rust/src/librustc_const_eval/_match.rs

810 lines
29 KiB
Rust
Raw Normal View History

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::Constructor::*;
use self::Usefulness::*;
use self::WitnessPreference::*;
use rustc::middle::const_val::ConstVal;
use eval::{compare_const_vals};
use rustc_const_math::ConstInt;
use rustc_data_structures::fnv::FnvHashMap;
use rustc_data_structures::indexed_vec::Idx;
use pattern::{FieldPattern, Pattern, PatternKind};
use pattern::{PatternFoldable, PatternFolder};
use rustc::hir::def_id::{DefId};
use rustc::hir::pat_util::def_to_path;
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::hir;
use rustc::hir::def::CtorKind;
use rustc::hir::{Pat, PatKind};
use rustc::util::common::ErrorReported;
use syntax::ast::{self, DUMMY_NODE_ID};
use syntax::codemap::Spanned;
use syntax::ptr::P;
use syntax_pos::{Span, DUMMY_SP};
use arena::TypedArena;
use std::cmp::{self, Ordering};
use std::fmt;
use std::iter::{FromIterator, IntoIterator, repeat};
pub fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pattern<'tcx>)
-> &'a Pattern<'tcx>
{
cx.pattern_arena.alloc(LiteralExpander.fold_pattern(&pat))
}
struct LiteralExpander;
impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
fn fold_pattern(&mut self, pat: &Pattern<'tcx>) -> Pattern<'tcx> {
match (&pat.ty.sty, &*pat.kind) {
(&ty::TyRef(_, mt), &PatternKind::Constant { ref value }) => {
Pattern {
ty: pat.ty,
span: pat.span,
kind: box PatternKind::Deref {
subpattern: Pattern {
ty: mt.ty,
span: pat.span,
kind: box PatternKind::Constant { value: value.clone() },
}
}
}
}
(_, &PatternKind::Binding { subpattern: Some(ref s), .. }) => {
s.fold_with(self)
}
_ => pat.super_fold_with(self)
}
}
}
pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
id: DUMMY_NODE_ID,
node: PatKind::Wild,
span: DUMMY_SP
};
impl<'tcx> Pattern<'tcx> {
fn is_wildcard(&self) -> bool {
match *self.kind {
PatternKind::Binding { subpattern: None, .. } | PatternKind::Wild =>
true,
_ => false
}
}
}
pub struct Matrix<'a, 'tcx: 'a>(Vec<Vec<&'a Pattern<'tcx>>>);
impl<'a, 'tcx> Matrix<'a, 'tcx> {
pub fn empty() -> Self {
Matrix(vec![])
}
pub fn push(&mut self, row: Vec<&'a Pattern<'tcx>>) {
self.0.push(row)
}
}
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "\n")?;
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter().map(|pat| format!("{:?}", pat)).collect()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<usize> = (0..column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
}).collect();
let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
let br = repeat('+').take(total_width).collect::<String>();
write!(f, "{}\n", br)?;
for row in pretty_printed_matrix {
write!(f, "+")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
write!(f, " +")?;
}
write!(f, "\n")?;
write!(f, "{}\n", br)?;
}
Ok(())
}
}
impl<'a, 'tcx> FromIterator<Vec<&'a Pattern<'tcx>>> for Matrix<'a, 'tcx> {
fn from_iter<T: IntoIterator<Item=Vec<&'a Pattern<'tcx>>>>(iter: T) -> Self
{
Matrix(iter.into_iter().collect())
}
}
//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
/// A wild pattern with an error type - it exists to avoid having to normalize
/// associated types to get field types.
pub wild_pattern: &'a Pattern<'tcx>,
pub pattern_arena: &'a TypedArena<Pattern<'tcx>>,
pub byte_array_map: FnvHashMap<*const Pattern<'tcx>, Vec<&'a Pattern<'tcx>>>,
}
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
pub fn create_and_enter<F, R>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
f: F) -> R
where F: for<'b> FnOnce(MatchCheckCtxt<'b, 'tcx>) -> R
{
let wild_pattern = Pattern {
ty: tcx.types.err,
span: DUMMY_SP,
kind: box PatternKind::Wild
};
let pattern_arena = TypedArena::new();
f(MatchCheckCtxt {
tcx: tcx,
wild_pattern: &wild_pattern,
pattern_arena: &pattern_arena,
byte_array_map: FnvHashMap(),
})
}
// convert a byte-string pattern to a list of u8 patterns.
fn lower_byte_str_pattern(&mut self, pat: &'a Pattern<'tcx>) -> Vec<&'a Pattern<'tcx>> {
let pattern_arena = &*self.pattern_arena;
let tcx = self.tcx;
self.byte_array_map.entry(pat).or_insert_with(|| {
match pat.kind {
box PatternKind::Constant {
value: ConstVal::ByteStr(ref data)
} => {
data.iter().map(|c| &*pattern_arena.alloc(Pattern {
ty: tcx.types.u8,
span: pat.span,
kind: box PatternKind::Constant {
value: ConstVal::Integral(ConstInt::U8(*c))
}
})).collect()
}
_ => span_bug!(pat.span, "unexpected byte array pattern {:?}", pat)
}
}).clone()
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Constructor {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(ConstVal),
/// Ranges of literal values (2..5).
ConstantRange(ConstVal, ConstVal),
/// Array patterns of length n.
Slice(usize),
}
impl Constructor {
fn variant_for_adt<'tcx, 'container, 'a>(&self,
adt: &'a ty::AdtDefData<'tcx, 'container>)
-> &'a ty::VariantDefData<'tcx, 'container> {
match self {
&Variant(vid) => adt.variant_with_id(vid),
&Single => {
assert_eq!(adt.variants.len(), 1);
&adt.variants[0]
}
_ => bug!("bad constructor {:?} for adt {:?}", self, adt)
}
}
}
#[derive(Clone, PartialEq)]
pub enum Usefulness {
Useful,
UsefulWithWitness(Vec<Witness>),
NotUseful
}
#[derive(Copy, Clone)]
pub enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
#[derive(Copy, Clone, Debug)]
struct PatternContext<'tcx> {
ty: Ty<'tcx>,
max_slice_length: usize,
}
fn const_val_to_expr(value: &ConstVal) -> P<hir::Expr> {
let node = match value {
&ConstVal::Bool(b) => ast::LitKind::Bool(b),
_ => bug!()
};
P(hir::Expr {
id: DUMMY_NODE_ID,
node: hir::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
span: DUMMY_SP,
attrs: ast::ThinVec::new(),
})
}
/// A stack of patterns in reverse order of construction
#[derive(Clone, PartialEq, Eq)]
pub struct Witness(Vec<P<Pat>>);
impl Witness {
pub fn single_pattern(&self) -> &Pat {
assert_eq!(self.0.len(), 1);
&self.0[0]
}
fn push_wild_constructor<'a, 'tcx>(
mut self,
cx: &MatchCheckCtxt<'a, 'tcx>,
ctor: &Constructor,
ty: Ty<'tcx>)
-> Self
{
let arity = constructor_arity(cx, ctor, ty);
self.0.extend(repeat(DUMMY_WILD_PAT).take(arity).map(|p| P(p.clone())));
self.apply_constructor(cx, ctor, ty)
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn apply_constructor<'a, 'tcx>(
mut self,
cx: &MatchCheckCtxt<'a,'tcx>,
ctor: &Constructor,
ty: Ty<'tcx>)
-> Self
{
let arity = constructor_arity(cx, ctor, ty);
let pat = {
let len = self.0.len();
let mut pats = self.0.drain(len-arity..).rev();
match ty.sty {
ty::TyTuple(..) => PatKind::Tuple(pats.collect(), None),
ty::TyAdt(adt, _) => {
let v = ctor.variant_for_adt(adt);
match v.ctor_kind {
CtorKind::Fictive => {
let field_pats: hir::HirVec<_> = v.fields.iter()
.zip(pats)
.filter(|&(_, ref pat)| pat.node != PatKind::Wild)
.map(|(field, pat)| Spanned {
span: DUMMY_SP,
node: hir::FieldPat {
name: field.name,
pat: pat,
is_shorthand: false,
}
}).collect();
let has_more_fields = field_pats.len() < arity;
PatKind::Struct(
def_to_path(cx.tcx, v.did), field_pats, has_more_fields)
}
CtorKind::Fn => {
PatKind::TupleStruct(
def_to_path(cx.tcx, v.did), pats.collect(), None)
}
CtorKind::Const => {
PatKind::Path(None, def_to_path(cx.tcx, v.did))
}
}
}
ty::TyRef(_, ty::TypeAndMut { mutbl, .. }) => {
PatKind::Ref(pats.nth(0).unwrap(), mutbl)
}
ty::TySlice(_) | ty::TyArray(..) => {
PatKind::Slice(pats.collect(), None, hir::HirVec::new())
}
_ => {
match *ctor {
ConstantValue(ref v) => PatKind::Lit(const_val_to_expr(v)),
_ => PatKind::Wild,
}
}
}
};
self.0.push(P(hir::Pat {
id: DUMMY_NODE_ID,
node: pat,
span: DUMMY_SP
}));
self
}
}
/// Return the set of constructors from the same type as the first column of `matrix`,
/// that are matched only by wildcard patterns from that first column.
///
/// Therefore, if there is some pattern that is unmatched by `matrix`, it will
/// still be unmatched if the first constructor is replaced by any of the constructors
/// in the return value.
fn missing_constructors(cx: &mut MatchCheckCtxt,
matrix: &Matrix,
pcx: PatternContext) -> Vec<Constructor> {
let used_constructors: Vec<Constructor> =
matrix.0.iter()
.flat_map(|row| pat_constructors(cx, row[0], pcx).unwrap_or(vec![]))
.collect();
debug!("used_constructors = {:?}", used_constructors);
all_constructors(cx, pcx).into_iter()
.filter(|c| !used_constructors.contains(c))
.collect()
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
///
/// This intentionally does not list ConstantValue specializations for
/// non-booleans, because we currently assume that there is always a
/// "non-standard constant" that matches. See issue #12483.
///
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
fn all_constructors(_cx: &mut MatchCheckCtxt, pcx: PatternContext) -> Vec<Constructor> {
match pcx.ty.sty {
ty::TyBool =>
[true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
ty::TySlice(_) =>
(0..pcx.max_slice_length+1).map(|length| Slice(length)).collect(),
ty::TyArray(_, length) => vec![Slice(length)],
ty::TyAdt(def, _) if def.is_enum() && def.variants.len() > 1 =>
def.variants.iter().map(|v| Variant(v.did)).collect(),
_ => vec![Single]
}
}
fn max_slice_length<'a: 'b, 'b, 'tcx, I>(
_cx: &mut MatchCheckCtxt<'a, 'tcx>,
patterns: I) -> usize
where I: Iterator<Item=&'b [&'a Pattern<'tcx>]>
{
// The exhaustiveness-checking paper does not include any details on
// checking variable-length slice patterns. However, they are matched
// by an infinite collection of fixed-length array patterns.
//
// To check that infinite set, we notice that for every length
// larger than the length of the maximum fixed-length pattern,
// only variable-length patterns apply.
//
// For variable length patterns, all elements after the first
// `prefix_len` but before the last `suffix_len` are matched by
// the wildcard "middle" pattern, and therefore can be added/removed
// without affecting the match result.
//
// This means that all patterns with length at least
// `max(max_fixed+1,max_prefix+max_suffix)` are equivalent, so we
// only need to check patterns from that length and below.
let mut max_prefix_len = 0;
let mut max_suffix_len = 0;
let mut max_fixed_len = 0;
for row in patterns {
match *row[0].kind {
PatternKind::Constant { value: ConstVal::ByteStr(ref data) } => {
max_fixed_len = cmp::max(max_fixed_len, data.len());
}
PatternKind::Slice { ref prefix, slice: None, ref suffix } => {
let fixed_len = prefix.len() + suffix.len();
max_fixed_len = cmp::max(max_fixed_len, fixed_len);
}
PatternKind::Slice { ref prefix, slice: Some(_), ref suffix } => {
max_prefix_len = cmp::max(max_prefix_len, prefix.len());
max_suffix_len = cmp::max(max_suffix_len, suffix.len());
}
_ => {}
}
}
cmp::max(max_fixed_len + 1, max_prefix_len + max_suffix_len)
}
/// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
///
/// Whether a vector `v` of patterns is 'useful' in relation to a set of such
/// vectors `m` is defined as there being a set of inputs that will match `v`
/// but not any of the sets in `m`.
///
/// This is used both for reachability checking (if a pattern isn't useful in
/// relation to preceding patterns, it is not reachable) and exhaustiveness
/// checking (if a wildcard pattern is useful in relation to a matrix, the
/// matrix isn't exhaustive).
///
/// Note: is_useful doesn't work on empty types, as the paper notes.
/// So it assumes that v is non-empty.
pub fn is_useful<'a, 'tcx>(cx: &mut MatchCheckCtxt<'a, 'tcx>,
matrix: &Matrix<'a, 'tcx>,
v: &[&'a Pattern<'tcx>],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("is_useful({:?}, {:?})", matrix, v);
if rows.is_empty() {
return match witness {
ConstructWitness => UsefulWithWitness(vec![Witness(
repeat(DUMMY_WILD_PAT).take(v.len()).map(|p| P(p.clone())).collect()
)]),
LeaveOutWitness => Useful
};
}
if rows[0].is_empty() {
return NotUseful;
}
let &Matrix(ref rows) = matrix;
assert!(rows.iter().all(|r| r.len() == v.len()));
let pcx = PatternContext {
ty: rows.iter().map(|r| r[0].ty).find(|ty| !ty.references_error())
.unwrap_or(v[0].ty),
max_slice_length: max_slice_length(cx, rows.iter().map(|r| &**r).chain(Some(v)))
};
debug!("is_useful_expand_first_col: pcx={:?}, expanding {:?}", pcx, v[0]);
if let Some(constructors) = pat_constructors(cx, v[0], pcx) {
debug!("is_useful - expanding constructors: {:?}", constructors);
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
debug!("is_useful - expanding wildcard");
let constructors = missing_constructors(cx, matrix, pcx);
debug!("is_useful - missing_constructors = {:?}", constructors);
if constructors.is_empty() {
all_constructors(cx, pcx).into_iter().map(|c| {
is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
let matrix = rows.iter().filter_map(|r| {
if r[0].is_wildcard() {
Some(r[1..].to_vec())
} else {
None
}
}).collect();
match is_useful(cx, &matrix, &v[1..], witness) {
UsefulWithWitness(pats) => {
let cx = &*cx;
UsefulWithWitness(pats.into_iter().flat_map(|witness| {
constructors.iter().map(move |ctor| {
witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
})
}).collect())
}
result => result
}
}
}
}
fn is_useful_specialized<'a, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
&Matrix(ref m): &Matrix<'a, 'tcx>,
v: &[&'a Pattern<'tcx>],
ctor: Constructor,
lty: Ty<'tcx>,
witness: WitnessPreference) -> Usefulness
{
let arity = constructor_arity(cx, &ctor, lty);
let matrix = Matrix(m.iter().flat_map(|r| {
specialize(cx, &r[..], &ctor, 0, arity)
}).collect());
match specialize(cx, v, &ctor, 0, arity) {
Some(v) => match is_useful(cx, &matrix, &v[..], witness) {
UsefulWithWitness(witnesses) => UsefulWithWitness(
witnesses.into_iter()
.map(|witness| witness.apply_constructor(cx, &ctor, lty))
.collect()
),
result => result
},
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// Returns None in case of a catch-all, which can't be specialized.
fn pat_constructors(_cx: &mut MatchCheckCtxt,
pat: &Pattern,
pcx: PatternContext)
-> Option<Vec<Constructor>>
{
match *pat.kind {
PatternKind::Binding { .. } | PatternKind::Wild =>
None,
PatternKind::Leaf { .. } | PatternKind::Deref { .. } =>
Some(vec![Single]),
PatternKind::Variant { adt_def, variant_index, .. } =>
Some(vec![Variant(adt_def.variants[variant_index].did)]),
PatternKind::Constant { ref value } =>
Some(vec![ConstantValue(value.clone())]),
PatternKind::Range { ref lo, ref hi } =>
Some(vec![ConstantRange(lo.clone(), hi.clone())]),
PatternKind::Array { .. } => match pcx.ty.sty {
ty::TyArray(_, length) => Some(vec![Slice(length)]),
_ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty)
},
PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
let pat_len = prefix.len() + suffix.len();
if slice.is_some() {
Some((pat_len..pcx.max_slice_length+1).map(Slice).collect())
} else {
Some(vec![Slice(pat_len)])
}
}
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
debug!("constructor_arity({:?}, {:?})", ctor, ty);
match ty.sty {
ty::TyTuple(ref fs) => fs.len(),
ty::TyBox(_) => 1,
ty::TySlice(..) | ty::TyArray(..) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0,
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
},
ty::TyRef(..) => 1,
ty::TyAdt(adt, _) => {
ctor.variant_for_adt(adt).fields.len()
}
_ => 0
}
}
fn slice_pat_covered_by_constructor(_tcx: TyCtxt, _span: Span,
ctor: &Constructor,
prefix: &[Pattern],
slice: &Option<Pattern>,
suffix: &[Pattern])
-> Result<bool, ErrorReported> {
let data = match *ctor {
ConstantValue(ConstVal::ByteStr(ref data)) => data,
_ => bug!()
};
let pat_len = prefix.len() + suffix.len();
if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) {
return Ok(false);
}
for (ch, pat) in
data[..prefix.len()].iter().zip(prefix).chain(
data[data.len()-suffix.len()..].iter().zip(suffix))
{
match pat.kind {
box PatternKind::Constant { ref value } => match *value {
ConstVal::Integral(ConstInt::U8(u)) => {
if u != *ch {
return Ok(false);
}
},
_ => span_bug!(pat.span, "bad const u8 {:?}", value)
},
_ => {}
}
}
Ok(true)
}
fn range_covered_by_constructor(tcx: TyCtxt, span: Span,
ctor: &Constructor,
from: &ConstVal, to: &ConstVal)
-> Result<bool, ErrorReported> {
let (c_from, c_to) = match *ctor {
ConstantValue(ref value) => (value, value),
ConstantRange(ref from, ref to) => (from, to),
Single => return Ok(true),
_ => bug!()
};
let cmp_from = compare_const_vals(tcx, span, c_from, from)?;
let cmp_to = compare_const_vals(tcx, span, c_to, to)?;
Ok(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
}
fn patterns_for_variant<'a, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
subpatterns: &'a [FieldPattern<'tcx>],
arity: usize)
-> Vec<&'a Pattern<'tcx>>
{
let mut result = vec![cx.wild_pattern; arity];
for subpat in subpatterns {
result[subpat.field.index()] = &subpat.pattern;
}
debug!("patterns_for_variant({:?}, {:?}) = {:?}", subpatterns, arity, result);
result
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
fn specialize<'a, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
r: &[&'a Pattern<'tcx>],
constructor: &Constructor, col: usize, arity: usize)
-> Option<Vec<&'a Pattern<'tcx>>>
{
let pat = &r[col];
let head: Option<Vec<&Pattern>> = match *pat.kind {
PatternKind::Binding { .. } | PatternKind::Wild =>
Some(vec![cx.wild_pattern; arity]),
PatternKind::Variant { adt_def, variant_index, ref subpatterns } => {
let ref variant = adt_def.variants[variant_index];
if *constructor == Variant(variant.did) {
Some(patterns_for_variant(cx, subpatterns, arity))
} else {
None
}
}
PatternKind::Leaf { ref subpatterns } => Some(patterns_for_variant(cx, subpatterns, arity)),
PatternKind::Deref { ref subpattern } => Some(vec![subpattern]),
PatternKind::Constant { ref value } => {
match *constructor {
Slice(..) => match *value {
ConstVal::ByteStr(ref data) => {
if arity == data.len() {
Some(cx.lower_byte_str_pattern(pat))
} else {
None
}
}
_ => span_bug!(pat.span,
"unexpected const-val {:?} with ctor {:?}", value, constructor)
},
_ => {
match range_covered_by_constructor(
cx.tcx, pat.span, constructor, value, value
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
}
}
PatternKind::Range { ref lo, ref hi } => {
match range_covered_by_constructor(
cx.tcx, pat.span, constructor, lo, hi
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
PatternKind::Array { ref prefix, ref slice, ref suffix } |
PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
match *constructor {
Slice(..) => {
let pat_len = prefix.len() + suffix.len();
if let Some(slice_count) = arity.checked_sub(pat_len) {
if slice_count == 0 || slice.is_some() {
Some(
prefix.iter().chain(
repeat(cx.wild_pattern).take(slice_count).chain(
suffix.iter()
)).collect())
} else {
None
}
} else {
None
}
}
ConstantValue(..) => {
match slice_pat_covered_by_constructor(
cx.tcx, pat.span, constructor, prefix, slice, suffix
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None
}
}
_ => span_bug!(pat.span,
"unexpected ctor {:?} for slice pat", constructor)
}
}
};
debug!("specialize({:?}, {:?}) = {:?}", r[col], arity, head);
head.map(|mut head| {
head.extend_from_slice(&r[..col]);
head.extend_from_slice(&r[col + 1..]);
head
})
}