rust/compiler/rustc_parse/src/parser/path.rs

632 lines
26 KiB
Rust
Raw Normal View History

use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
2019-10-11 13:06:36 +02:00
use super::{Parser, TokenType};
use crate::maybe_whole;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Token};
use rustc_ast::{
self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocConstraint,
AssocConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
Path, PathSegment, QSelf,
};
2019-12-22 17:42:04 -05:00
use rustc_errors::{pluralize, Applicability, PResult};
use rustc_span::source_map::{BytePos, Span};
2020-04-19 13:00:18 +02:00
use rustc_span::symbol::{kw, sym, Ident};
2019-08-11 19:59:27 +02:00
2019-12-22 17:42:04 -05:00
use std::mem;
2020-08-13 23:05:01 -07:00
use tracing::debug;
2019-08-11 19:59:27 +02:00
/// Specifies how to parse a path.
#[derive(Copy, Clone, PartialEq)]
pub enum PathStyle {
2019-08-11 19:59:27 +02:00
/// In some contexts, notably in expressions, paths with generic arguments are ambiguous
/// with something else. For example, in expressions `segment < ....` can be interpreted
/// as a comparison and `segment ( ....` can be interpreted as a function call.
/// In all such contexts the non-path interpretation is preferred by default for practical
/// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
/// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
Expr,
/// In other contexts, notably in types, no ambiguity exists and paths can be written
/// without the disambiguator, e.g., `x<y>` - unambiguously a path.
/// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
Type,
/// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
/// visibilities or attributes.
/// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
/// (paths in "mod" contexts have to be checked later for absence of generic arguments
/// anyway, due to macros), but it is used to avoid weird suggestions about expected
/// tokens when something goes wrong.
Mod,
}
impl<'a> Parser<'a> {
/// Parses a qualified path.
/// Assumes that the leading `<` has been parsed already.
///
/// `qualified_path = <type [as trait_ref]>::path`
///
/// # Examples
/// `<T>::default`
/// `<T as U>::a`
/// `<T as U>::F::a<S>` (without disambiguator)
/// `<T as U>::F::a::<S>` (with disambiguator)
pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> {
let lo = self.prev_token.span;
2019-08-11 19:59:27 +02:00
let ty = self.parse_ty()?;
// `path` will contain the prefix of the path up to the `>`,
// if any (e.g., `U` in the `<T as U>::*` examples
// above). `path_span` has the span of that path, or an empty
// span in the case of something like `<T>::Bar`.
let (mut path, path_span);
if self.eat_keyword(kw::As) {
let path_lo = self.token.span;
path = self.parse_path(PathStyle::Type)?;
path_span = path_lo.to(self.prev_token.span);
2019-08-11 19:59:27 +02:00
} else {
path_span = self.token.span.to(self.token.span);
2020-08-21 18:51:23 -04:00
path = ast::Path { segments: Vec::new(), span: path_span, tokens: None };
2019-08-11 19:59:27 +02:00
}
// See doc comment for `unmatched_angle_bracket_count`.
self.expect(&token::Gt)?;
if self.unmatched_angle_bracket_count > 0 {
self.unmatched_angle_bracket_count -= 1;
debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
}
if !self.recover_colon_before_qpath_proj() {
self.expect(&token::ModSep)?;
}
2019-08-11 19:59:27 +02:00
let qself = QSelf { ty, path_span, position: path.segments.len() };
self.parse_path_segments(&mut path.segments, style, None)?;
2019-08-11 19:59:27 +02:00
2020-08-21 18:51:23 -04:00
Ok((
qself,
Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
))
2019-08-11 19:59:27 +02:00
}
/// Recover from an invalid single colon, when the user likely meant a qualified path.
/// We avoid emitting this if not followed by an identifier, as our assumption that the user
/// intended this to be a qualified path may not be correct.
///
/// ```ignore (diagnostics)
/// <Bar as Baz<T>>:Qux
/// ^ help: use double colon
/// ```
fn recover_colon_before_qpath_proj(&mut self) -> bool {
if self.token.kind != token::Colon
|| self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
{
return false;
}
self.bump(); // colon
self.diagnostic()
.struct_span_err(
self.prev_token.span,
"found single colon before projection in qualified path",
)
.span_suggestion(
self.prev_token.span,
"use double colon",
"::".to_string(),
Applicability::MachineApplicable,
)
.emit();
true
}
pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
self.parse_path_inner(style, None)
}
2019-08-11 19:59:27 +02:00
/// Parses simple paths.
///
/// `path = [::] segment+`
/// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
///
/// # Examples
/// `a::b::C<D>` (without disambiguator)
/// `a::b::C::<D>` (with disambiguator)
/// `Fn(Args)` (without disambiguator)
/// `Fn::(Args)` (with disambiguator)
pub(super) fn parse_path_inner(
&mut self,
style: PathStyle,
ty_generics: Option<&Generics>,
) -> PResult<'a, Path> {
2019-08-11 19:59:27 +02:00
maybe_whole!(self, NtPath, |path| {
2019-12-22 17:42:04 -05:00
if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
{
self.struct_span_err(
path.segments
.iter()
.filter_map(|segment| segment.args.as_ref())
.map(|arg| arg.span())
.collect::<Vec<_>>(),
"unexpected generic arguments in path",
)
.emit();
2019-08-11 19:59:27 +02:00
}
path
});
let lo = self.token.span;
2019-08-11 19:59:27 +02:00
let mut segments = Vec::new();
let mod_sep_ctxt = self.token.span.ctxt();
if self.eat(&token::ModSep) {
segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
}
self.parse_path_segments(&mut segments, style, ty_generics)?;
2019-08-11 19:59:27 +02:00
2020-08-21 18:51:23 -04:00
Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
2019-08-11 19:59:27 +02:00
}
2019-10-08 09:35:34 +02:00
pub(super) fn parse_path_segments(
&mut self,
segments: &mut Vec<PathSegment>,
style: PathStyle,
ty_generics: Option<&Generics>,
) -> PResult<'a, ()> {
2019-08-11 19:59:27 +02:00
loop {
let segment = self.parse_path_segment(style, ty_generics)?;
2019-08-11 19:59:27 +02:00
if style == PathStyle::Expr {
// In order to check for trailing angle brackets, we must have finished
// recursing (`parse_path_segment` can indirectly call this function),
// that is, the next token must be the highlighted part of the below example:
//
// `Foo::<Bar as Baz<T>>::Qux`
// ^ here
//
// As opposed to the below highlight (if we had only finished the first
// recursion):
//
// `Foo::<Bar as Baz<T>>::Qux`
// ^ here
//
// `PathStyle::Expr` is only provided at the root invocation and never in
// `parse_path_segment` to recurse and therefore can be checked to maintain
// this invariant.
self.check_trailing_angle_brackets(&segment, &[&token::ModSep]);
2019-08-11 19:59:27 +02:00
}
segments.push(segment);
if self.is_import_coupler() || !self.eat(&token::ModSep) {
return Ok(());
}
}
}
pub(super) fn parse_path_segment(
&mut self,
style: PathStyle,
ty_generics: Option<&Generics>,
) -> PResult<'a, PathSegment> {
2019-08-11 19:59:27 +02:00
let ident = self.parse_path_segment_ident()?;
2020-10-26 21:02:48 -04:00
let is_args_start = |token: &Token| {
matches!(
token.kind,
token::Lt
| token::BinOp(token::Shl)
| token::OpenDelim(token::Paren)
| token::LArrow
)
2019-08-11 19:59:27 +02:00
};
let check_args_start = |this: &mut Self| {
2019-12-22 17:42:04 -05:00
this.expected_tokens.extend_from_slice(&[
TokenType::Token(token::Lt),
TokenType::Token(token::OpenDelim(token::Paren)),
]);
2019-08-11 19:59:27 +02:00
is_args_start(&this.token)
};
2019-12-22 17:42:04 -05:00
Ok(
if style == PathStyle::Type && check_args_start(self)
|| style != PathStyle::Mod
&& self.check(&token::ModSep)
&& self.look_ahead(1, |t| is_args_start(t))
{
// We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
// it isn't, then we reset the unmatched angle bracket count as we're about to start
// parsing a new path.
if style == PathStyle::Expr {
self.unmatched_angle_bracket_count = 0;
self.max_angle_bracket_count = 0;
}
2019-08-11 19:59:27 +02:00
2019-12-22 17:42:04 -05:00
// Generic arguments are found - `<`, `(`, `::<` or `::(`.
self.eat(&token::ModSep);
let lo = self.token.span;
let args = if self.eat_lt() {
// `<'a, T, A = U>`
let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
style,
lo,
ty_generics,
)?;
2019-12-22 17:42:04 -05:00
self.expect_gt()?;
let span = lo.to(self.prev_token.span);
AngleBracketedArgs { args, span }.into()
2019-12-22 17:42:04 -05:00
} else {
// `(T, U) -> R`
let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
let inputs_span = lo.to(self.prev_token.span);
let output =
self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
let span = ident.span.to(self.prev_token.span);
ParenthesizedArgs { span, inputs, inputs_span, output }.into()
2019-12-22 17:42:04 -05:00
};
PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
2019-08-11 19:59:27 +02:00
} else {
2019-12-22 17:42:04 -05:00
// Generic arguments are not found.
PathSegment::from_ident(ident)
},
)
2019-08-11 19:59:27 +02:00
}
pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
match self.token.ident() {
Some((ident, false)) if ident.is_path_segment_keyword() => {
2019-08-11 19:59:27 +02:00
self.bump();
Ok(ident)
2019-08-11 19:59:27 +02:00
}
_ => self.parse_ident(),
}
}
/// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
/// For the purposes of understanding the parsing logic of generic arguments, this function
/// can be thought of being the same as just calling `self.parse_angle_args()` if the source
2019-08-11 19:59:27 +02:00
/// had the correct amount of leading angle brackets.
///
/// ```ignore (diagnostics)
/// bar::<<<<T as Foo>::Output>();
/// ^^ help: remove extra angle brackets
/// ```
fn parse_angle_args_with_leading_angle_bracket_recovery(
2019-08-11 19:59:27 +02:00
&mut self,
style: PathStyle,
lo: Span,
ty_generics: Option<&Generics>,
) -> PResult<'a, Vec<AngleBracketedArg>> {
2019-08-11 19:59:27 +02:00
// We need to detect whether there are extra leading left angle brackets and produce an
// appropriate error and suggestion. This cannot be implemented by looking ahead at
// upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
// then there won't be matching `>` tokens to find.
//
// To explain how this detection works, consider the following example:
//
// ```ignore (diagnostics)
// bar::<<<<T as Foo>::Output>();
// ^^ help: remove extra angle brackets
// ```
//
// Parsing of the left angle brackets starts in this function. We start by parsing the
// `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
// `eat_lt`):
//
// *Upcoming tokens:* `<<<<T as Foo>::Output>;`
// *Unmatched count:* 1
// *`parse_path_segment` calls deep:* 0
//
// This has the effect of recursing as this function is called if a `<` character
// is found within the expected generic arguments:
//
// *Upcoming tokens:* `<<<T as Foo>::Output>;`
// *Unmatched count:* 2
// *`parse_path_segment` calls deep:* 1
//
// Eventually we will have recursed until having consumed all of the `<` tokens and
// this will be reflected in the count:
//
// *Upcoming tokens:* `T as Foo>::Output>;`
// *Unmatched count:* 4
// `parse_path_segment` calls deep:* 3
//
// The parser will continue until reaching the first `>` - this will decrement the
// unmatched angle bracket count and return to the parent invocation of this function
// having succeeded in parsing:
//
// *Upcoming tokens:* `::Output>;`
// *Unmatched count:* 3
// *`parse_path_segment` calls deep:* 2
//
// This will continue until the next `>` character which will also return successfully
// to the parent invocation of this function and decrement the count:
//
// *Upcoming tokens:* `;`
// *Unmatched count:* 2
// *`parse_path_segment` calls deep:* 1
//
// At this point, this function will expect to find another matching `>` character but
// won't be able to and will return an error. This will continue all the way up the
// call stack until the first invocation:
//
// *Upcoming tokens:* `;`
// *Unmatched count:* 2
// *`parse_path_segment` calls deep:* 0
//
// In doing this, we have managed to work out how many unmatched leading left angle
// brackets there are, but we cannot recover as the unmatched angle brackets have
// already been consumed. To remedy this, we keep a snapshot of the parser state
// before we do the above. We can then inspect whether we ended up with a parsing error
// and unmatched left angle brackets and if so, restore the parser state before we
// consumed any `<` characters to emit an error and consume the erroneous tokens to
// recover by attempting to parse again.
//
// In practice, the recursion of this function is indirect and there will be other
// locations that consume some `<` characters - as long as we update the count when
// this happens, it isn't an issue.
let is_first_invocation = style == PathStyle::Expr;
// Take a snapshot before attempting to parse - we can restore this later.
2019-12-22 17:42:04 -05:00
let snapshot = if is_first_invocation { Some(self.clone()) } else { None };
2019-08-11 19:59:27 +02:00
debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
match self.parse_angle_args(ty_generics) {
Ok(args) => Ok(args),
Err(mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
2019-08-11 19:59:27 +02:00
// Swap `self` with our backup of the parser state before attempting to parse
// generic arguments.
let snapshot = mem::replace(self, snapshot.unwrap());
// Eat the unmatched angle brackets.
let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
.fold(true, |a, _| a && self.eat_lt());
if !all_angle_brackets {
// If there are other tokens in between the extraneous `<`s, we cannot simply
// suggest to remove them. This check also prevents us from accidentally ending
// up in the middle of a multibyte character (issue #84104).
let _ = mem::replace(self, snapshot);
Err(e)
} else {
// Cancel error from being unable to find `>`. We know the error
// must have been this due to a non-zero unmatched angle bracket
// count.
e.cancel();
debug!(
"parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
snapshot.count={:?}",
snapshot.unmatched_angle_bracket_count,
);
// Make a span over ${unmatched angle bracket count} characters.
// This is safe because `all_angle_brackets` ensures that there are only `<`s,
// i.e. no multibyte characters, in this range.
let span =
lo.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count));
self.struct_span_err(
span,
&format!(
"unmatched angle bracket{}",
pluralize!(snapshot.unmatched_angle_bracket_count)
),
)
.span_suggestion(
span,
&format!(
"remove extra angle bracket{}",
pluralize!(snapshot.unmatched_angle_bracket_count)
),
String::new(),
Applicability::MachineApplicable,
)
.emit();
// Try again without unmatched angle bracket characters.
self.parse_angle_args(ty_generics)
2019-08-11 19:59:27 +02:00
}
2019-12-22 17:42:04 -05:00
}
2019-08-11 19:59:27 +02:00
Err(e) => Err(e),
}
}
/// Parses (possibly empty) list of generic arguments / associated item constraints,
2019-08-11 19:59:27 +02:00
/// possibly including trailing comma.
pub(super) fn parse_angle_args(
&mut self,
ty_generics: Option<&Generics>,
) -> PResult<'a, Vec<AngleBracketedArg>> {
2019-08-11 19:59:27 +02:00
let mut args = Vec::new();
while let Some(arg) = self.parse_angle_arg(ty_generics)? {
args.push(arg);
2019-08-11 19:59:27 +02:00
if !self.eat(&token::Comma) {
if !self.token.kind.should_end_const_arg() {
if self.handle_ambiguous_unbraced_const_arg(&mut args)? {
// We've managed to (partially) recover, so continue trying to parse
// arguments.
continue;
}
}
2019-12-22 17:42:04 -05:00
break;
2019-08-11 19:59:27 +02:00
}
}
Ok(args)
2019-08-11 19:59:27 +02:00
}
/// Parses a single argument in the angle arguments `<...>` of a path segment.
fn parse_angle_arg(
&mut self,
ty_generics: Option<&Generics>,
) -> PResult<'a, Option<AngleBracketedArg>> {
2020-11-19 18:28:38 +01:00
let lo = self.token.span;
let arg = self.parse_generic_arg(ty_generics)?;
2020-11-19 18:28:38 +01:00
match arg {
Some(arg) => {
if self.check(&token::Colon) | self.check(&token::Eq) {
2020-12-15 17:43:24 +01:00
let (ident, gen_args) = match self.get_ident_from_generic_arg(arg) {
Ok(ident_gen_args) => ident_gen_args,
Err(arg) => return Ok(Some(AngleBracketedArg::Arg(arg))),
};
2020-11-19 18:28:38 +01:00
let kind = if self.eat(&token::Colon) {
// Parse associated type constraint bound.
let bounds = self.parse_generic_bounds(Some(self.prev_token.span))?;
AssocConstraintKind::Bound { bounds }
2020-11-19 18:28:38 +01:00
} else if self.eat(&token::Eq) {
self.parse_assoc_equality_term(ident, self.prev_token.span)?
2020-11-19 18:28:38 +01:00
} else {
unreachable!();
};
2020-11-19 18:28:38 +01:00
let span = lo.to(self.prev_token.span);
2020-11-19 18:28:38 +01:00
// Gate associated type bounds, e.g., `Iterator<Item: Ord>`.
if let AssocConstraintKind::Bound { .. } = kind {
2020-11-19 18:28:38 +01:00
self.sess.gated_spans.gate(sym::associated_type_bounds, span);
}
let constraint =
AssocConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
2020-11-19 18:28:38 +01:00
Ok(Some(AngleBracketedArg::Constraint(constraint)))
} else {
Ok(Some(AngleBracketedArg::Arg(arg)))
}
}
2020-11-19 18:28:38 +01:00
_ => Ok(None),
2020-03-22 05:12:51 +01:00
}
}
/// Parse the term to the right of an associated item equality constraint.
/// That is, parse `<term>` in `Item = <term>`.
/// Right now, this only admits types in `<term>`.
fn parse_assoc_equality_term(
&mut self,
ident: Ident,
eq: Span,
) -> PResult<'a, AssocConstraintKind> {
let arg = self.parse_generic_arg(None)?;
let span = ident.span.to(self.prev_token.span);
let ty = match arg {
Some(GenericArg::Type(ty)) => ty,
Some(GenericArg::Const(c)) => {
return Ok(AssocConstraintKind::Equality { term: c.into() });
}
Some(GenericArg::Lifetime(lt)) => {
self.struct_span_err(span, "associated lifetimes are not supported")
.span_label(lt.ident.span, "the lifetime is given here")
.help("if you meant to specify a trait object, write `dyn Trait + 'lifetime`")
.emit();
self.mk_ty(span, ast::TyKind::Err)
}
None => {
2020-03-27 07:39:10 +01:00
let after_eq = eq.shrink_to_hi();
let before_next = self.token.span.shrink_to_lo();
let mut err = self
.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
if matches!(self.token.kind, token::Comma | token::Gt) {
err.span_suggestion(
2020-03-27 07:39:10 +01:00
self.sess.source_map().next_point(eq).to(before_next),
"to constrain the associated type, add a type after `=`",
" TheType".to_string(),
Applicability::HasPlaceholders,
);
err.span_suggestion(
2020-03-27 07:39:10 +01:00
eq.to(before_next),
&format!("remove the `=` if `{}` is a type", ident),
String::new(),
Applicability::MaybeIncorrect,
)
} else {
err.span_label(
self.token.span,
&format!("expected type, found {}", super::token_descr(&self.token)),
)
};
return Err(err);
}
};
Ok(AssocConstraintKind::Equality { term: ty.into() })
}
/// We do not permit arbitrary expressions as const arguments. They must be one of:
/// - An expression surrounded in `{}`.
/// - A literal.
/// - A numeric literal prefixed by `-`.
/// - A single-segment path.
pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
match &expr.kind {
ast::ExprKind::Block(_, _) | ast::ExprKind::Lit(_) => true,
2020-12-24 02:55:21 +01:00
ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
matches!(expr.kind, ast::ExprKind::Lit(_))
}
// We can only resolve single-segment paths at the moment, because multi-segment paths
// require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
ast::ExprKind::Path(None, path)
if path.segments.len() == 1 && path.segments[0].args.is_none() =>
{
true
}
_ => false,
}
}
/// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
/// the caller.
pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
// Parse const argument.
let value = if let token::OpenDelim(token::Brace) = self.token.kind {
self.parse_block_expr(
None,
self.token.span,
BlockCheckMode::Default,
ast::AttrVec::new(),
)?
} else {
self.handle_unambiguous_unbraced_const_arg()?
};
Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
}
2020-03-22 05:12:51 +01:00
/// Parse a generic argument in a path segment.
/// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
pub(super) fn parse_generic_arg(
&mut self,
ty_generics: Option<&Generics>,
) -> PResult<'a, Option<GenericArg>> {
let start = self.token.span;
2020-03-22 05:12:51 +01:00
let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
// Parse lifetime argument.
2020-03-22 05:12:51 +01:00
GenericArg::Lifetime(self.expect_lifetime())
} else if self.check_const_arg() {
// Parse const argument.
GenericArg::Const(self.parse_const_arg()?)
} else if self.check_type() {
// Parse type argument.
match self.parse_ty() {
Ok(ty) => GenericArg::Type(ty),
Err(err) => {
// Try to recover from possible `const` arg without braces.
return self.recover_const_arg(start, err).map(Some);
}
}
} else if self.token.is_keyword(kw::Const) {
return self.recover_const_param_declaration(ty_generics);
} else {
return Ok(None);
};
Ok(Some(arg))
}
2020-11-19 18:28:38 +01:00
fn get_ident_from_generic_arg(
&self,
gen_arg: GenericArg,
2020-12-15 17:43:24 +01:00
) -> Result<(Ident, Option<GenericArgs>), GenericArg> {
if let GenericArg::Type(ty) = &gen_arg {
if let ast::TyKind::Path(qself, path) = &ty.kind {
if qself.is_none() && path.segments.len() == 1 {
let seg = &path.segments[0];
return Ok((seg.ident, seg.args.as_deref().cloned()));
2020-11-19 18:28:38 +01:00
}
}
}
2020-12-15 17:43:24 +01:00
Err(gen_arg)
2020-11-19 18:28:38 +01:00
}
2019-08-11 19:59:27 +02:00
}