rust/src/librustc/dep_graph/graph.rs

784 lines
29 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc_data_structures::stable_hasher::{HashStable, StableHasher,
StableHashingContextProvider};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use session::config::OutputType;
use std::cell::{Ref, RefCell};
use std::hash::Hash;
use std::rc::Rc;
use ty::TyCtxt;
use util::common::{ProfileQueriesMsg, profq_msg};
use ich::Fingerprint;
use super::dep_node::{DepNode, DepKind, WorkProductId};
use super::query::DepGraphQuery;
use super::raii;
use super::safe::DepGraphSafe;
use super::edges::{self, DepGraphEdges};
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::prev::PreviousDepGraph;
#[derive(Clone)]
pub struct DepGraph {
data: Option<Rc<DepGraphData>>,
2017-09-19 12:13:09 +02:00
// At the moment we are using DepNode as key here. In the future it might
// be possible to use an IndexVec<DepNodeIndex, _> here. At the moment there
// are a few problems with that:
// - Some fingerprints are needed even if incr. comp. is disabled -- yet
// we need to have a dep-graph to generate DepNodeIndices.
// - The architecture is still in flux and it's not clear what how to best
// implement things.
fingerprints: Rc<RefCell<FxHashMap<DepNode, Fingerprint>>>
}
/// As a temporary measure, while transitioning to the new DepGraph
/// implementation, we maintain the old and the new dep-graph encoding in
/// parallel, so a DepNodeIndex actually contains two indices, one for each
/// version.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct DepNodeIndex {
legacy: edges::DepNodeIndex,
new: DepNodeIndexNew,
}
impl DepNodeIndex {
pub const INVALID: DepNodeIndex = DepNodeIndex {
legacy: edges::DepNodeIndex::INVALID,
new: DepNodeIndexNew::INVALID,
};
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum DepNodeColor {
Red,
Green(DepNodeIndex)
}
struct DepGraphData {
/// The old, initial encoding of the dependency graph. This will soon go
/// away.
edges: RefCell<DepGraphEdges>,
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore.
current: RefCell<CurrentDepGraph>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: PreviousDepGraph,
colors: RefCell<FxHashMap<DepNode, DepNodeColor>>,
2016-07-22 10:39:30 -04:00
/// When we load, there may be `.o` files, cached mir, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: RefCell<FxHashMap<WorkProductId, WorkProduct>>,
2016-07-22 10:39:30 -04:00
/// Work-products that we generate in this run.
work_products: RefCell<FxHashMap<WorkProductId, WorkProduct>>,
dep_node_debug: RefCell<FxHashMap<DepNode, String>>,
}
impl DepGraph {
pub fn new(prev_graph: PreviousDepGraph) -> DepGraph {
DepGraph {
data: Some(Rc::new(DepGraphData {
previous_work_products: RefCell::new(FxHashMap()),
work_products: RefCell::new(FxHashMap()),
edges: RefCell::new(DepGraphEdges::new()),
dep_node_debug: RefCell::new(FxHashMap()),
current: RefCell::new(CurrentDepGraph::new()),
previous: prev_graph,
colors: RefCell::new(FxHashMap()),
})),
fingerprints: Rc::new(RefCell::new(FxHashMap())),
}
}
pub fn new_disabled() -> DepGraph {
DepGraph {
data: None,
fingerprints: Rc::new(RefCell::new(FxHashMap())),
}
}
/// True if we are actually building the full dep-graph.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn query(&self) -> DepGraphQuery {
self.data.as_ref().unwrap().edges.borrow().query()
}
pub fn in_ignore<'graph>(&'graph self) -> Option<raii::IgnoreTask<'graph>> {
self.data.as_ref().map(|data| raii::IgnoreTask::new(&data.edges,
&data.current))
}
pub fn with_ignore<OP,R>(&self, op: OP) -> R
where OP: FnOnce() -> R
{
let _task = self.in_ignore();
op()
}
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [README] for more details on the
/// dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [README]: README.md
pub fn with_task<C, A, R, HCX>(&self,
key: DepNode,
cx: C,
arg: A,
task: fn(C, A) -> R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<ContextType=HCX>,
R: HashStable<HCX>,
{
if let Some(ref data) = self.data {
debug_assert!(!data.colors.borrow().contains_key(&key));
data.edges.borrow_mut().push_task(key);
data.current.borrow_mut().push_task(key);
if cfg!(debug_assertions) {
profq_msg(ProfileQueriesMsg::TaskBegin(key.clone()))
};
// In incremental mode, hash the result of the task. We don't
// do anything with the hash yet, but we are computing it
// anyway so that
// - we make sure that the infrastructure works and
// - we can get an idea of the runtime cost.
let mut hcx = cx.create_stable_hashing_context();
let result = task(cx, arg);
if cfg!(debug_assertions) {
profq_msg(ProfileQueriesMsg::TaskEnd)
};
let dep_node_index_legacy = data.edges.borrow_mut().pop_task(key);
let dep_node_index_new = data.current.borrow_mut().pop_task(key);
let mut stable_hasher = StableHasher::new();
result.hash_stable(&mut hcx, &mut stable_hasher);
let current_fingerprint = stable_hasher.finish();
assert!(self.fingerprints
.borrow_mut()
.insert(key, current_fingerprint)
.is_none());
let prev_fingerprint = data.previous.fingerprint_of(&key);
let color = if Some(current_fingerprint) == prev_fingerprint {
DepNodeColor::Green(DepNodeIndex {
legacy: dep_node_index_legacy,
new: dep_node_index_new,
})
} else {
DepNodeColor::Red
};
assert!(data.colors.borrow_mut().insert(key, color).is_none());
(result, DepNodeIndex {
legacy: dep_node_index_legacy,
new: dep_node_index_new,
})
} else {
if key.kind.fingerprint_needed_for_crate_hash() {
let mut hcx = cx.create_stable_hashing_context();
let result = task(cx, arg);
let mut stable_hasher = StableHasher::new();
result.hash_stable(&mut hcx, &mut stable_hasher);
assert!(self.fingerprints
.borrow_mut()
.insert(key, stable_hasher.finish())
.is_none());
(result, DepNodeIndex::INVALID)
} else {
(task(cx, arg), DepNodeIndex::INVALID)
}
}
}
/// Execute something within an "anonymous" task, that is, a task the
/// DepNode of which is determined by the list of inputs it read from.
pub fn with_anon_task<OP,R>(&self, dep_kind: DepKind, op: OP) -> (R, DepNodeIndex)
where OP: FnOnce() -> R
{
if let Some(ref data) = self.data {
data.edges.borrow_mut().push_anon_task();
data.current.borrow_mut().push_anon_task();
let result = op();
let dep_node_index_legacy = data.edges.borrow_mut().pop_anon_task(dep_kind);
let (new_dep_node, dep_node_index_new) = data.current
.borrow_mut()
.pop_anon_task(dep_kind);
if let Some(new_dep_node) = new_dep_node {
assert!(data.colors
.borrow_mut()
.insert(new_dep_node, DepNodeColor::Red)
.is_none());
}
(result, DepNodeIndex {
legacy: dep_node_index_legacy,
new: dep_node_index_new,
})
} else {
(op(), DepNodeIndex::INVALID)
}
}
#[inline]
pub fn read(&self, v: DepNode) {
if let Some(ref data) = self.data {
data.edges.borrow_mut().read(v);
let mut current = data.current.borrow_mut();
if let Some(&dep_node_index_new) = current.node_to_node_index.get(&v) {
current.read_index(dep_node_index_new);
} else {
bug!("DepKind {:?} should be pre-allocated but isn't.", v.kind)
}
}
}
#[inline]
pub fn read_index(&self, v: DepNodeIndex) {
if let Some(ref data) = self.data {
data.edges.borrow_mut().read_index(v.legacy);
data.current.borrow_mut().read_index(v.new);
}
}
/// Only to be used during graph loading
#[inline]
pub fn add_edge_directly(&self, source: DepNode, target: DepNode) {
self.data.as_ref().unwrap().edges.borrow_mut().add_edge(source, target);
}
/// Only to be used during graph loading
pub fn add_node_directly(&self, node: DepNode) {
self.data.as_ref().unwrap().edges.borrow_mut().add_node(node);
}
pub fn fingerprint_of(&self, dep_node: &DepNode) -> Fingerprint {
self.fingerprints.borrow()[dep_node]
}
pub fn prev_fingerprint_of(&self, dep_node: &DepNode) -> Option<Fingerprint> {
self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
}
/// Indicates that a previous work product exists for `v`. This is
/// invoked during initial start-up based on what nodes are clean
/// (and what files exist in the incr. directory).
pub fn insert_previous_work_product(&self, v: &WorkProductId, data: WorkProduct) {
debug!("insert_previous_work_product({:?}, {:?})", v, data);
self.data
.as_ref()
.unwrap()
.previous_work_products
.borrow_mut()
.insert(v.clone(), data);
}
/// Indicates that we created the given work-product in this run
/// for `v`. This record will be preserved and loaded in the next
/// run.
pub fn insert_work_product(&self, v: &WorkProductId, data: WorkProduct) {
debug!("insert_work_product({:?}, {:?})", v, data);
self.data
.as_ref()
.unwrap()
.work_products
.borrow_mut()
.insert(v.clone(), data);
}
/// Check whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data
.as_ref()
.and_then(|data| {
data.previous_work_products.borrow().get(v).cloned()
})
}
/// Access the map of work-products created during this run. Only
/// used during saving of the dep-graph.
pub fn work_products(&self) -> Ref<FxHashMap<WorkProductId, WorkProduct>> {
self.data.as_ref().unwrap().work_products.borrow()
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> Ref<FxHashMap<WorkProductId, WorkProduct>> {
self.data.as_ref().unwrap().previous_work_products.borrow()
}
#[inline(always)]
pub fn register_dep_node_debug_str<F>(&self,
dep_node: DepNode,
debug_str_gen: F)
where F: FnOnce() -> String
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return
}
let debug_str = debug_str_gen();
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub(super) fn dep_node_debug_str(&self, dep_node: DepNode) -> Option<String> {
self.data.as_ref().and_then(|t| t.dep_node_debug.borrow().get(&dep_node).cloned())
}
pub fn serialize(&self) -> SerializedDepGraph {
let fingerprints = self.fingerprints.borrow();
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
let nodes: IndexVec<_, _> = current_dep_graph.nodes.iter().map(|dep_node| {
let fingerprint = fingerprints.get(dep_node)
.cloned()
.unwrap_or(Fingerprint::zero());
(*dep_node, fingerprint)
}).collect();
let total_edge_count: usize = current_dep_graph.edges.iter()
.map(|v| v.len())
.sum();
let mut edge_list_indices = IndexVec::with_capacity(nodes.len());
let mut edge_list_data = Vec::with_capacity(total_edge_count);
for (current_dep_node_index, edges) in current_dep_graph.edges.iter_enumerated() {
let start = edge_list_data.len() as u32;
// This should really just be a memcpy :/
edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex(i.index)));
let end = edge_list_data.len() as u32;
debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len());
edge_list_indices.push((start, end));
}
debug_assert!(edge_list_data.len() <= ::std::u32::MAX as usize);
debug_assert_eq!(edge_list_data.len(), total_edge_count);
SerializedDepGraph {
nodes,
edge_list_indices,
edge_list_data,
}
}
pub fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
self.data.as_ref().and_then(|data| data.colors.borrow().get(dep_node).cloned())
}
pub fn try_mark_green(&self,
tcx: TyCtxt,
dep_node: &DepNode)
-> Option<DepNodeIndex> {
let data = self.data.as_ref().unwrap();
debug_assert!(!data.colors.borrow().contains_key(dep_node));
debug_assert!(!data.current.borrow().node_to_node_index.contains_key(dep_node));
if dep_node.kind.is_input() {
// We should only hit try_mark_green() for inputs that do not exist
// anymore in the current compilation session. Existing inputs are
// eagerly marked as either red/green before any queries are
// executed.
debug_assert!(dep_node.extract_def_id(tcx).is_none());
return None;
}
let (prev_deps, prev_dep_node_index) = match data.previous.edges_from(dep_node) {
Some(prev) => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
prev
}
None => {
// This DepNode did not exist in the previous compilation session,
// so we cannot mark it as green.
return None
}
};
let mut current_deps = Vec::new();
for &dep_dep_node_index in prev_deps {
let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);
let dep_dep_node_color = data.colors.borrow().get(dep_dep_node).cloned();
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
return None
}
None => {
if dep_dep_node.kind.is_input() {
// This input does not exist anymore.
debug_assert!(dep_dep_node.extract_def_id(tcx).is_none());
return None;
}
// We don't know the state of this dependency. Let's try to
// mark it green.
if let Some(node_index) = self.try_mark_green(tcx, dep_dep_node) {
current_deps.push(node_index);
} else {
// We failed to mark it green, so we try to force the query.
if ::ty::maps::force_from_dep_node(tcx, dep_dep_node) {
let dep_dep_node_color = data.colors.borrow().get(dep_dep_node).cloned();
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
return None
}
None => {
bug!("try_mark_green() - Forcing the DepNode \
should have set its color")
}
}
} else {
// The DepNode could not be forced.
return None
}
}
}
}
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green. We do so by...
// ... allocating an entry for it in the current dependency graph and
// adding all the appropriate edges imported from the previous graph ...
let node_index_new = data.current
.borrow_mut()
.alloc_node(*dep_node,
current_deps.iter().map(|n| n.new).collect());
let dep_node_index_legacy = {
let mut legacy_graph = data.edges.borrow_mut();
legacy_graph.push_task(*dep_node);
for node_index in current_deps.into_iter().map(|n| n.legacy) {
legacy_graph.read_index(node_index);
}
legacy_graph.pop_task(*dep_node)
};
// ... copying the fingerprint from the previous graph too, so we don't
// have to recompute it ...
let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index);
assert!(self.fingerprints
.borrow_mut()
.insert(*dep_node, fingerprint)
.is_none());
let node_index = DepNodeIndex {
legacy: dep_node_index_legacy,
new: node_index_new,
};
// ... and finally storing a "Green" entry in the color map.
assert!(data.colors
.borrow_mut()
.insert(*dep_node, DepNodeColor::Green(node_index))
.is_none());
Some(node_index)
}
// Used in various assertions
pub fn is_green(&self, dep_node_index: DepNodeIndex) -> bool {
let dep_node = self.data.as_ref().unwrap().current.borrow().nodes[dep_node_index.new];
self.data.as_ref().unwrap().colors.borrow().get(&dep_node).map(|&color| {
match color {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}).unwrap_or(false)
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
2016-07-22 10:39:30 -04:00
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::TransPartition(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::TransPartition(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Extra hash used to decide if work-product is still suitable;
/// note that this is *not* a hash of the work-product itself.
/// See documentation on `WorkProduct` type for an example.
pub input_hash: u64,
/// Saved files associated with this CGU
pub saved_files: Vec<(OutputType, String)>,
}
pub(super) struct CurrentDepGraph {
nodes: IndexVec<DepNodeIndexNew, DepNode>,
edges: IndexVec<DepNodeIndexNew, Vec<DepNodeIndexNew>>,
node_to_node_index: FxHashMap<DepNode, DepNodeIndexNew>,
task_stack: Vec<OpenTask>,
}
impl CurrentDepGraph {
fn new() -> CurrentDepGraph {
CurrentDepGraph {
nodes: IndexVec::new(),
edges: IndexVec::new(),
node_to_node_index: FxHashMap(),
task_stack: Vec::new(),
}
}
pub(super) fn push_ignore(&mut self) {
self.task_stack.push(OpenTask::Ignore);
}
pub(super) fn pop_ignore(&mut self) {
let popped_node = self.task_stack.pop().unwrap();
debug_assert_eq!(popped_node, OpenTask::Ignore);
}
pub(super) fn push_task(&mut self, key: DepNode) {
self.task_stack.push(OpenTask::Regular {
node: key,
reads: Vec::new(),
read_set: FxHashSet(),
});
}
pub(super) fn pop_task(&mut self, key: DepNode) -> DepNodeIndexNew {
let popped_node = self.task_stack.pop().unwrap();
if let OpenTask::Regular {
node,
read_set: _,
reads
} = popped_node {
debug_assert_eq!(node, key);
self.alloc_node(node, reads)
} else {
bug!("pop_task() - Expected regular task to be popped")
}
}
fn push_anon_task(&mut self) {
self.task_stack.push(OpenTask::Anon {
reads: Vec::new(),
read_set: FxHashSet(),
});
}
fn pop_anon_task(&mut self, kind: DepKind) -> (Option<DepNode>, DepNodeIndexNew) {
let popped_node = self.task_stack.pop().unwrap();
if let OpenTask::Anon {
read_set: _,
reads
} = popped_node {
let mut fingerprint = Fingerprint::zero();
let mut hasher = StableHasher::new();
for &read in reads.iter() {
let read_dep_node = self.nodes[read];
::std::mem::discriminant(&read_dep_node.kind).hash(&mut hasher);
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
fingerprint = fingerprint.combine(read_dep_node.hash);
}
fingerprint = fingerprint.combine(hasher.finish());
let target_dep_node = DepNode {
kind,
hash: fingerprint,
};
if let Some(&index) = self.node_to_node_index.get(&target_dep_node) {
(None, index)
} else {
(Some(target_dep_node), self.alloc_node(target_dep_node, reads))
}
} else {
bug!("pop_anon_task() - Expected anonymous task to be popped")
}
}
fn read_index(&mut self, source: DepNodeIndexNew) {
match self.task_stack.last_mut() {
Some(&mut OpenTask::Regular {
ref mut reads,
ref mut read_set,
node: _,
}) => {
if read_set.insert(source) {
reads.push(source);
}
}
Some(&mut OpenTask::Anon {
ref mut reads,
ref mut read_set,
}) => {
if read_set.insert(source) {
reads.push(source);
}
}
Some(&mut OpenTask::Ignore) | None => {
// ignore
}
}
}
fn alloc_node(&mut self,
dep_node: DepNode,
edges: Vec<DepNodeIndexNew>)
-> DepNodeIndexNew {
debug_assert_eq!(self.edges.len(), self.nodes.len());
debug_assert_eq!(self.node_to_node_index.len(), self.nodes.len());
debug_assert!(!self.node_to_node_index.contains_key(&dep_node));
let dep_node_index = DepNodeIndexNew::new(self.nodes.len());
self.nodes.push(dep_node);
self.node_to_node_index.insert(dep_node, dep_node_index);
self.edges.push(edges);
dep_node_index
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub(super) struct DepNodeIndexNew {
index: u32,
}
impl Idx for DepNodeIndexNew {
fn new(v: usize) -> DepNodeIndexNew {
assert!((v & 0xFFFF_FFFF) == v);
DepNodeIndexNew { index: v as u32 }
}
fn index(self) -> usize {
self.index as usize
}
}
impl DepNodeIndexNew {
const INVALID: DepNodeIndexNew = DepNodeIndexNew {
index: ::std::u32::MAX,
};
}
#[derive(Clone, Debug, PartialEq)]
enum OpenTask {
Regular {
node: DepNode,
reads: Vec<DepNodeIndexNew>,
read_set: FxHashSet<DepNodeIndexNew>,
},
Anon {
reads: Vec<DepNodeIndexNew>,
read_set: FxHashSet<DepNodeIndexNew>,
},
Ignore,
}