1
Fork 0

introduce an "in" constraint instead of error

This commit is contained in:
Niko Matsakis 2019-05-30 10:36:35 -04:00
parent 2eb3fcc10d
commit 14e23a5835
4 changed files with 133 additions and 49 deletions

View file

@ -654,11 +654,15 @@ pub fn make_query_outlives<'tcx>(
constraints,
verifys,
givens,
in_constraints,
} = region_constraints;
assert!(verifys.is_empty());
assert!(givens.is_empty());
// FIXME(ndm) -- we have to think about what to do here, perhaps
assert!(in_constraints.is_empty());
let outlives: Vec<_> = constraints
.into_iter()
.map(|(k, _)| match *k {

View file

@ -30,6 +30,7 @@ use rustc_data_structures::unify as ut;
use std::cell::{Cell, Ref, RefCell, RefMut};
use std::collections::BTreeMap;
use std::fmt;
use std::rc::Rc;
use syntax::ast;
use syntax_pos::symbol::InternedString;
use syntax_pos::Span;
@ -904,6 +905,19 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
.make_subregion(origin, a, b);
}
/// Require that the region `r` be equal to one of the regions in
/// the set `regions`.
pub fn in_constraint(
&self,
origin: SubregionOrigin<'tcx>,
region: ty::Region<'tcx>,
in_regions: &Rc<Vec<ty::Region<'tcx>>>,
) {
debug!("sub_regions({:?} <: {:?})", region, in_regions);
self.borrow_region_constraints()
.in_constraint(origin, region, in_regions);
}
pub fn subtype_predicate(
&self,
cause: &ObligationCause<'tcx>,

View file

@ -9,6 +9,8 @@ use crate::ty::subst::{InternalSubsts, Kind, SubstsRef, UnpackedKind};
use crate::ty::{self, GenericParamDefKind, Ty, TyCtxt};
use crate::util::nodemap::DefIdMap;
use rustc_data_structures::fx::FxHashMap;
use std::rc::Rc;
use syntax::source_map::Span;
pub type OpaqueTypeMap<'tcx> = DefIdMap<OpaqueTypeDecl<'tcx>>;
@ -212,13 +214,13 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
///
/// # The Solution
///
/// We make use of the constraint that we *do* have in the `<=`
/// relation. To do that, we find the "minimum" of all the
/// arguments that appear in the substs: that is, some region
/// which is less than all the others. In the case of `Foo1<'a>`,
/// that would be `'a` (it's the only choice, after all). Then we
/// apply that as a least bound to the variables (e.g., `'a <=
/// '0`).
/// We generally prefer to make us our `<=` constraints, since
/// they integrate best into the region solve. To do that, we find
/// the "minimum" of all the arguments that appear in the substs:
/// that is, some region which is less than all the others. In the
/// case of `Foo1<'a>`, that would be `'a` (it's the only choice,
/// after all). Then we apply that as a least bound to the
/// variables (e.g., `'a <= '0`).
///
/// In some cases, there is no minimum. Consider this example:
///
@ -226,8 +228,32 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
/// fn baz<'a, 'b>() -> impl Trait<'a, 'b> { ... }
/// ```
///
/// Here we would report an error, because `'a` and `'b` have no
/// relation to one another.
/// Here we would report a more complex "in constraint", like `'r
/// in ['a, 'b, 'static]` (where `'r` is some regon appearing in
/// the hidden type).
///
/// # Constrain regions, not the hidden concrete type
///
/// Note that generating constraints on each region `Rc` is *not*
/// the same as generating an outlives constraint on `Tc` iself.
/// For example, if we had a function like this:
///
/// ```rust
/// fn foo<'a, T>(x: &'a u32, y: T) -> impl Foo<'a> {
/// (x, y)
/// }
///
/// // Equivalent to:
/// existential type FooReturn<'a, T>: Foo<'a>;
/// fn foo<'a, T>(..) -> FooReturn<'a, T> { .. }
/// ```
///
/// then the hidden type `Tc` would be `(&'0 u32, T)` (where `'0`
/// is an inference variable). If we generated a constraint that
/// `Tc: 'a`, then this would incorrectly require that `T: 'a` --
/// but this is not necessary, because the existential type we
/// create will be allowed to reference `T`. So instead we just
/// generate a constraint that `'0: 'a`.
///
/// # The `free_region_relations` parameter
///
@ -270,6 +296,7 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
}
}
/// See `constrain_opaque_types` for docs
pub fn constrain_opaque_type<FRR: FreeRegionRelations<'tcx>>(
&self,
def_id: DefId,
@ -323,6 +350,7 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
GenericParamDefKind::Lifetime => {}
_ => continue,
}
// Get the value supplied for this region from the substs.
let subst_arg = opaque_defn.substs.region_at(param.index as usize);
@ -339,45 +367,19 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
least_region = Some(subst_arg);
} else {
// There are two regions (`lr` and
// `subst_arg`) which are not relatable. We can't
// find a best choice.
let context_name = match opaque_defn.origin {
hir::ExistTyOrigin::ExistentialType => "existential type",
hir::ExistTyOrigin::ReturnImplTrait => "impl Trait",
hir::ExistTyOrigin::AsyncFn => "async fn",
};
let msg = format!("ambiguous lifetime bound in `{}`", context_name);
let mut err = self.tcx.sess.struct_span_err(span, &msg);
let lr_name = lr.to_string();
let subst_arg_name = subst_arg.to_string();
let label_owned;
let label = match (&*lr_name, &*subst_arg_name) {
("'_", "'_") => "the elided lifetimes here do not outlive one another",
_ => {
label_owned = format!(
"neither `{}` nor `{}` outlives the other",
lr_name, subst_arg_name,
);
&label_owned
}
};
err.span_label(span, label);
if let hir::ExistTyOrigin::AsyncFn = opaque_defn.origin {
err.note(
"multiple unrelated lifetimes are not allowed in \
`async fn`.",
);
err.note(
"if you're using argument-position elided lifetimes, consider \
switching to a single named lifetime.",
);
}
err.emit();
least_region = Some(self.tcx.mk_region(ty::ReEmpty));
break;
// `subst_arg`) which are not relatable. We
// can't find a best choice. Therefore,
// instead of creating a single bound like
// `'r: 'a` (which is our preferred choice),
// we will create a "in bound" like `'r in
// ['a, 'b, 'c]`, where `'a..'c` are the
// regions that appear in the impl trait.
return self.generate_in_constraint(
span,
concrete_ty,
abstract_type_generics,
opaque_defn,
);
}
}
}
@ -392,6 +394,37 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
});
}
/// As a fallback, we sometimes generate an "in constraint". For
/// case like `impl Foo<'a, 'b>`, where `'a` and `'b` cannot be
/// related, we would generate a constraint `'r in ['a, 'b,
/// 'static]` for each region `'r` that appears in the hidden type
/// (i.e., it must be equal to `'a`, `'b`, or `'static`).
fn generate_in_constraint(
&self,
span: Span,
concrete_ty: Ty<'tcx>,
abstract_type_generics: &ty::Generics,
opaque_defn: &OpaqueTypeDecl<'tcx>,
) {
let in_regions: Rc<Vec<ty::Region<'tcx>>> = Rc::new(
abstract_type_generics
.params
.iter()
.filter(|param| match param.kind {
GenericParamDefKind::Lifetime => true,
GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => false,
})
.map(|param| opaque_defn.substs.region_at(param.index as usize))
.chain(std::iter::once(self.tcx.lifetimes.re_static))
.collect(),
);
concrete_ty.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
tcx: self.tcx,
op: |r| self.in_constraint(infer::CallReturn(span), r, &in_regions),
});
}
/// Given the fully resolved, instantiated type for an opaque
/// type, i.e., the value of an inference variable like C1 or C2
/// (*), computes the "definition type" for an abstract type

View file

@ -17,6 +17,7 @@ use crate::ty::{Region, RegionVid};
use std::collections::BTreeMap;
use std::{cmp, fmt, mem};
use std::ops::Range;
use std::rc::Rc;
mod leak_check;
@ -78,6 +79,11 @@ pub struct RegionConstraintData<'tcx> {
/// be a region variable (or neither, as it happens).
pub constraints: BTreeMap<Constraint<'tcx>, SubregionOrigin<'tcx>>,
/// Constraints of the form `R0 in [R1, ..., Rn]`, meaning that
/// `R0` must be equal to one of the regions `R1..Rn`. These occur
/// with `impl Trait` quite frequently.
pub in_constraints: Vec<InConstraint<'tcx>>,
/// A "verify" is something that we need to verify after inference
/// is done, but which does not directly affect inference in any
/// way.
@ -137,6 +143,14 @@ impl Constraint<'_> {
}
}
/// Requires that `region` must be equal to one of the regions in `in_regions`.
#[derive(Debug, Clone)]
pub struct InConstraint<'tcx> {
pub origin: SubregionOrigin<'tcx>,
pub region: Region<'tcx>,
pub in_regions: Rc<Vec<Region<'tcx>>>,
}
/// `VerifyGenericBound(T, _, R, RS)`: the parameter type `T` (or
/// associated type) must outlive the region `R`. `T` is known to
/// outlive `RS`. Therefore, verify that `R <= RS[i]` for some
@ -643,6 +657,24 @@ impl<'tcx> RegionConstraintCollector<'tcx> {
}
}
pub fn in_constraint(
&mut self,
origin: SubregionOrigin<'tcx>,
region: ty::Region<'tcx>,
in_regions: &Rc<Vec<ty::Region<'tcx>>>,
) {
debug!("in_constraint({:?} in {:#?})", region, in_regions);
if in_regions.iter().any(|&r| r == region) {
return;
}
self.data.in_constraints.push(InConstraint {
origin, region, in_regions: in_regions.clone()
});
}
pub fn make_subregion(
&mut self,
origin: SubregionOrigin<'tcx>,
@ -906,9 +938,10 @@ impl<'tcx> RegionConstraintData<'tcx> {
pub fn is_empty(&self) -> bool {
let RegionConstraintData {
constraints,
in_constraints,
verifys,
givens,
} = self;
constraints.is_empty() && verifys.is_empty() && givens.is_empty()
constraints.is_empty() && in_constraints.is_empty() && verifys.is_empty() && givens.is_empty()
}
}