2023-10-23 08:19:10 +02:00
|
|
|
//! As explained in [`super::usefulness`], values and patterns are made from constructors applied to
|
|
|
|
//! fields. This file defines a `Constructor` enum, a `Fields` struct, and various operations to
|
|
|
|
//! manipulate them and convert them from/to patterns.
|
2020-12-20 13:29:39 +00:00
|
|
|
//!
|
2023-10-23 08:19:10 +02:00
|
|
|
//! There are two important bits of core logic in this file: constructor inclusion and constructor
|
|
|
|
//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
|
|
|
|
//! is straightforward and defined in [`Constructor::is_covered_by`].
|
2020-12-20 13:29:39 +00:00
|
|
|
//!
|
2023-10-23 08:19:10 +02:00
|
|
|
//! Constructor splitting is mentioned in [`super::usefulness`] but not detailed. We describe it
|
|
|
|
//! precisely here.
|
2020-12-20 13:29:39 +00:00
|
|
|
//!
|
|
|
|
//!
|
2023-10-23 08:19:10 +02:00
|
|
|
//! # Constructor grouping and splitting
|
|
|
|
//!
|
|
|
|
//! As explained in the corresponding section in [`super::usefulness`], to make usefulness tractable
|
|
|
|
//! we need to group together constructors that have the same effect when they are used to
|
|
|
|
//! specialize the matrix.
|
|
|
|
//!
|
|
|
|
//! Example:
|
2022-04-15 15:04:34 -07:00
|
|
|
//! ```compile_fail,E0004
|
2020-12-20 13:29:39 +00:00
|
|
|
//! match (0, false) {
|
2023-10-23 08:19:10 +02:00
|
|
|
//! (0 ..=100, true) => {}
|
|
|
|
//! (50..=150, false) => {}
|
|
|
|
//! (0 ..=200, _) => {}
|
2020-12-20 13:29:39 +00:00
|
|
|
//! }
|
|
|
|
//! ```
|
|
|
|
//!
|
2023-10-23 08:19:10 +02:00
|
|
|
//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
|
|
|
|
//! `151..=200` and `200..`.
|
|
|
|
//!
|
|
|
|
//! In [`super::usefulness`], we had said that `specialize` only takes value-only constructors. We
|
|
|
|
//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
|
|
|
|
//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
|
|
|
|
//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
|
|
|
|
//!
|
|
|
|
//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
|
|
|
|
//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
|
|
|
|
//! constructors:
|
|
|
|
//! - Whose union covers the whole type, and
|
|
|
|
//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
|
|
|
|
//! each either disjoint with or covered by any given column constructor).
|
|
|
|
//!
|
|
|
|
//! We compute this in two steps: first [`ConstructorSet::for_ty`] determines the set of all
|
|
|
|
//! possible constructors for the type. Then [`ConstructorSet::split`] looks at the column of
|
|
|
|
//! constructors and splits the set into groups accordingly. The precise invariants of
|
|
|
|
//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
|
|
|
|
//!
|
|
|
|
//! Constructor splitting has two interesting special cases: integer range splitting (see
|
|
|
|
//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
|
2020-12-20 13:29:39 +00:00
|
|
|
//!
|
|
|
|
//!
|
2023-10-23 08:19:10 +02:00
|
|
|
//! # The `Missing` constructor
|
|
|
|
//!
|
|
|
|
//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
|
|
|
|
//!
|
|
|
|
//! ```
|
|
|
|
//! enum Direction { North, South, East, West }
|
|
|
|
//! # let wind = (Direction::North, 0u8);
|
|
|
|
//! match wind {
|
|
|
|
//! (Direction::North, 50..) => {}
|
|
|
|
//! (_, _) => {}
|
|
|
|
//! }
|
|
|
|
//! ```
|
|
|
|
//!
|
|
|
|
//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
|
|
|
|
//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
|
|
|
|
//! bit contextual: to know the exact list of constructors it represents we have to look at the
|
|
|
|
//! column. In practice however we don't need to, because by construction it only matches rows that
|
|
|
|
//! have wildcards. This is how this constructor is special: the only constructor that covers it is
|
|
|
|
//! `Wildcard`.
|
|
|
|
//!
|
|
|
|
//! The only place where we care about which constructors `Missing` represents is in diagnostics
|
|
|
|
//! (see `super::usefulness::WitnessMatrix::apply_constructor`).
|
|
|
|
//!
|
|
|
|
//! Extra special implementation detail: in fact, in the case where all the constructors are
|
|
|
|
//! missing, we replace `Missing` with `Wildcard` to signal this. It only makes a difference for
|
|
|
|
//! diagnostics: for `Missing` we list the missing constructors; for `Wildcard` we only output `_`.
|
|
|
|
//!
|
|
|
|
//! FIXME(Nadrieril): maybe `Missing { report_all: bool }` would be less confusing.
|
|
|
|
//!
|
|
|
|
//! We choose whether to specialize with `Missing`/`Wildcard` in
|
|
|
|
//! `super::usefulness::compute_exhaustiveness_and_reachability`.
|
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//!
|
2023-10-31 00:40:41 +01:00
|
|
|
//!
|
|
|
|
//! ## Opaque patterns
|
|
|
|
//!
|
2023-10-23 08:19:10 +02:00
|
|
|
//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
|
|
|
|
//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
|
|
|
|
//! we assume they never cover each other. In order to respect the invariants of
|
|
|
|
//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
|
2020-12-20 13:29:39 +00:00
|
|
|
|
2022-11-18 10:18:32 +01:00
|
|
|
use std::cell::Cell;
|
|
|
|
use std::cmp::{self, max, min, Ordering};
|
|
|
|
use std::fmt;
|
2022-08-09 02:14:43 +02:00
|
|
|
use std::iter::once;
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2022-11-18 10:18:32 +01:00
|
|
|
use smallvec::{smallvec, SmallVec};
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2023-09-29 18:33:07 +02:00
|
|
|
use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
|
2020-11-21 23:13:32 +00:00
|
|
|
use rustc_data_structures::captures::Captures;
|
2023-10-03 15:30:05 +02:00
|
|
|
use rustc_data_structures::fx::FxHashSet;
|
2023-10-21 18:08:09 +02:00
|
|
|
use rustc_hir::RangeEnd;
|
2023-04-19 10:57:17 +00:00
|
|
|
use rustc_index::Idx;
|
2023-05-31 12:11:58 +00:00
|
|
|
use rustc_middle::middle::stability::EvalResult;
|
2023-03-28 12:32:57 -07:00
|
|
|
use rustc_middle::mir;
|
2023-10-13 00:20:06 +02:00
|
|
|
use rustc_middle::mir::interpret::Scalar;
|
2023-10-12 23:29:16 +02:00
|
|
|
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
|
2020-11-21 23:13:32 +00:00
|
|
|
use rustc_middle::ty::layout::IntegerExt;
|
2022-02-21 22:43:15 +01:00
|
|
|
use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
|
2020-12-20 14:29:42 +00:00
|
|
|
use rustc_span::{Span, DUMMY_SP};
|
2023-09-30 23:54:31 +02:00
|
|
|
use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2022-11-18 10:18:32 +01:00
|
|
|
use self::Constructor::*;
|
2023-10-12 19:47:33 +02:00
|
|
|
use self::MaybeInfiniteInt::*;
|
2022-11-18 10:18:32 +01:00
|
|
|
use self::SliceKind::*;
|
|
|
|
|
|
|
|
use super::usefulness::{MatchCheckCtxt, PatCtxt};
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
|
|
|
|
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
|
|
|
|
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
|
2022-08-25 12:25:44 +10:00
|
|
|
if let PatKind::Or { pats } = &pat.kind {
|
2022-08-26 12:06:13 +10:00
|
|
|
for pat in pats.iter() {
|
2023-11-21 20:07:32 +01:00
|
|
|
expand(pat, vec);
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
vec.push(pat)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut pats = Vec::new();
|
|
|
|
expand(pat, &mut pats);
|
|
|
|
pats
|
|
|
|
}
|
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
/// Whether we have seen a constructor in the column or not.
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
|
|
|
|
enum Presence {
|
|
|
|
Unseen,
|
|
|
|
Seen,
|
|
|
|
}
|
|
|
|
|
2023-10-12 19:47:33 +02:00
|
|
|
/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
|
|
|
|
/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
|
|
|
|
/// `255`. See `signed_bias` for details.
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
|
|
|
|
pub(crate) enum MaybeInfiniteInt {
|
|
|
|
NegInfinity,
|
|
|
|
/// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
|
|
|
|
Finite(u128),
|
2023-10-21 20:16:48 +02:00
|
|
|
/// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range.
|
2023-10-12 19:47:33 +02:00
|
|
|
JustAfterMax,
|
|
|
|
PosInfinity,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl MaybeInfiniteInt {
|
|
|
|
// The return value of `signed_bias` should be XORed with a value to encode/decode it.
|
|
|
|
fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
|
|
|
|
match *ty.kind() {
|
|
|
|
ty::Int(ity) => {
|
|
|
|
let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
|
|
|
|
1u128 << (bits - 1)
|
|
|
|
}
|
|
|
|
_ => 0,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn new_finite(tcx: TyCtxt<'_>, ty: Ty<'_>, bits: u128) -> Self {
|
|
|
|
let bias = Self::signed_bias(tcx, ty);
|
|
|
|
// Perform a shift if the underlying types are signed, which makes the interval arithmetic
|
|
|
|
// type-independent.
|
|
|
|
let x = bits ^ bias;
|
|
|
|
Finite(x)
|
|
|
|
}
|
|
|
|
fn from_pat_range_bdy<'tcx>(
|
|
|
|
bdy: PatRangeBoundary<'tcx>,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
tcx: TyCtxt<'tcx>,
|
|
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
|
|
) -> Self {
|
|
|
|
match bdy {
|
|
|
|
PatRangeBoundary::NegInfinity => NegInfinity,
|
|
|
|
PatRangeBoundary::Finite(value) => {
|
|
|
|
let bits = value.eval_bits(tcx, param_env);
|
|
|
|
Self::new_finite(tcx, ty, bits)
|
|
|
|
}
|
|
|
|
PatRangeBoundary::PosInfinity => PosInfinity,
|
|
|
|
}
|
|
|
|
}
|
2023-10-21 20:16:48 +02:00
|
|
|
|
2023-10-21 20:16:10 +02:00
|
|
|
/// Used only for diagnostics.
|
2023-10-21 20:16:48 +02:00
|
|
|
/// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
|
|
|
|
/// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
|
|
|
|
/// `PosInfinity`.
|
2023-10-21 20:16:10 +02:00
|
|
|
fn to_diagnostic_pat_range_bdy<'tcx>(
|
|
|
|
self,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
tcx: TyCtxt<'tcx>,
|
|
|
|
) -> PatRangeBoundary<'tcx> {
|
2023-10-12 19:47:33 +02:00
|
|
|
match self {
|
|
|
|
NegInfinity => PatRangeBoundary::NegInfinity,
|
|
|
|
Finite(x) => {
|
|
|
|
let bias = Self::signed_bias(tcx, ty);
|
|
|
|
let bits = x ^ bias;
|
2023-10-13 00:20:06 +02:00
|
|
|
let size = ty.primitive_size(tcx);
|
|
|
|
match Scalar::try_from_uint(bits, size) {
|
|
|
|
Some(scalar) => {
|
|
|
|
let value = mir::Const::from_scalar(tcx, scalar, ty);
|
|
|
|
PatRangeBoundary::Finite(value)
|
|
|
|
}
|
|
|
|
// The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value
|
|
|
|
// for a type, the problem isn't that the value is too small. So it must be too
|
|
|
|
// large.
|
|
|
|
None => PatRangeBoundary::PosInfinity,
|
|
|
|
}
|
2023-10-12 19:47:33 +02:00
|
|
|
}
|
|
|
|
JustAfterMax | PosInfinity => PatRangeBoundary::PosInfinity,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-21 20:16:48 +02:00
|
|
|
/// Note: this will not turn a finite value into an infinite one or vice-versa.
|
|
|
|
pub(crate) fn minus_one(self) -> Self {
|
2023-10-12 19:47:33 +02:00
|
|
|
match self {
|
|
|
|
Finite(n) => match n.checked_sub(1) {
|
|
|
|
Some(m) => Finite(m),
|
2023-10-21 20:16:48 +02:00
|
|
|
None => bug!(),
|
2023-10-12 19:47:33 +02:00
|
|
|
},
|
|
|
|
JustAfterMax => Finite(u128::MAX),
|
|
|
|
x => x,
|
|
|
|
}
|
|
|
|
}
|
2023-10-21 20:16:48 +02:00
|
|
|
/// Note: this will not turn a finite value into an infinite one or vice-versa.
|
|
|
|
pub(crate) fn plus_one(self) -> Self {
|
2023-10-12 19:47:33 +02:00
|
|
|
match self {
|
|
|
|
Finite(n) => match n.checked_add(1) {
|
|
|
|
Some(m) => Finite(m),
|
|
|
|
None => JustAfterMax,
|
|
|
|
},
|
2023-10-13 00:20:06 +02:00
|
|
|
JustAfterMax => bug!(),
|
2023-10-12 19:47:33 +02:00
|
|
|
x => x,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-21 20:16:48 +02:00
|
|
|
/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
|
2023-10-13 00:20:06 +02:00
|
|
|
/// store a contiguous range.
|
2020-11-21 23:13:32 +00:00
|
|
|
///
|
2023-10-13 00:20:06 +02:00
|
|
|
/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
|
2023-10-21 20:16:48 +02:00
|
|
|
/// space: i.e., `range.lo < range.hi`.
|
2023-10-12 16:19:02 +02:00
|
|
|
#[derive(Clone, Copy, PartialEq, Eq)]
|
2022-12-20 16:43:34 +01:00
|
|
|
pub(crate) struct IntRange {
|
2023-10-21 20:16:48 +02:00
|
|
|
pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
|
|
|
|
pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2020-11-28 22:07:15 +00:00
|
|
|
impl IntRange {
|
2020-11-21 23:13:32 +00:00
|
|
|
#[inline]
|
2023-10-21 18:08:09 +02:00
|
|
|
pub(super) fn is_integral(ty: Ty<'_>) -> bool {
|
2023-10-12 16:51:27 +02:00
|
|
|
matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_))
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2023-10-12 19:47:33 +02:00
|
|
|
/// Best effort; will not know that e.g. `255u8..` is a singleton.
|
2023-10-21 18:08:09 +02:00
|
|
|
pub(super) fn is_singleton(&self) -> bool {
|
2023-10-21 20:16:48 +02:00
|
|
|
// Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
|
|
|
|
// to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
|
|
|
|
self.lo.plus_one() == self.hi
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
2023-09-29 19:44:12 +02:00
|
|
|
fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
|
2023-10-12 19:47:33 +02:00
|
|
|
let x = MaybeInfiniteInt::new_finite(tcx, ty, bits);
|
2023-10-21 20:16:48 +02:00
|
|
|
IntRange { lo: x, hi: x.plus_one() }
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
2023-10-12 19:47:33 +02:00
|
|
|
fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
|
2023-10-21 20:16:48 +02:00
|
|
|
if end == RangeEnd::Included {
|
|
|
|
hi = hi.plus_one();
|
2023-10-12 19:47:33 +02:00
|
|
|
}
|
2023-10-21 20:16:48 +02:00
|
|
|
if lo >= hi {
|
2023-09-29 19:44:12 +02:00
|
|
|
// This should have been caught earlier by E0030.
|
2023-10-21 20:16:48 +02:00
|
|
|
bug!("malformed range pattern: {lo:?}..{hi:?}");
|
2023-09-29 19:44:12 +02:00
|
|
|
}
|
2023-10-12 16:19:02 +02:00
|
|
|
IntRange { lo, hi }
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fn is_subrange(&self, other: &Self) -> bool {
|
2023-10-12 16:19:02 +02:00
|
|
|
other.lo <= self.lo && self.hi <= other.hi
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2020-11-28 21:23:38 +00:00
|
|
|
fn intersection(&self, other: &Self) -> Option<Self> {
|
2023-10-21 20:16:48 +02:00
|
|
|
if self.lo < other.hi && other.lo < self.hi {
|
2023-10-12 16:19:02 +02:00
|
|
|
Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
|
2020-11-21 23:13:32 +00:00
|
|
|
} else {
|
2020-11-28 21:23:38 +00:00
|
|
|
None
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-03 15:17:52 +02:00
|
|
|
/// Partition a range of integers into disjoint subranges. This does constructor splitting for
|
|
|
|
/// integer ranges as explained at the top of the file.
|
|
|
|
///
|
|
|
|
/// This returns an output that covers `self`. The output is split so that the only
|
|
|
|
/// intersections between an output range and a column range are inclusions. No output range
|
|
|
|
/// straddles the boundary of one of the inputs.
|
|
|
|
///
|
2023-10-04 15:59:16 +02:00
|
|
|
/// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
|
|
|
|
///
|
2023-10-03 15:17:52 +02:00
|
|
|
/// The following input:
|
|
|
|
/// ```text
|
2023-10-04 15:59:16 +02:00
|
|
|
/// (--------------------------) // `self`
|
|
|
|
/// (------) (----------) (-)
|
|
|
|
/// (------) (--------)
|
2023-10-03 15:17:52 +02:00
|
|
|
/// ```
|
2023-10-04 15:59:16 +02:00
|
|
|
/// is first intersected with `self`:
|
2023-10-03 15:17:52 +02:00
|
|
|
/// ```text
|
2023-10-04 15:59:16 +02:00
|
|
|
/// (--------------------------) // `self`
|
|
|
|
/// (----) (----------) (-)
|
|
|
|
/// (------) (--------)
|
2023-10-03 15:17:52 +02:00
|
|
|
/// ```
|
2023-10-04 15:59:16 +02:00
|
|
|
/// and then iterated over as follows:
|
|
|
|
/// ```text
|
|
|
|
/// (-(--)-(-)-(------)-)--(-)-
|
|
|
|
/// ```
|
|
|
|
/// where each sequence of dashes is an output range, and dashes outside parentheses are marked
|
|
|
|
/// as `Presence::Missing`.
|
2023-10-21 20:16:48 +02:00
|
|
|
///
|
|
|
|
/// ## `isize`/`usize`
|
|
|
|
///
|
|
|
|
/// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
|
|
|
|
/// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
|
|
|
|
/// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
|
|
|
|
/// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
|
|
|
|
/// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
|
|
|
|
/// not others. See discussions around the `precise_pointer_size_matching` feature for more
|
|
|
|
/// details.
|
|
|
|
///
|
|
|
|
/// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
|
|
|
|
/// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
|
|
|
|
/// fictitious ranges sensibly.
|
2023-10-03 15:17:52 +02:00
|
|
|
fn split(
|
|
|
|
&self,
|
|
|
|
column_ranges: impl Iterator<Item = IntRange>,
|
2023-10-03 15:30:05 +02:00
|
|
|
) -> impl Iterator<Item = (Presence, IntRange)> {
|
2023-10-03 15:17:52 +02:00
|
|
|
// The boundaries of ranges in `column_ranges` intersected with `self`.
|
2023-10-03 15:30:05 +02:00
|
|
|
// We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
|
|
|
|
// a range and -1 if it ends it. When the count is > 0 between two boundaries, we
|
|
|
|
// are within an input range.
|
2023-10-12 19:47:33 +02:00
|
|
|
let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
|
2023-10-03 15:17:52 +02:00
|
|
|
.filter_map(|r| self.intersection(&r))
|
2023-10-21 20:16:48 +02:00
|
|
|
.flat_map(|r| [(r.lo, 1), (r.hi, -1)])
|
2023-10-03 15:17:52 +02:00
|
|
|
.collect();
|
2023-10-04 15:59:16 +02:00
|
|
|
// We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
|
|
|
|
// order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
|
|
|
|
// the accumulated count between distinct boundary values.
|
2023-10-03 15:17:52 +02:00
|
|
|
boundaries.sort_unstable();
|
|
|
|
|
2023-10-04 15:59:16 +02:00
|
|
|
// Accumulate parenthesis counts.
|
|
|
|
let mut paren_counter = 0isize;
|
2023-10-03 15:17:52 +02:00
|
|
|
// Gather pairs of adjacent boundaries.
|
2023-10-21 20:16:48 +02:00
|
|
|
let mut prev_bdy = self.lo;
|
2023-10-04 15:59:16 +02:00
|
|
|
boundaries
|
|
|
|
.into_iter()
|
|
|
|
// End with the end of the range. The count is ignored.
|
2023-10-21 20:16:48 +02:00
|
|
|
.chain(once((self.hi, 0)))
|
2023-10-04 15:59:16 +02:00
|
|
|
// List pairs of adjacent boundaries and the count between them.
|
|
|
|
.map(move |(bdy, delta)| {
|
|
|
|
// `delta` affects the count as we cross `bdy`, so the relevant count between
|
|
|
|
// `prev_bdy` and `bdy` is untouched by `delta`.
|
|
|
|
let ret = (prev_bdy, paren_counter, bdy);
|
2023-10-03 15:17:52 +02:00
|
|
|
prev_bdy = bdy;
|
2023-10-04 15:59:16 +02:00
|
|
|
paren_counter += delta;
|
2023-10-03 15:17:52 +02:00
|
|
|
ret
|
|
|
|
})
|
2023-10-04 15:59:16 +02:00
|
|
|
// Skip empty ranges.
|
2023-10-03 15:30:05 +02:00
|
|
|
.filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
|
2023-10-03 15:17:52 +02:00
|
|
|
// Convert back to ranges.
|
2023-10-03 15:30:05 +02:00
|
|
|
.map(move |(prev_bdy, paren_count, bdy)| {
|
|
|
|
use Presence::*;
|
|
|
|
let presence = if paren_count > 0 { Seen } else { Unseen };
|
2023-10-21 20:16:48 +02:00
|
|
|
let range = IntRange { lo: prev_bdy, hi: bdy };
|
2023-10-12 19:47:33 +02:00
|
|
|
(presence, range)
|
2023-10-03 15:17:52 +02:00
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2023-10-21 20:16:48 +02:00
|
|
|
/// Whether the range denotes the fictitious values before `isize::MIN` or after
|
|
|
|
/// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
|
2023-10-13 00:20:06 +02:00
|
|
|
pub(crate) fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
|
|
|
|
ty.is_ptr_sized_integral() && !tcx.features().precise_pointer_size_matching && {
|
2023-10-21 20:16:48 +02:00
|
|
|
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
|
|
|
|
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy`
|
|
|
|
// converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `self.lo`
|
|
|
|
// otherwise.
|
2023-10-21 20:16:10 +02:00
|
|
|
let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
|
2023-10-13 00:20:06 +02:00
|
|
|
matches!(lo, PatRangeBoundary::PosInfinity)
|
2023-10-21 20:16:48 +02:00
|
|
|
|| matches!(self.hi, MaybeInfiniteInt::Finite(0))
|
2023-10-13 00:20:06 +02:00
|
|
|
}
|
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
/// Only used for displaying the range.
|
2023-10-21 20:16:10 +02:00
|
|
|
pub(super) fn to_diagnostic_pat<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Pat<'tcx> {
|
2023-10-13 00:20:06 +02:00
|
|
|
let kind = if matches!((self.lo, self.hi), (NegInfinity, PosInfinity)) {
|
|
|
|
PatKind::Wild
|
|
|
|
} else if self.is_singleton() {
|
2023-10-21 20:16:10 +02:00
|
|
|
let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
|
2023-10-12 19:47:33 +02:00
|
|
|
let value = lo.as_finite().unwrap();
|
|
|
|
PatKind::Constant { value }
|
2020-11-21 23:13:32 +00:00
|
|
|
} else {
|
2023-10-21 20:16:48 +02:00
|
|
|
// We convert to an inclusive range for diagnostics.
|
|
|
|
let mut end = RangeEnd::Included;
|
2023-10-21 20:16:10 +02:00
|
|
|
let mut lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
|
2023-10-13 00:20:06 +02:00
|
|
|
if matches!(lo, PatRangeBoundary::PosInfinity) {
|
2023-10-21 20:16:48 +02:00
|
|
|
// The only reason to get `PosInfinity` here is the special case where
|
|
|
|
// `to_diagnostic_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
|
|
|
|
// fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
|
|
|
|
// this). We show this to the user as `usize::MAX..` which is slightly incorrect but
|
|
|
|
// probably clear enough.
|
2023-10-13 00:20:06 +02:00
|
|
|
let c = ty.numeric_max_val(tcx).unwrap();
|
|
|
|
let value = mir::Const::from_ty_const(c, tcx);
|
|
|
|
lo = PatRangeBoundary::Finite(value);
|
|
|
|
}
|
2023-10-21 20:16:48 +02:00
|
|
|
let hi = if matches!(self.hi, MaybeInfiniteInt::Finite(0)) {
|
|
|
|
// The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
|
|
|
|
end = RangeEnd::Excluded;
|
|
|
|
self.hi
|
|
|
|
} else {
|
|
|
|
self.hi.minus_one()
|
|
|
|
};
|
|
|
|
let hi = hi.to_diagnostic_pat_range_bdy(ty, tcx);
|
2023-10-13 00:20:06 +02:00
|
|
|
PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
|
2020-11-21 23:13:32 +00:00
|
|
|
};
|
|
|
|
|
2022-08-25 12:25:44 +10:00
|
|
|
Pat { ty, span: DUMMY_SP, kind }
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-12 16:51:27 +02:00
|
|
|
/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
|
|
|
|
/// first.
|
2021-09-26 00:00:08 +01:00
|
|
|
impl fmt::Debug for IntRange {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
2023-10-12 19:47:33 +02:00
|
|
|
if let Finite(lo) = self.lo {
|
|
|
|
write!(f, "{lo}")?;
|
|
|
|
}
|
2023-10-21 20:16:48 +02:00
|
|
|
write!(f, "{}", RangeEnd::Excluded)?;
|
2023-10-12 19:47:33 +02:00
|
|
|
if let Finite(hi) = self.hi {
|
|
|
|
write!(f, "{hi}")?;
|
|
|
|
}
|
|
|
|
Ok(())
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-21 23:13:32 +00:00
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
|
|
enum SliceKind {
|
|
|
|
/// Patterns of length `n` (`[x, y]`).
|
2021-09-26 00:00:05 +01:00
|
|
|
FixedLen(usize),
|
2020-11-21 23:13:32 +00:00
|
|
|
/// Patterns using the `..` notation (`[x, .., y]`).
|
|
|
|
/// Captures any array constructor of `length >= i + j`.
|
|
|
|
/// In the case where `array_len` is `Some(_)`,
|
|
|
|
/// this indicates that we only care about the first `i` and the last `j` values of the array,
|
|
|
|
/// and everything in between is a wildcard `_`.
|
2021-09-26 00:00:05 +01:00
|
|
|
VarLen(usize, usize),
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
impl SliceKind {
|
2021-09-26 00:00:05 +01:00
|
|
|
fn arity(self) -> usize {
|
2020-11-21 23:13:32 +00:00
|
|
|
match self {
|
|
|
|
FixedLen(length) => length,
|
|
|
|
VarLen(prefix, suffix) => prefix + suffix,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Whether this pattern includes patterns of length `other_len`.
|
2021-09-26 00:00:05 +01:00
|
|
|
fn covers_length(self, other_len: usize) -> bool {
|
2020-11-21 23:13:32 +00:00
|
|
|
match self {
|
|
|
|
FixedLen(len) => len == other_len,
|
|
|
|
VarLen(prefix, suffix) => prefix + suffix <= other_len,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A constructor for array and slice patterns.
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
|
|
pub(super) struct Slice {
|
|
|
|
/// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
|
2021-09-26 00:00:05 +01:00
|
|
|
array_len: Option<usize>,
|
2020-11-21 23:13:32 +00:00
|
|
|
/// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
|
|
|
|
kind: SliceKind,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Slice {
|
2021-09-26 00:00:05 +01:00
|
|
|
fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
|
2020-11-21 23:13:32 +00:00
|
|
|
let kind = match (array_len, kind) {
|
|
|
|
// If the middle `..` is empty, we effectively have a fixed-length pattern.
|
|
|
|
(Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
|
|
|
|
_ => kind,
|
|
|
|
};
|
|
|
|
Slice { array_len, kind }
|
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:05 +01:00
|
|
|
fn arity(self) -> usize {
|
2020-11-21 23:13:32 +00:00
|
|
|
self.kind.arity()
|
|
|
|
}
|
|
|
|
|
2020-12-11 22:20:14 +00:00
|
|
|
/// See `Constructor::is_covered_by`
|
|
|
|
fn is_covered_by(self, other: Self) -> bool {
|
|
|
|
other.kind.covers_length(self.arity())
|
|
|
|
}
|
|
|
|
|
2023-10-03 14:38:40 +02:00
|
|
|
/// This computes constructor splitting for variable-length slices, as explained at the top of
|
|
|
|
/// the file.
|
|
|
|
///
|
|
|
|
/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
|
|
|
|
/// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
|
|
|
|
/// corresponding lengths. We obviously can't list this infinitude of constructors.
|
|
|
|
/// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
|
|
|
|
/// array lengths are equivalent.
|
|
|
|
///
|
|
|
|
/// Let's look at an example, where we are trying to split the last pattern:
|
|
|
|
/// ```
|
|
|
|
/// # fn foo(x: &[bool]) {
|
|
|
|
/// match x {
|
|
|
|
/// [true, true, ..] => {}
|
|
|
|
/// [.., false, false] => {}
|
2023-10-03 15:30:05 +02:00
|
|
|
/// [..] => {}
|
2023-10-03 14:38:40 +02:00
|
|
|
/// }
|
|
|
|
/// # }
|
|
|
|
/// ```
|
|
|
|
/// Here are the results of specialization for the first few lengths:
|
|
|
|
/// ```
|
|
|
|
/// # fn foo(x: &[bool]) { match x {
|
|
|
|
/// // length 0
|
|
|
|
/// [] => {}
|
|
|
|
/// // length 1
|
|
|
|
/// [_] => {}
|
|
|
|
/// // length 2
|
|
|
|
/// [true, true] => {}
|
|
|
|
/// [false, false] => {}
|
|
|
|
/// [_, _] => {}
|
|
|
|
/// // length 3
|
|
|
|
/// [true, true, _ ] => {}
|
|
|
|
/// [_, false, false] => {}
|
|
|
|
/// [_, _, _ ] => {}
|
|
|
|
/// // length 4
|
|
|
|
/// [true, true, _, _ ] => {}
|
|
|
|
/// [_, _, false, false] => {}
|
|
|
|
/// [_, _, _, _ ] => {}
|
|
|
|
/// // length 5
|
|
|
|
/// [true, true, _, _, _ ] => {}
|
|
|
|
/// [_, _, _, false, false] => {}
|
|
|
|
/// [_, _, _, _, _ ] => {}
|
|
|
|
/// # _ => {}
|
|
|
|
/// # }}
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
|
|
|
|
/// This means that specialization and witness computation with slices of length `l >= 4` will
|
2023-10-03 15:30:05 +02:00
|
|
|
/// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
|
|
|
|
/// will be a length `L` above which all lengths behave the same. This is exactly what we need
|
|
|
|
/// for constructor splitting.
|
2023-10-03 14:38:40 +02:00
|
|
|
///
|
|
|
|
/// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
|
|
|
|
/// saw, we can split this in two: lengths below `L` are treated individually with a
|
|
|
|
/// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
|
|
|
|
/// constructor.
|
|
|
|
///
|
|
|
|
/// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
|
|
|
|
/// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
|
|
|
|
/// long as `L` is positive (to avoid concerns about empty types), all elements after the
|
|
|
|
/// maximum prefix length and before the maximum suffix length are not examined by any
|
|
|
|
/// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
|
|
|
|
///
|
|
|
|
/// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
|
|
|
|
/// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
|
|
|
|
/// `max_slice` below will be made to have this arity `L`.
|
|
|
|
///
|
|
|
|
/// If `self` is fixed-length, it is returned as-is.
|
2023-10-03 15:30:05 +02:00
|
|
|
///
|
|
|
|
/// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
|
|
|
|
fn split(
|
|
|
|
self,
|
|
|
|
column_slices: impl Iterator<Item = Slice>,
|
|
|
|
) -> impl Iterator<Item = (Presence, Slice)> {
|
2023-10-03 14:38:40 +02:00
|
|
|
// Range of lengths below `L`.
|
|
|
|
let smaller_lengths;
|
2023-10-03 15:30:05 +02:00
|
|
|
let arity = self.arity();
|
2023-10-03 14:38:40 +02:00
|
|
|
let mut max_slice = self.kind;
|
2023-10-04 15:59:16 +02:00
|
|
|
// Tracks the smallest variable-length slice we've seen. Any slice arity above it is
|
|
|
|
// therefore `Presence::Seen` in the column.
|
2023-10-03 15:30:05 +02:00
|
|
|
let mut min_var_len = usize::MAX;
|
2023-10-04 15:59:16 +02:00
|
|
|
// Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
|
2023-10-03 15:30:05 +02:00
|
|
|
let mut seen_fixed_lens = FxHashSet::default();
|
2023-10-03 14:38:40 +02:00
|
|
|
match &mut max_slice {
|
|
|
|
VarLen(max_prefix_len, max_suffix_len) => {
|
|
|
|
// We grow `max_slice` to be larger than all slices encountered, as described above.
|
|
|
|
// For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
|
|
|
|
// `L = max_prefix_len + max_suffix_len`.
|
|
|
|
let mut max_fixed_len = 0;
|
|
|
|
for slice in column_slices {
|
|
|
|
match slice.kind {
|
|
|
|
FixedLen(len) => {
|
|
|
|
max_fixed_len = cmp::max(max_fixed_len, len);
|
2023-10-03 15:30:05 +02:00
|
|
|
if arity <= len {
|
|
|
|
seen_fixed_lens.insert(len);
|
|
|
|
}
|
2023-10-03 14:38:40 +02:00
|
|
|
}
|
|
|
|
VarLen(prefix, suffix) => {
|
|
|
|
*max_prefix_len = cmp::max(*max_prefix_len, prefix);
|
|
|
|
*max_suffix_len = cmp::max(*max_suffix_len, suffix);
|
2023-10-03 15:30:05 +02:00
|
|
|
min_var_len = cmp::min(min_var_len, prefix + suffix);
|
2023-10-03 14:38:40 +02:00
|
|
|
}
|
|
|
|
}
|
2020-12-11 22:20:14 +00:00
|
|
|
}
|
2023-10-03 14:38:40 +02:00
|
|
|
// We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
|
|
|
|
// suffix separate.
|
|
|
|
if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
|
|
|
|
// The subtraction can't overflow thanks to the above check.
|
|
|
|
// The new `max_prefix_len` is larger than its previous value.
|
|
|
|
*max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2023-10-03 14:38:40 +02:00
|
|
|
// We cap the arity of `max_slice` at the array size.
|
|
|
|
match self.array_len {
|
|
|
|
Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
|
|
|
|
_ => {}
|
|
|
|
}
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2023-10-03 14:38:40 +02:00
|
|
|
smaller_lengths = match self.array_len {
|
|
|
|
// The only admissible fixed-length slice is one of the array size. Whether `max_slice`
|
|
|
|
// is fixed-length or variable-length, it will be the only relevant slice to output
|
|
|
|
// here.
|
|
|
|
Some(_) => 0..0, // empty range
|
|
|
|
// We need to cover all arities in the range `(arity..infinity)`. We split that
|
|
|
|
// range into two: lengths smaller than `max_slice.arity()` are treated
|
|
|
|
// independently as fixed-lengths slices, and lengths above are captured by
|
|
|
|
// `max_slice`.
|
|
|
|
None => self.arity()..max_slice.arity(),
|
|
|
|
};
|
|
|
|
}
|
|
|
|
FixedLen(_) => {
|
2023-10-03 15:30:05 +02:00
|
|
|
// No need to split here. We only track presence.
|
|
|
|
for slice in column_slices {
|
|
|
|
match slice.kind {
|
|
|
|
FixedLen(len) => {
|
|
|
|
if len == arity {
|
|
|
|
seen_fixed_lens.insert(len);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
VarLen(prefix, suffix) => {
|
|
|
|
min_var_len = cmp::min(min_var_len, prefix + suffix);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-10-03 14:38:40 +02:00
|
|
|
smaller_lengths = 0..0;
|
|
|
|
}
|
2020-12-11 22:20:14 +00:00
|
|
|
};
|
2023-10-03 15:30:05 +02:00
|
|
|
|
|
|
|
smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
|
|
|
|
let arity = kind.arity();
|
|
|
|
let seen = if min_var_len <= arity || seen_fixed_lens.contains(&arity) {
|
|
|
|
Presence::Seen
|
|
|
|
} else {
|
|
|
|
Presence::Unseen
|
|
|
|
};
|
|
|
|
(seen, Slice::new(self.array_len, kind))
|
|
|
|
})
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-31 00:40:41 +01:00
|
|
|
/// A globally unique id to distinguish `Opaque` patterns.
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
|
|
pub(super) struct OpaqueId(u32);
|
|
|
|
|
|
|
|
impl OpaqueId {
|
|
|
|
fn new() -> Self {
|
|
|
|
use std::sync::atomic::{AtomicU32, Ordering};
|
|
|
|
static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
|
|
|
|
OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-21 23:13:32 +00:00
|
|
|
/// A value can be decomposed into a constructor applied to some fields. This struct represents
|
|
|
|
/// the constructor. See also `Fields`.
|
|
|
|
///
|
|
|
|
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
|
|
|
|
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
|
|
|
|
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
|
|
|
|
/// `Fields`.
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
|
|
pub(super) enum Constructor<'tcx> {
|
2023-10-23 08:19:10 +02:00
|
|
|
/// The constructor for patterns that have a single constructor, like tuples, struct patterns,
|
|
|
|
/// and references. Fixed-length arrays are treated separately with `Slice`.
|
2020-11-21 23:13:32 +00:00
|
|
|
Single,
|
|
|
|
/// Enum variants.
|
2021-05-11 15:44:56 -04:00
|
|
|
Variant(VariantIdx),
|
2023-10-12 16:51:27 +02:00
|
|
|
/// Booleans
|
|
|
|
Bool(bool),
|
2020-11-21 23:13:32 +00:00
|
|
|
/// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
|
2020-11-28 22:07:15 +00:00
|
|
|
IntRange(IntRange),
|
2020-11-21 23:13:32 +00:00
|
|
|
/// Ranges of floating-point literal values (`2.0..=5.2`).
|
2023-09-29 18:33:07 +02:00
|
|
|
F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
|
|
|
|
F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
|
2020-11-21 23:13:32 +00:00
|
|
|
/// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
|
2023-09-20 20:51:14 +02:00
|
|
|
Str(mir::Const<'tcx>),
|
2020-11-21 23:13:32 +00:00
|
|
|
/// Array and slice patterns.
|
|
|
|
Slice(Slice),
|
2023-10-31 00:40:41 +01:00
|
|
|
/// Constants that must not be matched structurally. They are treated as black boxes for the
|
|
|
|
/// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
|
|
|
|
/// match exhaustive.
|
|
|
|
/// Carries an id that must be unique within a match. We need this to ensure the invariants of
|
|
|
|
/// [`SplitConstructorSet`].
|
|
|
|
Opaque(OpaqueId),
|
2023-10-03 17:09:20 +02:00
|
|
|
/// Or-pattern.
|
|
|
|
Or,
|
|
|
|
/// Wildcard pattern.
|
|
|
|
Wildcard,
|
2020-11-21 23:13:32 +00:00
|
|
|
/// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
|
|
|
|
/// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
|
|
|
|
NonExhaustive,
|
2023-10-03 17:09:20 +02:00
|
|
|
/// Fake extra constructor for variants that should not be mentioned in diagnostics.
|
|
|
|
/// We use this for variants behind an unstable gate as well as
|
|
|
|
/// `#[doc(hidden)]` ones.
|
|
|
|
Hidden,
|
2023-10-23 08:19:10 +02:00
|
|
|
/// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
|
|
|
|
/// top of the file.
|
2023-10-14 18:25:10 +02:00
|
|
|
Missing,
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<'tcx> Constructor<'tcx> {
|
2023-10-31 00:40:41 +01:00
|
|
|
pub(super) fn is_wildcard(&self) -> bool {
|
|
|
|
matches!(self, Wildcard)
|
|
|
|
}
|
2021-09-10 16:45:04 -04:00
|
|
|
pub(super) fn is_non_exhaustive(&self) -> bool {
|
|
|
|
matches!(self, NonExhaustive)
|
|
|
|
}
|
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
pub(super) fn as_variant(&self) -> Option<VariantIdx> {
|
|
|
|
match self {
|
|
|
|
Variant(i) => Some(*i),
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
2023-10-12 16:51:27 +02:00
|
|
|
fn as_bool(&self) -> Option<bool> {
|
|
|
|
match self {
|
|
|
|
Bool(b) => Some(*b),
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
2023-10-21 18:08:09 +02:00
|
|
|
pub(super) fn as_int_range(&self) -> Option<&IntRange> {
|
2020-11-21 23:13:32 +00:00
|
|
|
match self {
|
|
|
|
IntRange(range) => Some(range),
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fn as_slice(&self) -> Option<Slice> {
|
|
|
|
match self {
|
|
|
|
Slice(slice) => Some(*slice),
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-03-05 07:28:41 +11:00
|
|
|
fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
|
2020-11-21 23:13:32 +00:00
|
|
|
match *self {
|
2021-05-11 15:44:56 -04:00
|
|
|
Variant(idx) => idx,
|
2020-11-21 23:13:32 +00:00
|
|
|
Single => {
|
|
|
|
assert!(!adt.is_enum());
|
2023-03-25 18:43:03 -07:00
|
|
|
FIRST_VARIANT
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
_ => bug!("bad constructor {:?} for adt {:?}", self, adt),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
/// The number of fields for this constructor. This must be kept in sync with
|
|
|
|
/// `Fields::wildcards`.
|
2022-07-28 08:44:49 +00:00
|
|
|
pub(super) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
|
2021-09-26 00:00:08 +01:00
|
|
|
match self {
|
|
|
|
Single | Variant(_) => match pcx.ty.kind() {
|
|
|
|
ty::Tuple(fs) => fs.len(),
|
|
|
|
ty::Ref(..) => 1,
|
|
|
|
ty::Adt(adt, ..) => {
|
|
|
|
if adt.is_box() {
|
|
|
|
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
|
|
|
// patterns. If we're here we can assume this is a box pattern.
|
|
|
|
1
|
|
|
|
} else {
|
2022-03-05 07:28:41 +11:00
|
|
|
let variant = &adt.variant(self.variant_index_for_adt(*adt));
|
2021-09-26 00:00:08 +01:00
|
|
|
Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
|
2020-11-21 23:26:53 +00:00
|
|
|
}
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
_ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
|
|
|
|
},
|
|
|
|
Slice(slice) => slice.arity(),
|
2023-10-12 16:51:27 +02:00
|
|
|
Bool(..)
|
|
|
|
| IntRange(..)
|
2023-09-29 18:33:07 +02:00
|
|
|
| F32Range(..)
|
|
|
|
| F64Range(..)
|
2023-10-12 16:51:27 +02:00
|
|
|
| Str(..)
|
2023-10-31 00:40:41 +01:00
|
|
|
| Opaque(..)
|
2023-10-03 17:09:20 +02:00
|
|
|
| NonExhaustive
|
|
|
|
| Hidden
|
2021-09-26 00:00:08 +01:00
|
|
|
| Missing { .. }
|
|
|
|
| Wildcard => 0,
|
|
|
|
Or => bug!("The `Or` constructor doesn't have a fixed arity"),
|
2020-11-21 23:26:53 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-21 23:13:32 +00:00
|
|
|
/// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
|
|
|
|
/// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
|
|
|
|
/// this checks for inclusion.
|
2020-12-03 22:22:57 +00:00
|
|
|
// We inline because this has a single call site in `Matrix::specialize_constructor`.
|
|
|
|
#[inline]
|
2022-07-28 08:44:49 +00:00
|
|
|
pub(super) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
|
2020-11-21 23:13:32 +00:00
|
|
|
match (self, other) {
|
|
|
|
// Wildcards cover anything
|
|
|
|
(_, Wildcard) => true,
|
2023-10-03 17:09:20 +02:00
|
|
|
// Only a wildcard pattern can match these special constructors.
|
|
|
|
(Wildcard | Missing { .. } | NonExhaustive | Hidden, _) => false,
|
2020-11-21 23:13:32 +00:00
|
|
|
|
|
|
|
(Single, Single) => true,
|
|
|
|
(Variant(self_id), Variant(other_id)) => self_id == other_id,
|
2023-10-12 16:51:27 +02:00
|
|
|
(Bool(self_b), Bool(other_b)) => self_b == other_b,
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2023-10-03 16:21:40 +02:00
|
|
|
(IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
|
2023-09-29 18:33:07 +02:00
|
|
|
(F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
|
|
|
|
self_from.ge(other_from)
|
|
|
|
&& match self_to.partial_cmp(other_to) {
|
|
|
|
Some(Ordering::Less) => true,
|
|
|
|
Some(Ordering::Equal) => other_end == self_end,
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
|
|
|
|
self_from.ge(other_from)
|
|
|
|
&& match self_to.partial_cmp(other_to) {
|
|
|
|
Some(Ordering::Less) => true,
|
|
|
|
Some(Ordering::Equal) => other_end == self_end,
|
|
|
|
_ => false,
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
(Str(self_val), Str(other_val)) => {
|
2022-03-09 13:56:12 +01:00
|
|
|
// FIXME Once valtrees are available we can directly use the bytes
|
|
|
|
// in the `Str` variant of the valtree for the comparison here.
|
2022-06-09 09:27:12 +10:00
|
|
|
self_val == other_val
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
(Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
|
|
|
|
|
2023-10-31 00:40:41 +01:00
|
|
|
// Opaque constructors don't interact with anything unless they come from the
|
|
|
|
// syntactically identical pattern.
|
|
|
|
(Opaque(self_id), Opaque(other_id)) => self_id == other_id,
|
|
|
|
(Opaque(..), _) | (_, Opaque(..)) => false,
|
2020-11-21 23:13:32 +00:00
|
|
|
|
|
|
|
_ => span_bug!(
|
|
|
|
pcx.span,
|
|
|
|
"trying to compare incompatible constructors {:?} and {:?}",
|
|
|
|
self,
|
|
|
|
other
|
|
|
|
),
|
|
|
|
}
|
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
}
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
/// Describes the set of all constructors for a type.
|
2023-10-05 00:58:14 +02:00
|
|
|
#[derive(Debug)]
|
2023-10-03 15:30:05 +02:00
|
|
|
pub(super) enum ConstructorSet {
|
|
|
|
/// The type has a single constructor, e.g. `&T` or a struct.
|
|
|
|
Single,
|
|
|
|
/// This type has the following list of constructors.
|
2023-10-03 17:09:20 +02:00
|
|
|
/// Some variants are hidden, which means they won't be mentioned in diagnostics unless the user
|
|
|
|
/// mentioned them first. We use this for variants behind an unstable gate as well as
|
|
|
|
/// `#[doc(hidden)]` ones.
|
|
|
|
Variants {
|
|
|
|
visible_variants: Vec<VariantIdx>,
|
|
|
|
hidden_variants: Vec<VariantIdx>,
|
|
|
|
non_exhaustive: bool,
|
|
|
|
},
|
2023-10-12 16:51:27 +02:00
|
|
|
/// Booleans.
|
|
|
|
Bool,
|
2023-10-03 15:30:05 +02:00
|
|
|
/// The type is spanned by integer values. The range or ranges give the set of allowed values.
|
|
|
|
/// The second range is only useful for `char`.
|
2023-10-13 00:20:06 +02:00
|
|
|
Integers { range_1: IntRange, range_2: Option<IntRange> },
|
2023-10-03 15:30:05 +02:00
|
|
|
/// The type is matched by slices. The usize is the compile-time length of the array, if known.
|
|
|
|
Slice(Option<usize>),
|
|
|
|
/// The type is matched by slices whose elements are uninhabited.
|
|
|
|
SliceOfEmpty,
|
|
|
|
/// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
|
|
|
|
/// floats.
|
|
|
|
Unlistable,
|
|
|
|
/// The type has no inhabitants.
|
|
|
|
Uninhabited,
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
/// Describes the result of analyzing the constructors in a column of a match.
|
2020-12-20 13:29:39 +00:00
|
|
|
///
|
2023-10-03 15:30:05 +02:00
|
|
|
/// `present` is morally the set of constructors present in the column, and `missing` is the set of
|
|
|
|
/// constructors that exist in the type but are not present in the column.
|
2020-12-20 13:29:39 +00:00
|
|
|
///
|
2023-10-23 08:19:10 +02:00
|
|
|
/// More formally, if we discard wildcards from the column, this respects the following constraints:
|
|
|
|
/// 1. the union of `present` and `missing` covers the whole type
|
|
|
|
/// 2. each constructor in `present` is covered by something in the column
|
|
|
|
/// 3. no constructor in `missing` is covered by anything in the column
|
|
|
|
/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
|
|
|
|
/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
|
|
|
|
/// the file);
|
|
|
|
/// 6. constructors in `present` and `missing` are split for the column; in other words, they are
|
|
|
|
/// either fully included in or fully disjoint from each constructor in the column. In other
|
|
|
|
/// words, there are no non-trivial intersections like between `0..10` and `5..15`.
|
|
|
|
///
|
|
|
|
/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
|
|
|
|
/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
|
|
|
|
/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
|
2023-10-05 00:58:14 +02:00
|
|
|
#[derive(Debug)]
|
2023-10-14 18:25:10 +02:00
|
|
|
pub(super) struct SplitConstructorSet<'tcx> {
|
|
|
|
pub(super) present: SmallVec<[Constructor<'tcx>; 1]>,
|
|
|
|
pub(super) missing: Vec<Constructor<'tcx>>,
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
impl ConstructorSet {
|
2023-10-23 08:19:10 +02:00
|
|
|
/// Creates a set that represents all the constructors of `ty`.
|
2023-10-05 00:58:14 +02:00
|
|
|
#[instrument(level = "debug", skip(cx), ret)]
|
2023-10-03 15:30:05 +02:00
|
|
|
pub(super) fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
|
2023-10-12 19:47:33 +02:00
|
|
|
let make_range = |start, end| {
|
|
|
|
IntRange::from_range(
|
|
|
|
MaybeInfiniteInt::new_finite(cx.tcx, ty, start),
|
|
|
|
MaybeInfiniteInt::new_finite(cx.tcx, ty, end),
|
|
|
|
RangeEnd::Included,
|
|
|
|
)
|
|
|
|
};
|
2023-10-03 15:30:05 +02:00
|
|
|
// This determines the set of all possible constructors for the type `ty`. For numbers,
|
2020-12-14 01:09:06 +00:00
|
|
|
// arrays and slices we use ranges and variable-length slices when appropriate.
|
|
|
|
//
|
|
|
|
// If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
|
|
|
|
// are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
|
|
|
|
// returned list of constructors.
|
2023-10-03 15:30:05 +02:00
|
|
|
// Invariant: this is `Uninhabited` if and only if the type is uninhabited (as determined by
|
2020-12-14 01:09:06 +00:00
|
|
|
// `cx.is_uninhabited()`).
|
2023-10-03 15:30:05 +02:00
|
|
|
match ty.kind() {
|
2023-10-12 16:51:27 +02:00
|
|
|
ty::Bool => Self::Bool,
|
2023-10-03 15:30:05 +02:00
|
|
|
ty::Char => {
|
|
|
|
// The valid Unicode Scalar Value ranges.
|
|
|
|
Self::Integers {
|
|
|
|
range_1: make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
|
|
|
|
range_2: Some(make_range('\u{E000}' as u128, '\u{10FFFF}' as u128)),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
&ty::Int(ity) => {
|
2023-10-13 00:20:06 +02:00
|
|
|
let range = if ty.is_ptr_sized_integral()
|
|
|
|
&& !cx.tcx.features().precise_pointer_size_matching
|
|
|
|
{
|
|
|
|
// The min/max values of `isize` are not allowed to be observed unless the
|
|
|
|
// `precise_pointer_size_matching` feature is enabled.
|
|
|
|
IntRange { lo: NegInfinity, hi: PosInfinity }
|
|
|
|
} else {
|
|
|
|
let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
|
|
|
|
let min = 1u128 << (bits - 1);
|
|
|
|
let max = min - 1;
|
|
|
|
make_range(min, max)
|
|
|
|
};
|
|
|
|
Self::Integers { range_1: range, range_2: None }
|
2023-10-03 15:30:05 +02:00
|
|
|
}
|
|
|
|
&ty::Uint(uty) => {
|
2023-10-13 00:20:06 +02:00
|
|
|
let range = if ty.is_ptr_sized_integral()
|
|
|
|
&& !cx.tcx.features().precise_pointer_size_matching
|
|
|
|
{
|
|
|
|
// The max value of `usize` is not allowed to be observed unless the
|
|
|
|
// `precise_pointer_size_matching` feature is enabled.
|
|
|
|
let lo = MaybeInfiniteInt::new_finite(cx.tcx, ty, 0);
|
|
|
|
IntRange { lo, hi: PosInfinity }
|
|
|
|
} else {
|
|
|
|
let size = Integer::from_uint_ty(&cx.tcx, uty).size();
|
|
|
|
let max = size.truncate(u128::MAX);
|
|
|
|
make_range(0, max)
|
|
|
|
};
|
|
|
|
Self::Integers { range_1: range, range_2: None }
|
2023-10-03 15:30:05 +02:00
|
|
|
}
|
2023-02-14 08:51:19 +00:00
|
|
|
ty::Array(sub_ty, len) if len.try_eval_target_usize(cx.tcx, cx.param_env).is_some() => {
|
|
|
|
let len = len.eval_target_usize(cx.tcx, cx.param_env) as usize;
|
Overhaul `TyS` and `Ty`.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
2022-01-25 14:13:38 +11:00
|
|
|
if len != 0 && cx.is_uninhabited(*sub_ty) {
|
2023-10-03 15:30:05 +02:00
|
|
|
Self::Uninhabited
|
2020-12-14 01:09:06 +00:00
|
|
|
} else {
|
2023-10-03 15:30:05 +02:00
|
|
|
Self::Slice(Some(len))
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
// Treat arrays of a constant but unknown length like slices.
|
|
|
|
ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
|
2023-10-03 15:30:05 +02:00
|
|
|
if cx.is_uninhabited(*sub_ty) {
|
|
|
|
Self::SliceOfEmpty
|
|
|
|
} else {
|
|
|
|
Self::Slice(None)
|
|
|
|
}
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
2023-07-11 22:35:29 +01:00
|
|
|
ty::Adt(def, args) if def.is_enum() => {
|
2020-12-14 01:09:06 +00:00
|
|
|
// If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
|
|
|
|
// additional "unknown" constructor.
|
|
|
|
// There is no point in enumerating all possible variants, because the user can't
|
|
|
|
// actually match against them all themselves. So we always return only the fictitious
|
|
|
|
// constructor.
|
|
|
|
// E.g., in an example like:
|
|
|
|
//
|
|
|
|
// ```
|
|
|
|
// let err: io::ErrorKind = ...;
|
|
|
|
// match err {
|
|
|
|
// io::ErrorKind::NotFound => {},
|
|
|
|
// }
|
|
|
|
// ```
|
|
|
|
//
|
|
|
|
// we don't want to show every possible IO error, but instead have only `_` as the
|
|
|
|
// witness.
|
2023-10-03 15:30:05 +02:00
|
|
|
let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty);
|
2021-09-18 16:52:43 -04:00
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
if def.variants().is_empty() && !is_declared_nonexhaustive {
|
|
|
|
Self::Uninhabited
|
|
|
|
} else {
|
|
|
|
let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns;
|
2023-10-03 17:09:20 +02:00
|
|
|
let (hidden_variants, visible_variants) = def
|
2023-10-03 15:30:05 +02:00
|
|
|
.variants()
|
2023-07-11 22:35:29 +01:00
|
|
|
.iter_enumerated()
|
|
|
|
.filter(|(_, v)| {
|
|
|
|
// If `exhaustive_patterns` is enabled, we exclude variants known to be
|
|
|
|
// uninhabited.
|
|
|
|
!is_exhaustive_pat_feature
|
|
|
|
|| v.inhabited_predicate(cx.tcx, *def)
|
|
|
|
.instantiate(cx.tcx, args)
|
|
|
|
.apply(cx.tcx, cx.param_env, cx.module)
|
|
|
|
})
|
2023-10-03 15:30:05 +02:00
|
|
|
.map(|(idx, _)| idx)
|
2023-10-03 17:09:20 +02:00
|
|
|
.partition(|idx| {
|
|
|
|
let variant_def_id = def.variant(*idx).def_id;
|
|
|
|
// Filter variants that depend on a disabled unstable feature.
|
|
|
|
let is_unstable = matches!(
|
|
|
|
cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
|
|
|
|
EvalResult::Deny { .. }
|
|
|
|
);
|
|
|
|
// Filter foreign `#[doc(hidden)]` variants.
|
|
|
|
let is_doc_hidden =
|
|
|
|
cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
|
|
|
|
is_unstable || is_doc_hidden
|
|
|
|
});
|
|
|
|
|
|
|
|
Self::Variants {
|
|
|
|
visible_variants,
|
|
|
|
hidden_variants,
|
|
|
|
non_exhaustive: is_declared_nonexhaustive,
|
|
|
|
}
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
ty::Never => Self::Uninhabited,
|
|
|
|
_ if cx.is_uninhabited(ty) => Self::Uninhabited,
|
|
|
|
ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => Self::Single,
|
|
|
|
// This type is one for which we cannot list constructors, like `str` or `f64`.
|
|
|
|
_ => Self::Unlistable,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-23 08:19:10 +02:00
|
|
|
/// This analyzes a column of constructors to 1/ determine which constructors of the type (if
|
|
|
|
/// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
|
|
|
|
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
|
|
|
|
/// and its invariants.
|
2023-10-05 00:58:14 +02:00
|
|
|
#[instrument(level = "debug", skip(self, pcx, ctors), ret)]
|
2023-10-14 18:25:10 +02:00
|
|
|
pub(super) fn split<'a, 'tcx>(
|
2023-10-03 15:30:05 +02:00
|
|
|
&self,
|
|
|
|
pcx: &PatCtxt<'_, '_, 'tcx>,
|
|
|
|
ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
|
|
|
|
) -> SplitConstructorSet<'tcx>
|
|
|
|
where
|
|
|
|
'tcx: 'a,
|
|
|
|
{
|
|
|
|
let mut present: SmallVec<[_; 1]> = SmallVec::new();
|
2023-10-03 19:51:18 +02:00
|
|
|
let mut missing = Vec::new();
|
2023-10-31 00:40:41 +01:00
|
|
|
// Constructors in `ctors`, except wildcards and opaques.
|
|
|
|
let mut seen = Vec::new();
|
|
|
|
for ctor in ctors.cloned() {
|
|
|
|
if let Constructor::Opaque(..) = ctor {
|
|
|
|
present.push(ctor);
|
|
|
|
} else if !ctor.is_wildcard() {
|
|
|
|
seen.push(ctor);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-03 15:30:05 +02:00
|
|
|
match self {
|
|
|
|
ConstructorSet::Single => {
|
2023-10-31 00:40:41 +01:00
|
|
|
if seen.is_empty() {
|
2023-10-03 15:30:05 +02:00
|
|
|
missing.push(Single);
|
|
|
|
} else {
|
|
|
|
present.push(Single);
|
|
|
|
}
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
2023-10-03 17:09:20 +02:00
|
|
|
ConstructorSet::Variants { visible_variants, hidden_variants, non_exhaustive } => {
|
2023-10-31 00:40:41 +01:00
|
|
|
let seen_set: FxHashSet<_> = seen.iter().map(|c| c.as_variant().unwrap()).collect();
|
2023-10-03 15:30:05 +02:00
|
|
|
let mut skipped_a_hidden_variant = false;
|
2023-10-14 18:25:10 +02:00
|
|
|
|
2023-10-03 17:09:20 +02:00
|
|
|
for variant in visible_variants {
|
2023-10-03 15:30:05 +02:00
|
|
|
let ctor = Variant(*variant);
|
2023-11-21 20:07:32 +01:00
|
|
|
if seen_set.contains(variant) {
|
2023-10-03 15:30:05 +02:00
|
|
|
present.push(ctor);
|
|
|
|
} else {
|
|
|
|
missing.push(ctor);
|
|
|
|
}
|
|
|
|
}
|
2023-10-03 17:09:20 +02:00
|
|
|
|
|
|
|
for variant in hidden_variants {
|
|
|
|
let ctor = Variant(*variant);
|
2023-11-21 20:07:32 +01:00
|
|
|
if seen_set.contains(variant) {
|
2023-10-03 17:09:20 +02:00
|
|
|
present.push(ctor);
|
|
|
|
} else {
|
|
|
|
skipped_a_hidden_variant = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if skipped_a_hidden_variant {
|
|
|
|
missing.push(Hidden);
|
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
|
|
|
|
if *non_exhaustive {
|
|
|
|
missing.push(NonExhaustive);
|
|
|
|
}
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
2023-10-12 16:51:27 +02:00
|
|
|
ConstructorSet::Bool => {
|
|
|
|
let mut seen_false = false;
|
|
|
|
let mut seen_true = false;
|
2023-10-31 00:40:41 +01:00
|
|
|
for b in seen.iter().map(|ctor| ctor.as_bool().unwrap()) {
|
2023-10-12 16:51:27 +02:00
|
|
|
if b {
|
|
|
|
seen_true = true;
|
|
|
|
} else {
|
|
|
|
seen_false = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if seen_false {
|
|
|
|
present.push(Bool(false));
|
|
|
|
} else {
|
|
|
|
missing.push(Bool(false));
|
|
|
|
}
|
|
|
|
if seen_true {
|
|
|
|
present.push(Bool(true));
|
|
|
|
} else {
|
|
|
|
missing.push(Bool(true));
|
|
|
|
}
|
|
|
|
}
|
2023-10-13 00:20:06 +02:00
|
|
|
ConstructorSet::Integers { range_1, range_2 } => {
|
2023-10-03 19:51:18 +02:00
|
|
|
let seen_ranges: Vec<_> =
|
2023-10-31 00:40:41 +01:00
|
|
|
seen.iter().map(|ctor| ctor.as_int_range().unwrap().clone()).collect();
|
2023-10-03 19:51:18 +02:00
|
|
|
for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
|
2023-10-03 15:30:05 +02:00
|
|
|
match seen {
|
|
|
|
Presence::Unseen => missing.push(IntRange(splitted_range)),
|
|
|
|
Presence::Seen => present.push(IntRange(splitted_range)),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if let Some(range_2) = range_2 {
|
2023-10-03 19:51:18 +02:00
|
|
|
for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
|
2023-10-03 15:30:05 +02:00
|
|
|
match seen {
|
|
|
|
Presence::Unseen => missing.push(IntRange(splitted_range)),
|
|
|
|
Presence::Seen => present.push(IntRange(splitted_range)),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
&ConstructorSet::Slice(array_len) => {
|
2023-10-31 00:40:41 +01:00
|
|
|
let seen_slices = seen.iter().map(|c| c.as_slice().unwrap());
|
2023-10-05 00:58:14 +02:00
|
|
|
let base_slice = Slice::new(array_len, VarLen(0, 0));
|
2023-10-03 15:30:05 +02:00
|
|
|
for (seen, splitted_slice) in base_slice.split(seen_slices) {
|
|
|
|
let ctor = Slice(splitted_slice);
|
|
|
|
match seen {
|
|
|
|
Presence::Unseen => missing.push(ctor),
|
|
|
|
Presence::Seen => present.push(ctor),
|
|
|
|
}
|
|
|
|
}
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
ConstructorSet::SliceOfEmpty => {
|
2023-10-05 00:58:14 +02:00
|
|
|
// This one is tricky because even though there's only one possible value of this
|
|
|
|
// type (namely `[]`), slice patterns of all lengths are allowed, they're just
|
|
|
|
// unreachable if length != 0.
|
|
|
|
// We still gather the seen constructors in `present`, but the only slice that can
|
|
|
|
// go in `missing` is `[]`.
|
2023-10-31 00:40:41 +01:00
|
|
|
let seen_slices = seen.iter().map(|c| c.as_slice().unwrap());
|
2023-10-05 00:58:14 +02:00
|
|
|
let base_slice = Slice::new(None, VarLen(0, 0));
|
|
|
|
for (seen, splitted_slice) in base_slice.split(seen_slices) {
|
|
|
|
let ctor = Slice(splitted_slice);
|
|
|
|
match seen {
|
|
|
|
Presence::Seen => present.push(ctor),
|
|
|
|
Presence::Unseen if splitted_slice.arity() == 0 => {
|
|
|
|
missing.push(Slice(Slice::new(None, FixedLen(0))))
|
|
|
|
}
|
|
|
|
Presence::Unseen => {}
|
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
ConstructorSet::Unlistable => {
|
|
|
|
// Since we can't list constructors, we take the ones in the column. This might list
|
|
|
|
// some constructors several times but there's not much we can do.
|
2023-10-31 00:40:41 +01:00
|
|
|
present.extend(seen);
|
2023-10-03 15:30:05 +02:00
|
|
|
missing.push(NonExhaustive);
|
|
|
|
}
|
|
|
|
// If `exhaustive_patterns` is disabled and our scrutinee is an empty type, we cannot
|
2020-12-14 01:09:06 +00:00
|
|
|
// expose its emptiness. The exception is if the pattern is at the top level, because we
|
|
|
|
// want empty matches to be considered exhaustive.
|
2023-10-03 15:30:05 +02:00
|
|
|
ConstructorSet::Uninhabited
|
|
|
|
if !pcx.cx.tcx.features().exhaustive_patterns && !pcx.is_top_level =>
|
|
|
|
{
|
|
|
|
missing.push(NonExhaustive);
|
2020-12-14 01:09:06 +00:00
|
|
|
}
|
2023-10-03 15:30:05 +02:00
|
|
|
ConstructorSet::Uninhabited => {}
|
|
|
|
}
|
2021-09-10 16:45:04 -04:00
|
|
|
|
2023-10-14 18:25:10 +02:00
|
|
|
SplitConstructorSet { present, missing }
|
2020-12-13 23:56:13 +00:00
|
|
|
}
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// A value can be decomposed into a constructor applied to some fields. This struct represents
|
|
|
|
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
|
|
|
|
///
|
2021-09-22 18:16:07 +01:00
|
|
|
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
|
|
|
|
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
|
|
|
|
/// given a pattern we fill some of the fields with its subpatterns.
|
|
|
|
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
|
|
|
|
/// `extract_pattern_arguments` we fill some of the entries, and the result is
|
|
|
|
/// `[Some(0), _, _, _]`.
|
2022-04-15 15:04:34 -07:00
|
|
|
/// ```compile_fail,E0004
|
|
|
|
/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
|
2021-09-22 18:16:07 +01:00
|
|
|
/// let x: [Option<u8>; 4] = foo();
|
|
|
|
/// match x {
|
|
|
|
/// [Some(0), ..] => {}
|
|
|
|
/// }
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// Note that the number of fields of a constructor may not match the fields declared in the
|
|
|
|
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
|
|
|
|
/// because the code mustn't observe that it is uninhabited. In that case that field is not
|
2023-03-28 12:32:57 -07:00
|
|
|
/// included in `fields`. For that reason, when you have a `FieldIdx` you must use
|
2021-09-22 18:16:07 +01:00
|
|
|
/// `index_with_declared_idx`.
|
2021-09-25 17:46:44 +01:00
|
|
|
#[derive(Debug, Clone, Copy)]
|
2021-09-22 18:16:07 +01:00
|
|
|
pub(super) struct Fields<'p, 'tcx> {
|
2021-09-25 17:46:44 +01:00
|
|
|
fields: &'p [DeconstructedPat<'p, 'tcx>],
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<'p, 'tcx> Fields<'p, 'tcx> {
|
2021-09-22 18:16:07 +01:00
|
|
|
fn empty() -> Self {
|
2021-09-25 17:46:44 +01:00
|
|
|
Fields { fields: &[] }
|
2021-09-22 18:16:07 +01:00
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
|
|
|
|
let field: &_ = cx.pattern_arena.alloc(field);
|
2021-09-25 17:46:44 +01:00
|
|
|
Fields { fields: std::slice::from_ref(field) }
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
pub(super) fn from_iter(
|
2021-09-22 18:16:07 +01:00
|
|
|
cx: &MatchCheckCtxt<'p, 'tcx>,
|
2021-09-26 00:00:08 +01:00
|
|
|
fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
|
2021-09-22 18:16:07 +01:00
|
|
|
) -> Self {
|
2021-09-25 17:46:44 +01:00
|
|
|
let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
|
|
|
|
Fields { fields }
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fn wildcards_from_tys(
|
|
|
|
cx: &MatchCheckCtxt<'p, 'tcx>,
|
|
|
|
tys: impl IntoIterator<Item = Ty<'tcx>>,
|
2023-04-01 17:54:20 +01:00
|
|
|
span: Span,
|
2020-11-21 23:13:32 +00:00
|
|
|
) -> Self {
|
2023-04-01 17:54:20 +01:00
|
|
|
Fields::from_iter(cx, tys.into_iter().map(|ty| DeconstructedPat::wildcard(ty, span)))
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2021-09-22 18:16:07 +01:00
|
|
|
// In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
|
|
|
|
// uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
|
|
|
|
// This lists the fields we keep along with their types.
|
|
|
|
fn list_variant_nonhidden_fields<'a>(
|
|
|
|
cx: &'a MatchCheckCtxt<'p, 'tcx>,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
variant: &'a VariantDef,
|
2023-03-28 12:32:57 -07:00
|
|
|
) -> impl Iterator<Item = (FieldIdx, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
|
2023-07-11 22:35:29 +01:00
|
|
|
let ty::Adt(adt, args) = ty.kind() else { bug!() };
|
2021-09-22 18:16:07 +01:00
|
|
|
// Whether we must not match the fields of this variant exhaustively.
|
2022-03-05 07:28:41 +11:00
|
|
|
let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
|
2021-09-22 18:16:07 +01:00
|
|
|
|
|
|
|
variant.fields.iter().enumerate().filter_map(move |(i, field)| {
|
2023-07-11 22:35:29 +01:00
|
|
|
let ty = field.ty(cx.tcx, args);
|
2021-10-01 19:09:43 +01:00
|
|
|
// `field.ty()` doesn't normalize after substituting.
|
|
|
|
let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
|
2021-09-22 18:16:07 +01:00
|
|
|
let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
|
|
|
|
let is_uninhabited = cx.is_uninhabited(ty);
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2021-09-22 18:16:07 +01:00
|
|
|
if is_uninhabited && (!is_visible || is_non_exhaustive) {
|
|
|
|
None
|
|
|
|
} else {
|
2023-03-28 12:32:57 -07:00
|
|
|
Some((FieldIdx::new(i), ty))
|
2021-09-22 18:16:07 +01:00
|
|
|
}
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
/// Creates a new list of wildcard fields for a given constructor. The result must have a
|
|
|
|
/// length of `constructor.arity()`.
|
2022-07-28 08:49:39 +00:00
|
|
|
#[instrument(level = "trace")]
|
|
|
|
pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
|
2020-11-21 23:13:32 +00:00
|
|
|
let ret = match constructor {
|
2022-07-28 08:49:39 +00:00
|
|
|
Single | Variant(_) => match pcx.ty.kind() {
|
2023-04-01 17:54:20 +01:00
|
|
|
ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter(), pcx.span),
|
|
|
|
ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty), pcx.span),
|
2023-07-11 22:35:29 +01:00
|
|
|
ty::Adt(adt, args) => {
|
2020-11-21 23:13:32 +00:00
|
|
|
if adt.is_box() {
|
2021-09-26 00:00:08 +01:00
|
|
|
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
|
|
|
// patterns. If we're here we can assume this is a box pattern.
|
2023-07-11 22:35:29 +01:00
|
|
|
Fields::wildcards_from_tys(pcx.cx, once(args.type_at(0)), pcx.span)
|
2020-11-21 23:13:32 +00:00
|
|
|
} else {
|
2022-03-05 07:28:41 +11:00
|
|
|
let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
|
2022-07-28 08:49:39 +00:00
|
|
|
let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
|
2021-09-22 18:16:07 +01:00
|
|
|
.map(|(_, ty)| ty);
|
2023-04-01 17:54:20 +01:00
|
|
|
Fields::wildcards_from_tys(pcx.cx, tys, pcx.span)
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
}
|
2022-07-28 08:49:39 +00:00
|
|
|
_ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
|
2020-11-21 23:13:32 +00:00
|
|
|
},
|
2022-07-28 08:49:39 +00:00
|
|
|
Slice(slice) => match *pcx.ty.kind() {
|
2020-11-21 23:13:32 +00:00
|
|
|
ty::Slice(ty) | ty::Array(ty, _) => {
|
|
|
|
let arity = slice.arity();
|
2023-04-01 17:54:20 +01:00
|
|
|
Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty), pcx.span)
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
2022-07-28 08:49:39 +00:00
|
|
|
_ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
|
2020-11-21 23:13:32 +00:00
|
|
|
},
|
2023-10-12 16:51:27 +02:00
|
|
|
Bool(..)
|
|
|
|
| IntRange(..)
|
2023-09-29 18:33:07 +02:00
|
|
|
| F32Range(..)
|
|
|
|
| F64Range(..)
|
2023-10-12 16:51:27 +02:00
|
|
|
| Str(..)
|
2023-10-31 00:40:41 +01:00
|
|
|
| Opaque(..)
|
2023-10-03 17:09:20 +02:00
|
|
|
| NonExhaustive
|
|
|
|
| Hidden
|
2021-09-10 16:45:04 -04:00
|
|
|
| Missing { .. }
|
2021-09-22 18:16:07 +01:00
|
|
|
| Wildcard => Fields::empty(),
|
2021-09-26 00:00:08 +01:00
|
|
|
Or => {
|
|
|
|
bug!("called `Fields::wildcards` on an `Or` ctor")
|
|
|
|
}
|
2020-11-21 23:13:32 +00:00
|
|
|
};
|
2022-07-28 08:49:39 +00:00
|
|
|
debug!(?ret);
|
2020-11-21 23:13:32 +00:00
|
|
|
ret
|
|
|
|
}
|
|
|
|
|
2021-09-22 18:16:07 +01:00
|
|
|
/// Returns the list of patterns.
|
|
|
|
pub(super) fn iter_patterns<'a>(
|
|
|
|
&'a self,
|
2021-09-26 00:00:08 +01:00
|
|
|
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
2021-09-25 17:46:44 +01:00
|
|
|
self.fields.iter()
|
2021-09-22 18:16:07 +01:00
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
2021-09-22 18:16:07 +01:00
|
|
|
|
2021-09-25 21:48:50 +01:00
|
|
|
/// Values and patterns can be represented as a constructor applied to some fields. This represents
|
|
|
|
/// a pattern in this form.
|
2023-10-14 16:30:23 +02:00
|
|
|
/// This also uses interior mutability to keep track of whether the pattern has been found reachable
|
|
|
|
/// during analysis. For this reason they cannot be cloned.
|
|
|
|
/// A `DeconstructedPat` will almost always come from user input; the only exception are some
|
|
|
|
/// `Wildcard`s introduced during specialization.
|
2021-09-26 00:00:08 +01:00
|
|
|
pub(crate) struct DeconstructedPat<'p, 'tcx> {
|
|
|
|
ctor: Constructor<'tcx>,
|
|
|
|
fields: Fields<'p, 'tcx>,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
span: Span,
|
2021-09-25 21:48:50 +01:00
|
|
|
reachable: Cell<bool>,
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
|
2023-04-01 17:54:20 +01:00
|
|
|
pub(super) fn wildcard(ty: Ty<'tcx>, span: Span) -> Self {
|
|
|
|
Self::new(Wildcard, Fields::empty(), ty, span)
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
|
2021-09-25 21:48:50 +01:00
|
|
|
pub(super) fn new(
|
|
|
|
ctor: Constructor<'tcx>,
|
|
|
|
fields: Fields<'p, 'tcx>,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
span: Span,
|
|
|
|
) -> Self {
|
|
|
|
DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) }
|
|
|
|
}
|
|
|
|
|
2023-10-23 08:19:10 +02:00
|
|
|
/// Note: the input patterns must have been lowered through
|
|
|
|
/// `super::check_match::MatchVisitor::lower_pattern`.
|
2021-09-26 00:00:08 +01:00
|
|
|
pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
|
|
|
|
let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
|
|
|
|
let ctor;
|
2021-09-25 17:46:44 +01:00
|
|
|
let fields;
|
2022-08-25 12:25:44 +10:00
|
|
|
match &pat.kind {
|
2023-10-05 14:57:14 +00:00
|
|
|
PatKind::AscribeUserType { subpattern, .. }
|
|
|
|
| PatKind::InlineConstant { subpattern, .. } => return mkpat(subpattern),
|
2021-09-26 00:00:08 +01:00
|
|
|
PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
|
|
|
|
PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
|
|
|
|
ctor = Wildcard;
|
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
|
|
|
PatKind::Deref { subpattern } => {
|
|
|
|
ctor = Single;
|
|
|
|
fields = Fields::singleton(cx, mkpat(subpattern));
|
|
|
|
}
|
|
|
|
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
|
|
|
|
match pat.ty.kind() {
|
|
|
|
ty::Tuple(fs) => {
|
|
|
|
ctor = Single;
|
2022-02-07 16:06:31 +01:00
|
|
|
let mut wilds: SmallVec<[_; 2]> =
|
2023-04-01 17:54:20 +01:00
|
|
|
fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
|
2021-09-26 00:00:08 +01:00
|
|
|
for pat in subpatterns {
|
2021-09-25 17:46:44 +01:00
|
|
|
wilds[pat.field.index()] = mkpat(&pat.pattern);
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
2021-09-25 17:46:44 +01:00
|
|
|
fields = Fields::from_iter(cx, wilds);
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
2023-07-11 22:35:29 +01:00
|
|
|
ty::Adt(adt, args) if adt.is_box() => {
|
2021-09-26 00:00:08 +01:00
|
|
|
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
|
|
|
// patterns. If we're here we can assume this is a box pattern.
|
|
|
|
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
|
|
|
|
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
|
|
|
|
// ignore other fields than the first one. This will trigger an error later
|
|
|
|
// anyway.
|
|
|
|
// See https://github.com/rust-lang/rust/issues/82772 ,
|
|
|
|
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
|
|
|
|
// The problem is that we can't know from the type whether we'll match
|
|
|
|
// normally or through box-patterns. We'll have to figure out a proper
|
|
|
|
// solution when we introduce generalized deref patterns. Also need to
|
|
|
|
// prevent mixing of those two options.
|
2023-04-01 17:54:20 +01:00
|
|
|
let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
|
|
|
|
let pat = if let Some(pat) = pattern {
|
2021-09-26 00:00:08 +01:00
|
|
|
mkpat(&pat.pattern)
|
|
|
|
} else {
|
2023-07-11 22:35:29 +01:00
|
|
|
DeconstructedPat::wildcard(args.type_at(0), pat.span)
|
2021-09-26 00:00:08 +01:00
|
|
|
};
|
|
|
|
ctor = Single;
|
|
|
|
fields = Fields::singleton(cx, pat);
|
|
|
|
}
|
|
|
|
ty::Adt(adt, _) => {
|
2022-08-25 12:25:44 +10:00
|
|
|
ctor = match pat.kind {
|
2021-09-26 00:00:08 +01:00
|
|
|
PatKind::Leaf { .. } => Single,
|
2022-08-25 12:25:44 +10:00
|
|
|
PatKind::Variant { variant_index, .. } => Variant(variant_index),
|
2021-09-26 00:00:08 +01:00
|
|
|
_ => bug!(),
|
|
|
|
};
|
2022-03-05 07:28:41 +11:00
|
|
|
let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
|
2021-09-26 00:00:08 +01:00
|
|
|
// For each field in the variant, we store the relevant index into `self.fields` if any.
|
|
|
|
let mut field_id_to_id: Vec<Option<usize>> =
|
|
|
|
(0..variant.fields.len()).map(|_| None).collect();
|
|
|
|
let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
|
|
|
|
.enumerate()
|
|
|
|
.map(|(i, (field, ty))| {
|
|
|
|
field_id_to_id[field.index()] = Some(i);
|
|
|
|
ty
|
|
|
|
});
|
2021-09-25 17:46:44 +01:00
|
|
|
let mut wilds: SmallVec<[_; 2]> =
|
2023-04-01 17:54:20 +01:00
|
|
|
tys.map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
|
2021-09-26 00:00:08 +01:00
|
|
|
for pat in subpatterns {
|
|
|
|
if let Some(i) = field_id_to_id[pat.field.index()] {
|
2021-09-25 17:46:44 +01:00
|
|
|
wilds[i] = mkpat(&pat.pattern);
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
}
|
2021-09-25 17:46:44 +01:00
|
|
|
fields = Fields::from_iter(cx, wilds);
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
_ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PatKind::Constant { value } => {
|
2023-09-29 19:44:12 +02:00
|
|
|
match pat.ty.kind() {
|
2023-10-12 16:51:27 +02:00
|
|
|
ty::Bool => {
|
|
|
|
ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
|
|
|
|
Some(b) => Bool(b),
|
2023-10-31 00:40:41 +01:00
|
|
|
None => Opaque(OpaqueId::new()),
|
2023-10-12 16:51:27 +02:00
|
|
|
};
|
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
|
|
|
ty::Char | ty::Int(_) | ty::Uint(_) => {
|
2023-09-30 23:54:31 +02:00
|
|
|
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
2023-09-29 19:44:12 +02:00
|
|
|
Some(bits) => IntRange(IntRange::from_bits(cx.tcx, pat.ty, bits)),
|
2023-10-31 00:40:41 +01:00
|
|
|
None => Opaque(OpaqueId::new()),
|
2023-09-29 19:44:12 +02:00
|
|
|
};
|
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
|
|
|
ty::Float(ty::FloatTy::F32) => {
|
2023-09-30 23:54:31 +02:00
|
|
|
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
2023-09-29 19:44:12 +02:00
|
|
|
Some(bits) => {
|
|
|
|
use rustc_apfloat::Float;
|
|
|
|
let value = rustc_apfloat::ieee::Single::from_bits(bits);
|
|
|
|
F32Range(value, value, RangeEnd::Included)
|
|
|
|
}
|
2023-10-31 00:40:41 +01:00
|
|
|
None => Opaque(OpaqueId::new()),
|
2023-09-29 19:44:12 +02:00
|
|
|
};
|
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
|
|
|
ty::Float(ty::FloatTy::F64) => {
|
2023-09-30 23:54:31 +02:00
|
|
|
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
2023-09-29 19:44:12 +02:00
|
|
|
Some(bits) => {
|
|
|
|
use rustc_apfloat::Float;
|
|
|
|
let value = rustc_apfloat::ieee::Double::from_bits(bits);
|
|
|
|
F64Range(value, value, RangeEnd::Included)
|
|
|
|
}
|
2023-10-31 00:40:41 +01:00
|
|
|
None => Opaque(OpaqueId::new()),
|
2023-09-29 19:44:12 +02:00
|
|
|
};
|
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
|
|
|
ty::Ref(_, t, _) if t.is_str() => {
|
|
|
|
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
|
|
|
|
// with other `Deref` patterns. This could have been done in `const_to_pat`,
|
|
|
|
// but that causes issues with the rest of the matching code.
|
|
|
|
// So here, the constructor for a `"foo"` pattern is `&` (represented by
|
|
|
|
// `Single`), and has one field. That field has constructor `Str(value)` and no
|
|
|
|
// fields.
|
|
|
|
// Note: `t` is `str`, not `&str`.
|
|
|
|
let subpattern =
|
|
|
|
DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
|
|
|
|
ctor = Single;
|
|
|
|
fields = Fields::singleton(cx, subpattern)
|
|
|
|
}
|
|
|
|
// All constants that can be structurally matched have already been expanded
|
|
|
|
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
|
|
|
|
// opaque.
|
|
|
|
_ => {
|
2023-10-31 00:40:41 +01:00
|
|
|
ctor = Opaque(OpaqueId::new());
|
2023-09-29 19:44:12 +02:00
|
|
|
fields = Fields::empty();
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-10-12 23:29:16 +02:00
|
|
|
PatKind::Range(box PatRange { lo, hi, end, .. }) => {
|
|
|
|
let ty = pat.ty;
|
2023-09-29 18:33:07 +02:00
|
|
|
ctor = match ty.kind() {
|
|
|
|
ty::Char | ty::Int(_) | ty::Uint(_) => {
|
2023-10-12 19:47:33 +02:00
|
|
|
let lo =
|
|
|
|
MaybeInfiniteInt::from_pat_range_bdy(*lo, ty, cx.tcx, cx.param_env);
|
|
|
|
let hi =
|
|
|
|
MaybeInfiniteInt::from_pat_range_bdy(*hi, ty, cx.tcx, cx.param_env);
|
|
|
|
IntRange(IntRange::from_range(lo, hi, *end))
|
2023-09-29 18:33:07 +02:00
|
|
|
}
|
2023-10-12 19:47:33 +02:00
|
|
|
ty::Float(fty) => {
|
|
|
|
use rustc_apfloat::Float;
|
|
|
|
let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
|
|
|
|
let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
|
|
|
|
match fty {
|
|
|
|
ty::FloatTy::F32 => {
|
|
|
|
use rustc_apfloat::ieee::Single;
|
|
|
|
let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
|
|
|
|
let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
|
|
|
|
F32Range(lo, hi, *end)
|
|
|
|
}
|
|
|
|
ty::FloatTy::F64 => {
|
|
|
|
use rustc_apfloat::ieee::Double;
|
|
|
|
let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
|
|
|
|
let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
|
|
|
|
F64Range(lo, hi, *end)
|
|
|
|
}
|
|
|
|
}
|
2023-09-29 18:33:07 +02:00
|
|
|
}
|
|
|
|
_ => bug!("invalid type for range pattern: {}", ty),
|
2021-09-26 00:00:08 +01:00
|
|
|
};
|
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
|
|
|
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
|
|
|
|
let array_len = match pat.ty.kind() {
|
2023-02-14 08:51:19 +00:00
|
|
|
ty::Array(_, length) => {
|
|
|
|
Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
ty::Slice(_) => None,
|
|
|
|
_ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
|
|
|
|
};
|
|
|
|
let kind = if slice.is_some() {
|
|
|
|
VarLen(prefix.len(), suffix.len())
|
|
|
|
} else {
|
|
|
|
FixedLen(prefix.len() + suffix.len())
|
|
|
|
};
|
|
|
|
ctor = Slice(Slice::new(array_len, kind));
|
2022-08-26 12:06:13 +10:00
|
|
|
fields =
|
|
|
|
Fields::from_iter(cx, prefix.iter().chain(suffix.iter()).map(|p| mkpat(&*p)));
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
PatKind::Or { .. } => {
|
|
|
|
ctor = Or;
|
|
|
|
let pats = expand_or_pat(pat);
|
|
|
|
fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
|
|
|
|
}
|
2023-10-14 00:57:50 +02:00
|
|
|
PatKind::Error(_) => {
|
2023-10-31 00:40:41 +01:00
|
|
|
ctor = Opaque(OpaqueId::new());
|
2023-10-14 00:57:50 +02:00
|
|
|
fields = Fields::empty();
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
2021-09-25 21:48:50 +01:00
|
|
|
DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
pub(super) fn is_or_pat(&self) -> bool {
|
|
|
|
matches!(self.ctor, Or)
|
|
|
|
}
|
2023-10-23 08:19:10 +02:00
|
|
|
/// Expand this (possibly-nested) or-pattern into its alternatives.
|
2023-10-14 18:25:10 +02:00
|
|
|
pub(super) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> {
|
|
|
|
if self.is_or_pat() {
|
|
|
|
self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
|
|
|
|
} else {
|
|
|
|
smallvec![self]
|
|
|
|
}
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
|
|
|
|
pub(super) fn ctor(&self) -> &Constructor<'tcx> {
|
|
|
|
&self.ctor
|
|
|
|
}
|
|
|
|
pub(super) fn ty(&self) -> Ty<'tcx> {
|
|
|
|
self.ty
|
|
|
|
}
|
|
|
|
pub(super) fn span(&self) -> Span {
|
|
|
|
self.span
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
pub(super) fn iter_fields<'a>(
|
|
|
|
&'a self,
|
|
|
|
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
|
|
|
self.fields.iter_patterns()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Specialize this pattern with a constructor.
|
|
|
|
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
|
|
|
|
pub(super) fn specialize<'a>(
|
|
|
|
&'a self,
|
2022-07-28 08:49:39 +00:00
|
|
|
pcx: &PatCtxt<'_, 'p, 'tcx>,
|
2021-09-26 00:00:08 +01:00
|
|
|
other_ctor: &Constructor<'tcx>,
|
2021-09-25 17:46:44 +01:00
|
|
|
) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
|
2021-09-26 00:00:08 +01:00
|
|
|
match (&self.ctor, other_ctor) {
|
|
|
|
(Wildcard, _) => {
|
|
|
|
// We return a wildcard for each field of `other_ctor`.
|
2022-07-28 08:49:39 +00:00
|
|
|
Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
(Slice(self_slice), Slice(other_slice))
|
|
|
|
if self_slice.arity() != other_slice.arity() =>
|
|
|
|
{
|
|
|
|
// The only tricky case: two slices of different arity. Since `self_slice` covers
|
|
|
|
// `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
|
|
|
|
// `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
|
2021-09-25 17:46:44 +01:00
|
|
|
// arity. So we fill the middle part with enough wildcards to reach the length of
|
|
|
|
// the new, larger slice.
|
2021-09-26 00:00:08 +01:00
|
|
|
match self_slice.kind {
|
|
|
|
FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
|
|
|
|
VarLen(prefix, suffix) => {
|
2022-02-19 00:48:49 +01:00
|
|
|
let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
|
|
|
|
bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
|
2021-09-22 18:16:07 +01:00
|
|
|
};
|
2021-09-25 17:46:44 +01:00
|
|
|
let prefix = &self.fields.fields[..prefix];
|
|
|
|
let suffix = &self.fields.fields[self_slice.arity() - suffix..];
|
2023-04-01 17:54:20 +01:00
|
|
|
let wildcard: &_ = pcx
|
|
|
|
.cx
|
|
|
|
.pattern_arena
|
|
|
|
.alloc(DeconstructedPat::wildcard(inner_ty, pcx.span));
|
2021-09-26 00:00:08 +01:00
|
|
|
let extra_wildcards = other_slice.arity() - self_slice.arity();
|
2021-09-25 17:46:44 +01:00
|
|
|
let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
|
|
|
|
prefix.iter().chain(extra_wildcards).chain(suffix).collect()
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-09-25 17:46:44 +01:00
|
|
|
_ => self.fields.iter_patterns().collect(),
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
}
|
2021-09-25 21:48:50 +01:00
|
|
|
|
|
|
|
/// We keep track for each pattern if it was ever reachable during the analysis. This is used
|
|
|
|
/// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
|
|
|
|
pub(super) fn set_reachable(&self) {
|
|
|
|
self.reachable.set(true)
|
|
|
|
}
|
|
|
|
pub(super) fn is_reachable(&self) -> bool {
|
2023-10-23 08:19:10 +02:00
|
|
|
if self.reachable.get() {
|
|
|
|
true
|
|
|
|
} else if self.is_or_pat() && self.iter_fields().any(|f| f.is_reachable()) {
|
|
|
|
// We always expand or patterns in the matrix, so we will never see the actual
|
|
|
|
// or-pattern (the one with constructor `Or`) in the column. As such, it will not be
|
|
|
|
// marked as reachable itself, only its children will. We recover this information here.
|
|
|
|
self.set_reachable();
|
|
|
|
true
|
|
|
|
} else {
|
|
|
|
false
|
|
|
|
}
|
2021-09-25 21:48:50 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Report the spans of subpatterns that were not reachable, if any.
|
|
|
|
pub(super) fn unreachable_spans(&self) -> Vec<Span> {
|
|
|
|
let mut spans = Vec::new();
|
|
|
|
self.collect_unreachable_spans(&mut spans);
|
|
|
|
spans
|
|
|
|
}
|
|
|
|
fn collect_unreachable_spans(&self, spans: &mut Vec<Span>) {
|
|
|
|
// We don't look at subpatterns if we already reported the whole pattern as unreachable.
|
|
|
|
if !self.is_reachable() {
|
|
|
|
spans.push(self.span);
|
|
|
|
} else {
|
|
|
|
for p in self.iter_fields() {
|
|
|
|
p.collect_unreachable_spans(spans);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
|
|
|
|
/// `Display` impl.
|
|
|
|
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
|
|
// Printing lists is a chore.
|
|
|
|
let mut first = true;
|
|
|
|
let mut start_or_continue = |s| {
|
|
|
|
if first {
|
|
|
|
first = false;
|
|
|
|
""
|
|
|
|
} else {
|
|
|
|
s
|
|
|
|
}
|
|
|
|
};
|
|
|
|
let mut start_or_comma = || start_or_continue(", ");
|
|
|
|
|
|
|
|
match &self.ctor {
|
|
|
|
Single | Variant(_) => match self.ty.kind() {
|
|
|
|
ty::Adt(def, _) if def.is_box() => {
|
|
|
|
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
|
|
|
|
// of `std`). So this branch is only reachable when the feature is enabled and
|
|
|
|
// the pattern is a box pattern.
|
|
|
|
let subpattern = self.iter_fields().next().unwrap();
|
2023-07-25 23:17:39 +02:00
|
|
|
write!(f, "box {subpattern:?}")
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
ty::Adt(..) | ty::Tuple(..) => {
|
|
|
|
let variant = match self.ty.kind() {
|
2022-03-05 07:28:41 +11:00
|
|
|
ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
|
2021-09-26 00:00:08 +01:00
|
|
|
ty::Tuple(_) => None,
|
|
|
|
_ => unreachable!(),
|
|
|
|
};
|
|
|
|
|
|
|
|
if let Some(variant) = variant {
|
2022-01-02 22:37:05 -05:00
|
|
|
write!(f, "{}", variant.name)?;
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Without `cx`, we can't know which field corresponds to which, so we can't
|
2022-03-30 17:04:46 -04:00
|
|
|
// get the names of the fields. Instead we just display everything as a tuple
|
2021-09-26 00:00:08 +01:00
|
|
|
// struct, which should be good enough.
|
|
|
|
write!(f, "(")?;
|
|
|
|
for p in self.iter_fields() {
|
|
|
|
write!(f, "{}", start_or_comma())?;
|
2023-07-25 23:17:39 +02:00
|
|
|
write!(f, "{p:?}")?;
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
|
|
|
write!(f, ")")
|
|
|
|
}
|
|
|
|
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
|
|
|
// be careful to detect strings here. However a string literal pattern will never
|
|
|
|
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
|
|
|
|
ty::Ref(_, _, mutbl) => {
|
|
|
|
let subpattern = self.iter_fields().next().unwrap();
|
|
|
|
write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
|
|
|
|
}
|
|
|
|
_ => write!(f, "_"),
|
|
|
|
},
|
|
|
|
Slice(slice) => {
|
|
|
|
let mut subpatterns = self.fields.iter_patterns();
|
|
|
|
write!(f, "[")?;
|
|
|
|
match slice.kind {
|
|
|
|
FixedLen(_) => {
|
|
|
|
for p in subpatterns {
|
|
|
|
write!(f, "{}{:?}", start_or_comma(), p)?;
|
2021-09-22 18:16:07 +01:00
|
|
|
}
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
VarLen(prefix_len, _) => {
|
|
|
|
for p in subpatterns.by_ref().take(prefix_len) {
|
|
|
|
write!(f, "{}{:?}", start_or_comma(), p)?;
|
|
|
|
}
|
|
|
|
write!(f, "{}", start_or_comma())?;
|
|
|
|
write!(f, "..")?;
|
|
|
|
for p in subpatterns {
|
|
|
|
write!(f, "{}{:?}", start_or_comma(), p)?;
|
2021-09-22 18:16:07 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
write!(f, "]")
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
2023-10-12 16:51:27 +02:00
|
|
|
Bool(b) => write!(f, "{b}"),
|
|
|
|
// Best-effort, will render signed ranges incorrectly
|
|
|
|
IntRange(range) => write!(f, "{range:?}"),
|
2023-09-29 18:33:07 +02:00
|
|
|
F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
|
|
|
F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
2023-10-03 17:09:20 +02:00
|
|
|
Str(value) => write!(f, "{value}"),
|
2023-10-31 00:40:41 +01:00
|
|
|
Opaque(..) => write!(f, "<constant pattern>"),
|
2021-09-26 00:00:08 +01:00
|
|
|
Or => {
|
|
|
|
for pat in self.iter_fields() {
|
|
|
|
write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
|
2021-09-22 19:29:33 +01:00
|
|
|
}
|
2021-09-26 00:00:08 +01:00
|
|
|
Ok(())
|
|
|
|
}
|
2023-10-03 17:09:20 +02:00
|
|
|
Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", self.ty),
|
2021-09-26 00:00:08 +01:00
|
|
|
}
|
2020-11-21 23:13:32 +00:00
|
|
|
}
|
|
|
|
}
|
2023-10-14 16:30:23 +02:00
|
|
|
|
|
|
|
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
|
|
|
|
/// purposes. As such they don't use interning and can be cloned.
|
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
pub(crate) struct WitnessPat<'tcx> {
|
|
|
|
ctor: Constructor<'tcx>,
|
2023-10-14 18:25:10 +02:00
|
|
|
pub(crate) fields: Vec<WitnessPat<'tcx>>,
|
2023-10-14 16:30:23 +02:00
|
|
|
ty: Ty<'tcx>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'tcx> WitnessPat<'tcx> {
|
|
|
|
pub(super) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self {
|
|
|
|
Self { ctor, fields, ty }
|
|
|
|
}
|
|
|
|
pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
|
|
|
|
Self::new(Wildcard, Vec::new(), ty)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Construct a pattern that matches everything that starts with this constructor.
|
|
|
|
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
|
|
|
|
/// `Some(_)`.
|
|
|
|
pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self {
|
|
|
|
// Reuse `Fields::wildcards` to get the types.
|
|
|
|
let fields = Fields::wildcards(pcx, &ctor)
|
|
|
|
.iter_patterns()
|
|
|
|
.map(|deco_pat| Self::wildcard(deco_pat.ty()))
|
|
|
|
.collect();
|
|
|
|
Self::new(ctor, fields, pcx.ty)
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(super) fn ctor(&self) -> &Constructor<'tcx> {
|
|
|
|
&self.ctor
|
|
|
|
}
|
|
|
|
pub(super) fn ty(&self) -> Ty<'tcx> {
|
|
|
|
self.ty
|
|
|
|
}
|
|
|
|
|
2023-10-21 20:16:10 +02:00
|
|
|
/// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
|
|
|
|
/// appear in diagnostics, like float ranges.
|
|
|
|
pub(crate) fn to_diagnostic_pat(&self, cx: &MatchCheckCtxt<'_, 'tcx>) -> Pat<'tcx> {
|
2023-10-14 16:30:23 +02:00
|
|
|
let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
|
2023-10-21 20:16:10 +02:00
|
|
|
let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_diagnostic_pat(cx)));
|
2023-10-14 16:30:23 +02:00
|
|
|
let kind = match &self.ctor {
|
2023-10-12 16:51:27 +02:00
|
|
|
Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
|
2023-10-21 20:16:10 +02:00
|
|
|
IntRange(range) => return range.to_diagnostic_pat(self.ty, cx.tcx),
|
2023-10-14 16:30:23 +02:00
|
|
|
Single | Variant(_) => match self.ty.kind() {
|
|
|
|
ty::Tuple(..) => PatKind::Leaf {
|
|
|
|
subpatterns: subpatterns
|
|
|
|
.enumerate()
|
|
|
|
.map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
|
|
|
|
.collect(),
|
|
|
|
},
|
|
|
|
ty::Adt(adt_def, _) if adt_def.is_box() => {
|
|
|
|
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
|
|
|
|
// of `std`). So this branch is only reachable when the feature is enabled and
|
|
|
|
// the pattern is a box pattern.
|
|
|
|
PatKind::Deref { subpattern: subpatterns.next().unwrap() }
|
|
|
|
}
|
|
|
|
ty::Adt(adt_def, args) => {
|
|
|
|
let variant_index = self.ctor.variant_index_for_adt(*adt_def);
|
|
|
|
let variant = &adt_def.variant(variant_index);
|
|
|
|
let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
|
|
|
|
.zip(subpatterns)
|
|
|
|
.map(|((field, _ty), pattern)| FieldPat { field, pattern })
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
if adt_def.is_enum() {
|
|
|
|
PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
|
|
|
|
} else {
|
|
|
|
PatKind::Leaf { subpatterns }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
|
|
|
// be careful to reconstruct the correct constant pattern here. However a string
|
|
|
|
// literal pattern will never be reported as a non-exhaustiveness witness, so we
|
|
|
|
// ignore this issue.
|
|
|
|
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
|
|
|
|
_ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
|
|
|
|
},
|
|
|
|
Slice(slice) => {
|
|
|
|
match slice.kind {
|
|
|
|
FixedLen(_) => PatKind::Slice {
|
|
|
|
prefix: subpatterns.collect(),
|
|
|
|
slice: None,
|
|
|
|
suffix: Box::new([]),
|
|
|
|
},
|
|
|
|
VarLen(prefix, _) => {
|
|
|
|
let mut subpatterns = subpatterns.peekable();
|
|
|
|
let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
|
|
|
|
if slice.array_len.is_some() {
|
|
|
|
// Improves diagnostics a bit: if the type is a known-size array, instead
|
|
|
|
// of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
|
|
|
|
// This is incorrect if the size is not known, since `[_, ..]` captures
|
|
|
|
// arrays of lengths `>= 1` whereas `[..]` captures any length.
|
|
|
|
while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
|
|
|
|
prefix.pop();
|
|
|
|
}
|
|
|
|
while subpatterns.peek().is_some()
|
|
|
|
&& is_wildcard(subpatterns.peek().unwrap())
|
|
|
|
{
|
|
|
|
subpatterns.next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
let suffix: Box<[_]> = subpatterns.collect();
|
|
|
|
let wild = Pat::wildcard_from_ty(self.ty);
|
|
|
|
PatKind::Slice {
|
|
|
|
prefix: prefix.into_boxed_slice(),
|
|
|
|
slice: Some(Box::new(wild)),
|
|
|
|
suffix,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
&Str(value) => PatKind::Constant { value },
|
|
|
|
Wildcard | NonExhaustive | Hidden => PatKind::Wild,
|
|
|
|
Missing { .. } => bug!(
|
|
|
|
"trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
|
|
|
|
`Missing` should have been processed in `apply_constructors`"
|
|
|
|
),
|
2023-10-31 00:40:41 +01:00
|
|
|
F32Range(..) | F64Range(..) | Opaque(..) | Or => {
|
2023-10-14 16:30:23 +02:00
|
|
|
bug!("can't convert to pattern: {:?}", self)
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
Pat { ty: self.ty, span: DUMMY_SP, kind }
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(super) fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> {
|
|
|
|
self.fields.iter()
|
|
|
|
}
|
|
|
|
}
|