rust/compiler/rustc_trait_selection/src/solve/assembly.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

386 lines
14 KiB
Rust
Raw Normal View History

2022-12-19 07:01:38 +00:00
//! Code shared by trait and projection goals for candidate assembly.
use super::infcx_ext::InferCtxtExt;
2023-01-20 18:38:33 +00:00
use super::{CanonicalResponse, Certainty, EvalCtxt, Goal, QueryResult};
2022-12-19 07:01:38 +00:00
use rustc_hir::def_id::DefId;
use rustc_infer::traits::query::NoSolution;
2023-01-17 18:19:11 +00:00
use rustc_infer::traits::util::elaborate_predicates;
2022-12-19 07:01:38 +00:00
use rustc_middle::ty::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt};
use std::fmt::Debug;
/// A candidate is a possible way to prove a goal.
///
/// It consists of both the `source`, which describes how that goal would be proven,
/// and the `result` when using the given `source`.
#[derive(Debug, Clone)]
pub(super) struct Candidate<'tcx> {
pub(super) source: CandidateSource,
2022-12-19 07:01:38 +00:00
pub(super) result: CanonicalResponse<'tcx>,
}
/// Possible ways the given goal can be proven.
#[derive(Debug, Clone, Copy)]
pub(super) enum CandidateSource {
/// A user written impl.
///
/// ## Examples
///
/// ```rust
/// fn main() {
/// let x: Vec<u32> = Vec::new();
/// // This uses the impl from the standard library to prove `Vec<T>: Clone`.
/// let y = x.clone();
/// }
/// ```
Impl(DefId),
/// A builtin impl generated by the compiler. When adding a new special
/// trait, try to use actual impls whenever possible. Builtin impls should
/// only be used in cases where the impl cannot be manually be written.
///
/// Notable examples are auto traits, `Sized`, and `DiscriminantKind`.
/// For a list of all traits with builtin impls, check out the
/// [`EvalCtxt::assemble_builtin_impl_candidates`] method. Not
BuiltinImpl,
/// An assumption from the environment.
///
/// More precicely we've used the `n-th` assumption in the `param_env`.
///
/// ## Examples
///
/// ```rust
/// fn is_clone<T: Clone>(x: T) -> (T, T) {
/// // This uses the assumption `T: Clone` from the `where`-bounds
/// // to prove `T: Clone`.
/// (x.clone(), x)
/// }
/// ```
ParamEnv(usize),
/// If the self type is an alias type, e.g. an opaque type or a projection,
/// we know the bounds on that alias to hold even without knowing its concrete
/// underlying type.
///
/// More precisely this candidate is using the `n-th` bound in the `item_bounds` of
/// the self type.
///
/// ## Examples
///
/// ```rust
/// trait Trait {
/// type Assoc: Clone;
/// }
///
/// fn foo<T: Trait>(x: <T as Trait>::Assoc) {
/// // We prove `<T as Trait>::Assoc` by looking at the bounds on `Assoc` in
/// // in the trait definition.
/// let _y = x.clone();
/// }
/// ```
AliasBound(usize),
}
2022-12-19 07:01:38 +00:00
pub(super) trait GoalKind<'tcx>: TypeFoldable<'tcx> + Copy + Eq {
2022-12-19 07:01:38 +00:00
fn self_ty(self) -> Ty<'tcx>;
fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self;
fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId;
fn consider_impl_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
2022-12-19 07:01:38 +00:00
goal: Goal<'tcx, Self>,
impl_def_id: DefId,
) -> QueryResult<'tcx>;
2022-12-19 07:01:38 +00:00
2023-01-17 20:16:30 +00:00
fn consider_assumption(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
2023-01-17 20:16:30 +00:00
assumption: ty::Predicate<'tcx>,
) -> QueryResult<'tcx>;
2022-12-19 07:01:38 +00:00
2023-01-17 20:16:30 +00:00
fn consider_auto_trait_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
fn consider_trait_alias_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
fn consider_builtin_sized_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
2023-01-17 20:24:58 +00:00
fn consider_builtin_copy_clone_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
2023-01-18 23:21:12 +00:00
fn consider_builtin_pointer_sized_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
fn consider_builtin_fn_trait_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
kind: ty::ClosureKind,
) -> QueryResult<'tcx>;
fn consider_builtin_tuple_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
}
2023-01-17 20:24:58 +00:00
impl<'tcx> EvalCtxt<'_, 'tcx> {
pub(super) fn assemble_and_evaluate_candidates<G: GoalKind<'tcx>>(
&mut self,
2023-01-17 10:21:30 +01:00
goal: Goal<'tcx, G>,
) -> Vec<Candidate<'tcx>> {
debug_assert_eq!(goal, self.infcx.resolve_vars_if_possible(goal));
2023-01-19 03:26:54 +00:00
// HACK: `_: Trait` is ambiguous, because it may be satisfied via a builtin rule,
// object bound, alias bound, etc. We are unable to determine this until we can at
// least structually resolve the type one layer.
if goal.predicate.self_ty().is_ty_var() {
return vec![Candidate {
source: CandidateSource::BuiltinImpl,
2023-01-20 18:38:33 +00:00
result: self.make_canonical_response(Certainty::AMBIGUOUS).unwrap(),
2023-01-19 03:26:54 +00:00
}];
}
let mut candidates = Vec::new();
2022-12-19 07:01:38 +00:00
self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates);
2022-12-19 07:01:38 +00:00
self.assemble_impl_candidates(goal, &mut candidates);
2022-12-19 07:01:38 +00:00
self.assemble_builtin_impl_candidates(goal, &mut candidates);
2022-12-19 07:01:38 +00:00
self.assemble_param_env_candidates(goal, &mut candidates);
self.assemble_alias_bound_candidates(goal, &mut candidates);
2023-01-17 18:19:11 +00:00
self.assemble_object_bound_candidates(goal, &mut candidates);
candidates
2022-12-19 07:01:38 +00:00
}
/// If the self type of a goal is a projection, computing the relevant candidates is difficult.
///
/// To deal with this, we first try to normalize the self type and add the candidates for the normalized
/// self type to the list of candidates in case that succeeds. Note that we can't just eagerly return in
/// this case as projections as self types add `
fn assemble_candidates_after_normalizing_self_ty<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let tcx = self.tcx();
2022-12-19 07:01:38 +00:00
// FIXME: We also have to normalize opaque types, not sure where to best fit that in.
let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else {
return
};
self.infcx.probe(|_| {
let normalized_ty = self.infcx.next_ty_infer();
2022-12-19 07:01:38 +00:00
let normalizes_to_goal = goal.with(
tcx,
ty::Binder::dummy(ty::ProjectionPredicate {
projection_ty,
term: normalized_ty.into(),
}),
);
let normalization_certainty = match self.evaluate_goal(normalizes_to_goal) {
2023-01-17 10:21:30 +01:00
Ok((_, certainty)) => certainty,
Err(NoSolution) => return,
};
let normalized_ty = self.infcx.resolve_vars_if_possible(normalized_ty);
2022-12-19 07:01:38 +00:00
// NOTE: Alternatively we could call `evaluate_goal` here and only have a `Normalized` candidate.
// This doesn't work as long as we use `CandidateSource` in winnowing.
2022-12-19 07:01:38 +00:00
let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty));
// FIXME: This is broken if we care about the `usize` of `AliasBound` because the self type
// could be normalized to yet another projection with different item bounds.
let normalized_candidates = self.assemble_and_evaluate_candidates(goal);
2023-01-17 10:21:30 +01:00
for mut normalized_candidate in normalized_candidates {
normalized_candidate.result =
normalized_candidate.result.unchecked_map(|mut response| {
// FIXME: This currently hides overflow in the normalization step of the self type
// which is probably wrong. Maybe `unify_and` should actually keep overflow as
// we treat it as non-fatal anyways.
2023-01-17 10:21:30 +01:00
response.certainty = response.certainty.unify_and(normalization_certainty);
response
});
candidates.push(normalized_candidate);
2022-12-19 07:01:38 +00:00
}
})
}
fn assemble_impl_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let tcx = self.tcx();
2023-01-17 10:21:30 +01:00
tcx.for_each_relevant_impl(
goal.predicate.trait_def_id(tcx),
2022-12-19 07:01:38 +00:00
goal.predicate.self_ty(),
|impl_def_id| match G::consider_impl_candidate(self, goal, impl_def_id) {
Ok(result) => candidates
.push(Candidate { source: CandidateSource::Impl(impl_def_id), result }),
Err(NoSolution) => (),
},
2022-12-19 07:01:38 +00:00
);
}
fn assemble_builtin_impl_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let lang_items = self.tcx().lang_items();
let trait_def_id = goal.predicate.trait_def_id(self.tcx());
2023-01-17 20:16:30 +00:00
let result = if self.tcx().trait_is_auto(trait_def_id) {
G::consider_auto_trait_candidate(self, goal)
} else if self.tcx().trait_is_alias(trait_def_id) {
G::consider_trait_alias_candidate(self, goal)
} else if lang_items.sized_trait() == Some(trait_def_id) {
G::consider_builtin_sized_candidate(self, goal)
2023-01-17 20:24:58 +00:00
} else if lang_items.copy_trait() == Some(trait_def_id)
|| lang_items.clone_trait() == Some(trait_def_id)
{
G::consider_builtin_copy_clone_candidate(self, goal)
2023-01-18 23:21:12 +00:00
} else if lang_items.pointer_sized() == Some(trait_def_id) {
G::consider_builtin_pointer_sized_candidate(self, goal)
} else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) {
G::consider_builtin_fn_trait_candidates(self, goal, kind)
} else if lang_items.tuple_trait() == Some(trait_def_id) {
G::consider_builtin_tuple_candidate(self, goal)
} else {
Err(NoSolution)
};
match result {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
}
Err(NoSolution) => (),
}
}
fn assemble_param_env_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() {
match G::consider_assumption(self, goal, assumption) {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result })
}
Err(NoSolution) => (),
}
}
}
fn assemble_alias_bound_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let alias_ty = match goal.predicate.self_ty().kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(_)
| ty::Never
| ty::Tuple(_)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(_)
| ty::Error(_) => return,
ty::Bound(..) => bug!("unexpected bound type: {goal:?}"),
ty::Alias(_, alias_ty) => alias_ty,
};
for (i, (assumption, _)) in self
.tcx()
.bound_explicit_item_bounds(alias_ty.def_id)
.subst_iter_copied(self.tcx(), alias_ty.substs)
.enumerate()
{
match G::consider_assumption(self, goal, assumption) {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::AliasBound(i), result })
}
Err(NoSolution) => (),
}
}
}
2023-01-17 18:19:11 +00:00
fn assemble_object_bound_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let self_ty = goal.predicate.self_ty();
let bounds = match *self_ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Alias(..)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(_)
| ty::Never
| ty::Tuple(_)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(_)
| ty::Error(_) => return,
ty::Bound(..) => bug!("unexpected bound type: {goal:?}"),
ty::Dynamic(bounds, ..) => bounds,
};
let tcx = self.tcx();
for assumption in
elaborate_predicates(tcx, bounds.iter().map(|bound| bound.with_self_ty(tcx, self_ty)))
{
2023-01-17 20:16:30 +00:00
match G::consider_assumption(self, goal, assumption.predicate) {
2023-01-17 18:19:11 +00:00
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
}
Err(NoSolution) => (),
}
}
}
2022-12-19 07:01:38 +00:00
}