Require passing an AttrWrapper to collect_tokens_trailing_token

This is a pure refactoring split out from #80689.
It represents the most invasive part of that PR, requiring changes in
every caller of `parse_outer_attributes`

In order to eagerly expand `#[cfg]` attributes while preserving the
original `TokenStream`, we need to know the range of tokens that
corresponds to every attribute target. This is accomplished by making
`parse_outer_attributes` return an opaque `AttrWrapper` struct. An
`AttrWrapper` must be converted to a plain `AttrVec` by passing it to
`collect_tokens_trailing_token`. This makes it difficult to accidentally
construct an AST node with attributes without calling `collect_tokens_trailing_token`,
since AST nodes store an `AttrVec`, not an `AttrWrapper`.

As a result, we now call `collect_tokens_trailing_token` for attribute
targets which only support inert attributes, such as generic arguments
and struct fields. Currently, the constructed `LazyTokenStream` is
simply discarded. Future PRs will record the token range corresponding
to the attribute target, allowing those tokens to be removed from an
enclosing `collect_tokens_trailing_token` call if necessary.
This commit is contained in:
Aaron Hill 2021-01-22 13:28:08 -05:00
parent 7e0241c637
commit 0b411f56e1
No known key found for this signature in database
GPG key ID: B4087E510E98B164
9 changed files with 621 additions and 407 deletions

View file

@ -1,6 +1,8 @@
use super::pat::{GateOr, RecoverComma, PARAM_EXPECTED};
use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
use super::{BlockMode, Parser, PathStyle, Restrictions, TokenType};
use super::{
AttrWrapper, BlockMode, ForceCollect, Parser, PathStyle, Restrictions, TokenType, TrailingToken,
};
use super::{SemiColonMode, SeqSep, TokenExpectType};
use crate::maybe_recover_from_interpolated_ty_qpath;
@ -62,16 +64,16 @@ macro_rules! maybe_whole_expr {
#[derive(Debug)]
pub(super) enum LhsExpr {
NotYetParsed,
AttributesParsed(AttrVec),
AttributesParsed(AttrWrapper),
AlreadyParsed(P<Expr>),
}
impl From<Option<AttrVec>> for LhsExpr {
impl From<Option<AttrWrapper>> for LhsExpr {
/// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
/// and `None` into `LhsExpr::NotYetParsed`.
///
/// This conversion does not allocate.
fn from(o: Option<AttrVec>) -> Self {
fn from(o: Option<AttrWrapper>) -> Self {
if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
}
}
@ -123,7 +125,7 @@ impl<'a> Parser<'a> {
pub(super) fn parse_expr_res(
&mut self,
r: Restrictions,
already_parsed_attrs: Option<AttrVec>,
already_parsed_attrs: Option<AttrWrapper>,
) -> PResult<'a, P<Expr>> {
self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
}
@ -133,7 +135,10 @@ impl<'a> Parser<'a> {
/// This parses an expression accounting for associativity and precedence of the operators in
/// the expression.
#[inline]
fn parse_assoc_expr(&mut self, already_parsed_attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
fn parse_assoc_expr(
&mut self,
already_parsed_attrs: Option<AttrWrapper>,
) -> PResult<'a, P<Expr>> {
self.parse_assoc_expr_with(0, already_parsed_attrs.into())
}
@ -439,7 +444,7 @@ impl<'a> Parser<'a> {
}
/// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
fn parse_prefix_range_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
// Check for deprecated `...` syntax.
if self.token == token::DotDotDot {
self.err_dotdotdot_syntax(self.token.span);
@ -457,44 +462,68 @@ impl<'a> Parser<'a> {
};
let op = AssocOp::from_token(&self.token);
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let lo = self.token.span;
self.bump();
let (span, opt_end) = if self.is_at_start_of_range_notation_rhs() {
// RHS must be parsed with more associativity than the dots.
self.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
.map(|x| (lo.to(x.span), Some(x)))?
} else {
(lo, None)
};
Ok(self.mk_expr(span, self.mk_range(None, opt_end, limits)?, attrs))
// RESOLVED: It looks like we only haev non-empty attributes here when
// this is used as a statement:
// `#[my_attr] 25..;`
// We should still investigate `parse_or_use_outer_attributes`, since we haven't
// yet eaten the '..'
//
// FIXME - does this code ever haev attributes? `let a = #[attr] ..` doesn't even parse
// // We try to aprse attributes *before* bumping the token, so this can only
// ever succeeed if the `attrs` parameter is `Some`
self.collect_tokens_for_expr(attrs, |this, attrs| {
let lo = this.token.span;
this.bump();
let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
// RHS must be parsed with more associativity than the dots.
this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
.map(|x| (lo.to(x.span), Some(x)))?
} else {
(lo, None)
};
Ok(this.mk_expr(span, this.mk_range(None, opt_end, limits)?, attrs.into()))
})
}
/// Parses a prefix-unary-operator expr.
fn parse_prefix_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
// FIXME: Use super::attr::maybe_needs_tokens(&attrs) once we come up
// with a good way of passing `force_tokens` through from `parse_nonterminal`.
// Checking !attrs.is_empty() is correct, but will cause us to unnecessarily
// capture tokens in some circumstances.
let needs_tokens = !attrs.is_empty();
let do_parse = |this: &mut Parser<'a>| {
let lo = this.token.span;
// Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
let (hi, ex) = match this.token.uninterpolate().kind {
token::Not => this.parse_unary_expr(lo, UnOp::Not), // `!expr`
token::Tilde => this.recover_tilde_expr(lo), // `~expr`
token::BinOp(token::Minus) => this.parse_unary_expr(lo, UnOp::Neg), // `-expr`
token::BinOp(token::Star) => this.parse_unary_expr(lo, UnOp::Deref), // `*expr`
token::BinOp(token::And) | token::AndAnd => this.parse_borrow_expr(lo),
token::Ident(..) if this.token.is_keyword(kw::Box) => this.parse_box_expr(lo),
token::Ident(..) if this.is_mistaken_not_ident_negation() => {
this.recover_not_expr(lo)
}
_ => return this.parse_dot_or_call_expr(Some(attrs)),
}?;
Ok(this.mk_expr(lo.to(hi), ex, attrs))
};
if needs_tokens { self.collect_tokens(do_parse) } else { do_parse(self) }
let lo = self.token.span;
macro_rules! make_it {
($this:ident, $attrs:expr, |this, _| $body:expr) => {
$this.collect_tokens_for_expr($attrs, |$this, attrs| {
let (hi, ex) = $body?;
Ok($this.mk_expr(lo.to(hi), ex, attrs.into()))
})
};
}
let this = self;
// Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
match this.token.uninterpolate().kind {
token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
token::BinOp(token::Minus) => {
make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
} // `-expr`
token::BinOp(token::Star) => {
make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
} // `*expr`
token::BinOp(token::And) | token::AndAnd => {
make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
}
token::Ident(..) if this.token.is_keyword(kw::Box) => {
make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
}
token::Ident(..) if this.is_mistaken_not_ident_negation() => {
// FIXME - what is our polciy for handling tokens during recovery?
// Should we ever invoke a proc-macro with these tokens?
make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
}
_ => return this.parse_dot_or_call_expr(Some(attrs.into())),
}
}
fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
@ -805,18 +834,20 @@ impl<'a> Parser<'a> {
}
/// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let base = self.parse_bottom_expr();
let (span, base) = self.interpolated_or_expr_span(base)?;
self.parse_dot_or_call_expr_with(base, span, attrs)
self.collect_tokens_for_expr(attrs, |this, attrs| {
let base = this.parse_bottom_expr();
let (span, base) = this.interpolated_or_expr_span(base)?;
this.parse_dot_or_call_expr_with(base, span, attrs)
})
}
pub(super) fn parse_dot_or_call_expr_with(
&mut self,
e0: P<Expr>,
lo: Span,
mut attrs: AttrVec,
mut attrs: Vec<ast::Attribute>,
) -> PResult<'a, P<Expr>> {
// Stitch the list of outer attributes onto the return value.
// A little bit ugly, but the best way given the current code
@ -824,7 +855,7 @@ impl<'a> Parser<'a> {
self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
expr.map(|mut expr| {
attrs.extend::<Vec<_>>(expr.attrs.into());
expr.attrs = attrs;
expr.attrs = attrs.into();
expr
})
})
@ -1703,19 +1734,25 @@ impl<'a> Parser<'a> {
fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
let lo = self.token.span;
let attrs = self.parse_outer_attributes()?;
let pat = self.parse_pat(PARAM_EXPECTED)?;
let ty = if self.eat(&token::Colon) {
self.parse_ty()?
} else {
self.mk_ty(self.prev_token.span, TyKind::Infer)
};
Ok(Param {
attrs: attrs.into(),
ty,
pat,
span: lo.to(self.token.span),
id: DUMMY_NODE_ID,
is_placeholder: false,
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let pat = this.parse_pat(PARAM_EXPECTED)?;
let ty = if this.eat(&token::Colon) {
this.parse_ty()?
} else {
this.mk_ty(this.prev_token.span, TyKind::Infer)
};
Ok((
Param {
attrs: attrs.into(),
ty,
pat,
span: lo.to(this.token.span),
id: DUMMY_NODE_ID,
is_placeholder: false,
},
TrailingToken::MaybeComma,
))
})
}
@ -1731,7 +1768,7 @@ impl<'a> Parser<'a> {
let thn = if self.eat_keyword(kw::Else) || !cond.returns() {
self.error_missing_if_cond(lo, cond.span)
} else {
let attrs = self.parse_outer_attributes()?; // For recovery.
let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
let not_block = self.token != token::OpenDelim(token::Brace);
let block = self.parse_block().map_err(|mut err| {
if not_block {
@ -1788,7 +1825,7 @@ impl<'a> Parser<'a> {
/// Parses an `else { ... }` expression (`else` token already eaten).
fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
let ctx_span = self.prev_token.span; // `else`
let attrs = self.parse_outer_attributes()?; // For recovery.
let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
let expr = if self.eat_keyword(kw::If) {
self.parse_if_expr(AttrVec::new())?
} else {
@ -1947,85 +1984,91 @@ impl<'a> Parser<'a> {
pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
let attrs = self.parse_outer_attributes()?;
let lo = self.token.span;
let pat = self.parse_top_pat(GateOr::No, RecoverComma::Yes)?;
let guard = if self.eat_keyword(kw::If) {
let if_span = self.prev_token.span;
let cond = self.parse_expr()?;
if let ExprKind::Let(..) = cond.kind {
// Remove the last feature gating of a `let` expression since it's stable.
self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
let span = if_span.to(cond.span);
self.sess.gated_spans.gate(sym::if_let_guard, span);
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let lo = this.token.span;
let pat = this.parse_top_pat(GateOr::No, RecoverComma::Yes)?;
let guard = if this.eat_keyword(kw::If) {
let if_span = this.prev_token.span;
let cond = this.parse_expr()?;
if let ExprKind::Let(..) = cond.kind {
// Remove the last feature gating of a `let` expression since it's stable.
this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
let span = if_span.to(cond.span);
this.sess.gated_spans.gate(sym::if_let_guard, span);
}
Some(cond)
} else {
None
};
let arrow_span = this.token.span;
this.expect(&token::FatArrow)?;
let arm_start_span = this.token.span;
let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
err.span_label(arrow_span, "while parsing the `match` arm starting here");
err
})?;
let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
&& this.token != token::CloseDelim(token::Brace);
let hi = this.prev_token.span;
if require_comma {
let sm = this.sess.source_map();
this.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
|mut err| {
match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
(Ok(ref expr_lines), Ok(ref arm_start_lines))
if arm_start_lines.lines[0].end_col
== expr_lines.lines[0].end_col
&& expr_lines.lines.len() == 2
&& this.token == token::FatArrow =>
{
// We check whether there's any trailing code in the parse span,
// if there isn't, we very likely have the following:
//
// X | &Y => "y"
// | -- - missing comma
// | |
// | arrow_span
// X | &X => "x"
// | - ^^ self.token.span
// | |
// | parsed until here as `"y" & X`
err.span_suggestion_short(
arm_start_span.shrink_to_hi(),
"missing a comma here to end this `match` arm",
",".to_owned(),
Applicability::MachineApplicable,
);
}
_ => {
err.span_label(
arrow_span,
"while parsing the `match` arm starting here",
);
}
}
err
},
)?;
} else {
this.eat(&token::Comma);
}
Some(cond)
} else {
None
};
let arrow_span = self.token.span;
self.expect(&token::FatArrow)?;
let arm_start_span = self.token.span;
let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
err.span_label(arrow_span, "while parsing the `match` arm starting here");
err
})?;
let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
&& self.token != token::CloseDelim(token::Brace);
let hi = self.prev_token.span;
if require_comma {
let sm = self.sess.source_map();
self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
|mut err| {
match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
(Ok(ref expr_lines), Ok(ref arm_start_lines))
if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
&& expr_lines.lines.len() == 2
&& self.token == token::FatArrow =>
{
// We check whether there's any trailing code in the parse span,
// if there isn't, we very likely have the following:
//
// X | &Y => "y"
// | -- - missing comma
// | |
// | arrow_span
// X | &X => "x"
// | - ^^ self.token.span
// | |
// | parsed until here as `"y" & X`
err.span_suggestion_short(
arm_start_span.shrink_to_hi(),
"missing a comma here to end this `match` arm",
",".to_owned(),
Applicability::MachineApplicable,
);
}
_ => {
err.span_label(
arrow_span,
"while parsing the `match` arm starting here",
);
}
}
err
Ok((
ast::Arm {
attrs,
pat,
guard,
body: expr,
span: lo.to(hi),
id: DUMMY_NODE_ID,
is_placeholder: false,
},
)?;
} else {
self.eat(&token::Comma);
}
Ok(ast::Arm {
attrs,
pat,
guard,
body: expr,
span: lo.to(hi),
id: DUMMY_NODE_ID,
is_placeholder: false,
TrailingToken::None,
))
})
}
@ -2274,30 +2317,36 @@ impl<'a> Parser<'a> {
/// Parses `ident (COLON expr)?`.
fn parse_field(&mut self) -> PResult<'a, Field> {
let attrs = self.parse_outer_attributes()?.into();
let lo = self.token.span;
let attrs = self.parse_outer_attributes()?;
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let lo = this.token.span;
// Check if a colon exists one ahead. This means we're parsing a fieldname.
let is_shorthand = !self.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
let (ident, expr) = if is_shorthand {
// Mimic `x: x` for the `x` field shorthand.
let ident = self.parse_ident_common(false)?;
let path = ast::Path::from_ident(ident);
(ident, self.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
} else {
let ident = self.parse_field_name()?;
self.error_on_eq_field_init(ident);
self.bump(); // `:`
(ident, self.parse_expr()?)
};
Ok(ast::Field {
ident,
span: lo.to(expr.span),
expr,
is_shorthand,
attrs,
id: DUMMY_NODE_ID,
is_placeholder: false,
// Check if a colon exists one ahead. This means we're parsing a fieldname.
let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
let (ident, expr) = if is_shorthand {
// Mimic `x: x` for the `x` field shorthand.
let ident = this.parse_ident_common(false)?;
let path = ast::Path::from_ident(ident);
(ident, this.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
} else {
let ident = this.parse_field_name()?;
this.error_on_eq_field_init(ident);
this.bump(); // `:`
(ident, this.parse_expr()?)
};
Ok((
ast::Field {
ident,
span: lo.to(expr.span),
expr,
is_shorthand,
attrs: attrs.into(),
id: DUMMY_NODE_ID,
is_placeholder: false,
},
TrailingToken::MaybeComma,
))
})
}
@ -2405,4 +2454,27 @@ impl<'a> Parser<'a> {
.map_or(lhs_span, |a| a.span)
.to(rhs_span)
}
fn collect_tokens_for_expr(
&mut self,
attrs: AttrWrapper,
f: impl FnOnce(&mut Self, Vec<ast::Attribute>) -> PResult<'a, P<Expr>>,
) -> PResult<'a, P<Expr>> {
// FIXME - come up with a nice way to properly forward `ForceCollect`from
// the nonterminal parsing code. TThis approach iscorrect, but will cause
// us to unnecessarily capture tokens for exprs that have only builtin
// attributes. Revisit this before #![feature(stmt_expr_attributes)] is stabilized
let force_collect = if attrs.is_empty() { ForceCollect::No } else { ForceCollect::Yes };
self.collect_tokens_trailing_token(attrs, force_collect, |this, attrs| {
let res = f(this, attrs)?;
let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
&& this.token.kind == token::Semi
{
TrailingToken::Semi
} else {
TrailingToken::None
};
Ok((res, trailing))
})
}
}