
(Gt, _) => PrimVal::from_bool(l > r),
|
||||
(Ge, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) >= (r as i128)),
|
||||
(Ge, _) => PrimVal::from_bool(l >= r),
|
||||
|
||||
(BitOr, _) => PrimVal::Bytes(l | r),
|
||||
(BitAnd, _) => PrimVal::Bytes(l & r),
|
||||
(BitXor, _) => PrimVal::Bytes(l ^ r),
|
||||
|
||||
(Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r),
|
||||
(Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r),
|
||||
(Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r),
|
||||
(Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r),
|
||||
(Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r),
|
||||
|
||||
_ => {
|
||||
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
|
||||
return Err(EvalError::Unimplemented(msg));
|
||||
}
|
||||
};
|
||||
|
||||
Ok((val, false))
|
||||
}
|
||||
}
|
||||
|
||||
fn unrelated_ptr_ops<'tcx>(bin_op: mir::BinOp, left: Pointer, right: Pointer) -> EvalResult<'tcx, PrimVal> {
|
||||
|
|
|
@ -7,7 +7,6 @@ use rustc::ty::{self, Ty};
|
|||
use error::{EvalError, EvalResult};
|
||||
use eval_context::EvalContext;
|
||||
use lvalue::{Lvalue, LvalueExtra};
|
||||
use operator;
|
||||
use value::{PrimVal, PrimValKind, Value};
|
||||
|
||||
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
||||
|
@ -103,8 +102,7 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
Value::ByRef(_) => bug!("just read the value, can't be byref"),
|
||||
Value::ByValPair(..) => bug!("atomic_cxchg doesn't work with nonprimitives"),
|
||||
};
|
||||
let kind = self.ty_to_primval_kind(ty)?;
|
||||
let (val, _) = operator::binary_op(mir::BinOp::Eq, old, kind, expect_old, kind)?;
|
||||
let (val, _) = self.binary_op(mir::BinOp::Eq, old, ty, expect_old, ty)?;
|
||||
let dest = self.force_allocation(dest)?.to_ptr();
|
||||
self.write_pair_to_ptr(old, val, dest, dest_ty)?;
|
||||
self.write_primval(Lvalue::from_ptr(ptr), change, ty)?;
|
||||
|
@ -125,7 +123,6 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
Value::ByValPair(..) => bug!("atomic_xadd_relaxed doesn't work with nonprimitives"),
|
||||
};
|
||||
self.write_primval(dest, old, ty)?;
|
||||
let kind = self.ty_to_primval_kind(ty)?;
|
||||
let op = match intrinsic_name.split('_').nth(1).unwrap() {
|
||||
"or" => mir::BinOp::BitOr,
|
||||
"xor" => mir::BinOp::BitXor,
|
||||
|
@ -135,7 +132,7 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
_ => bug!(),
|
||||
};
|
||||
// FIXME: what do atomics do on overflow?
|
||||
let (val, _) = operator::binary_op(op, old, kind, change, kind)?;
|
||||
let (val, _) = self.binary_op(op, old, ty, change, ty)?;
|
||||
self.write_primval(Lvalue::from_ptr(ptr), val, ty)?;
|
||||
},
|
||||
|
||||
|
@ -219,7 +216,6 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
|
||||
"fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => {
|
||||
let ty = substs.type_at(0);
|
||||
let kind = self.ty_to_primval_kind(ty)?;
|
||||
let a = self.value_to_primval(arg_vals[0], ty)?;
|
||||
let b = self.value_to_primval(arg_vals[1], ty)?;
|
||||
let op = match intrinsic_name {
|
||||
|
@ -230,7 +226,7 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
"frem_fast" => mir::BinOp::Rem,
|
||||
_ => bug!(),
|
||||
};
|
||||
let result = operator::binary_op(op, a, kind, b, kind)?;
|
||||
let result = self.binary_op(op, a, ty, b, ty)?;
|
||||
self.write_primval(dest, result.0, dest_ty)?;
|
||||
}
|
||||
|
||||
|
@ -298,13 +294,9 @@ impl<'a, 'tcx> EvalContext<'a, 'tcx> {
|
|||
}
|
||||
|
||||
"offset" => {
|
||||
let pointee_ty = substs.type_at(0);
|
||||
// FIXME: assuming here that type size is < i64::max_value()
|
||||
let pointee_size = self.type_size(pointee_ty)?.expect("cannot offset a pointer to an unsized type") as i64;
|
||||
let offset = self.value_to_primval(arg_vals[1], isize)?.to_i128()? as i64;
|
||||
|
||||
let ptr = arg_vals[0].read_ptr(&self.memory)?;
|
||||
let result_ptr = ptr.signed_offset(offset * pointee_size);
|
||||
let result_ptr = self.pointer_offset(ptr, substs.type_at(0), offset)?;
|
||||
self.write_primval(dest, PrimVal::Ptr(result_ptr), dest_ty)?;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,15 +1,16 @@
|
|||
struct Bar(i32); // ZSTs are tested separately
|
||||
struct Bar(u16); // ZSTs are tested separately
|
||||
|
||||
static mut DROP_COUNT: usize = 0;
|
||||
|
||||
impl Drop for Bar {
|
||||
fn drop(&mut self) {
|
||||
assert_eq!(self.0 as usize, unsafe { DROP_COUNT }); // tests whether we are called at a valid address
|
||||
unsafe { DROP_COUNT += 1; }
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let b = [Bar(0), Bar(0), Bar(0), Bar(0)];
|
||||
let b = [Bar(0), Bar(1), Bar(2), Bar(3)];
|
||||
assert_eq!(unsafe { DROP_COUNT }, 0);
|
||||
drop(b);
|
||||
assert_eq!(unsafe { DROP_COUNT }, 4);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue