1
Fork 0
rust/src/libcore/ops/mod.rs

2493 lines
71 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Overloadable operators.
//!
//! Implementing these traits allows you to overload certain operators.
//!
//! Some of these traits are imported by the prelude, so they are available in
//! every Rust program. Only operators backed by traits can be overloaded. For
2016-09-28 22:02:19 +02:00
//! example, the addition operator (`+`) can be overloaded through the [`Add`]
//! trait, but since the assignment operator (`=`) has no backing trait, there
//! is no way of overloading its semantics. Additionally, this module does not
//! provide any mechanism to create new operators. If traitless overloading or
//! custom operators are required, you should look toward macros or compiler
//! plugins to extend Rust's syntax.
//!
//! Note that the `&&` and `||` operators short-circuit, i.e. they only
//! evaluate their second operand if it contributes to the result. Since this
//! behavior is not enforceable by traits, `&&` and `||` are not supported as
//! overloadable operators.
//!
//! Many of the operators take their operands by value. In non-generic
//! contexts involving built-in types, this is usually not a problem.
//! However, using these operators in generic code, requires some
//! attention if values have to be reused as opposed to letting the operators
//! consume them. One option is to occasionally use [`clone`].
//! Another option is to rely on the types involved providing additional
//! operator implementations for references. For example, for a user-defined
//! type `T` which is supposed to support addition, it is probably a good
2016-09-28 22:02:19 +02:00
//! idea to have both `T` and `&T` implement the traits [`Add<T>`][`Add`] and
//! [`Add<&T>`][`Add`] so that generic code can be written without unnecessary
//! cloning.
//!
//! # Examples
//!
2016-09-28 22:02:19 +02:00
//! This example creates a `Point` struct that implements [`Add`] and [`Sub`],
//! and then demonstrates adding and subtracting two `Point`s.
//!
//! ```rust
//! use std::ops::{Add, Sub};
//!
2015-01-28 08:34:18 -05:00
//! #[derive(Debug)]
//! struct Point {
2015-02-15 10:22:43 -05:00
//! x: i32,
//! y: i32,
//! }
//!
2014-12-31 15:45:13 -05:00
//! impl Add for Point {
//! type Output = Point;
//!
2014-12-01 19:10:12 -05:00
//! fn add(self, other: Point) -> Point {
//! Point {x: self.x + other.x, y: self.y + other.y}
//! }
//! }
//!
2014-12-31 15:45:13 -05:00
//! impl Sub for Point {
//! type Output = Point;
//!
2014-12-01 19:10:12 -05:00
//! fn sub(self, other: Point) -> Point {
//! Point {x: self.x - other.x, y: self.y - other.y}
//! }
//! }
//! fn main() {
2015-01-06 16:16:35 -08:00
//! println!("{:?}", Point {x: 1, y: 0} + Point {x: 2, y: 3});
//! println!("{:?}", Point {x: 1, y: 0} - Point {x: 2, y: 3});
//! }
//! ```
//!
//! See the documentation for each trait for an example implementation.
//!
//! The [`Fn`], [`FnMut`], and [`FnOnce`] traits are implemented by types that can be
2016-09-28 22:02:19 +02:00
//! invoked like functions. Note that [`Fn`] takes `&self`, [`FnMut`] takes `&mut
//! self` and [`FnOnce`] takes `self`. These correspond to the three kinds of
//! methods that can be invoked on an instance: call-by-reference,
//! call-by-mutable-reference, and call-by-value. The most common use of these
//! traits is to act as bounds to higher-level functions that take functions or
//! closures as arguments.
//!
2016-09-28 22:02:19 +02:00
//! Taking a [`Fn`] as a parameter:
//!
//! ```rust
//! fn call_with_one<F>(func: F) -> usize
//! where F: Fn(usize) -> usize
//! {
//! func(1)
//! }
//!
//! let double = |x| x * 2;
//! assert_eq!(call_with_one(double), 2);
//! ```
//!
2016-09-28 22:02:19 +02:00
//! Taking a [`FnMut`] as a parameter:
//!
//! ```rust
//! fn do_twice<F>(mut func: F)
//! where F: FnMut()
//! {
//! func();
//! func();
//! }
//!
//! let mut x: usize = 1;
//! {
//! let add_two_to_x = || x += 2;
//! do_twice(add_two_to_x);
//! }
//!
//! assert_eq!(x, 5);
//! ```
//!
2016-09-28 22:02:19 +02:00
//! Taking a [`FnOnce`] as a parameter:
//!
//! ```rust
//! fn consume_with_relish<F>(func: F)
//! where F: FnOnce() -> String
//! {
//! // `func` consumes its captured variables, so it cannot be run more
//! // than once
//! println!("Consumed: {}", func());
//!
//! println!("Delicious!");
//!
//! // Attempting to invoke `func()` again will throw a `use of moved
//! // value` error for `func`
//! }
//!
//! let x = String::from("x");
//! let consume_and_return_x = move || x;
//! consume_with_relish(consume_and_return_x);
//!
//! // `consume_and_return_x` can no longer be invoked at this point
//! ```
2016-09-28 22:02:19 +02:00
//!
//! [`Fn`]: trait.Fn.html
//! [`FnMut`]: trait.FnMut.html
//! [`FnOnce`]: trait.FnOnce.html
//! [`Add`]: trait.Add.html
//! [`Sub`]: trait.Sub.html
//! [`clone`]: ../clone/trait.Clone.html#tymethod.clone
2015-01-23 21:48:20 -08:00
#![stable(feature = "rust1", since = "1.0.0")]
2017-06-07 21:59:57 -04:00
mod function;
2017-06-07 21:44:03 -04:00
mod range;
2017-06-07 21:59:57 -04:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::function::{Fn, FnMut, FnOnce};
2017-06-07 21:44:03 -04:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::range::{Range, RangeFrom, RangeFull, RangeTo};
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
pub use self::range::{RangeInclusive, RangeToInclusive};
2016-08-22 10:02:28 +00:00
use marker::Unsize;
/// The `Drop` trait is used to run some code when a value goes out of scope.
/// This is sometimes called a 'destructor'.
///
/// When a value goes out of scope, if it implements this trait, it will have
/// its `drop` method called. Then any fields the value contains will also
/// be dropped recursively.
///
2017-05-22 23:49:35 -07:00
/// Because of the recursive dropping, you do not need to implement this trait
/// unless your type needs its own destructor logic.
///
/// # Examples
///
/// A trivial implementation of `Drop`. The `drop` method is called when `_x`
/// goes out of scope, and therefore `main` prints `Dropping!`.
///
/// ```
/// struct HasDrop;
///
/// impl Drop for HasDrop {
/// fn drop(&mut self) {
/// println!("Dropping!");
/// }
/// }
///
/// fn main() {
/// let _x = HasDrop;
/// }
/// ```
///
/// Showing the recursive nature of `Drop`. When `outer` goes out of scope, the
2017-05-22 23:49:35 -07:00
/// `drop` method will be called first for `Outer`, then for `Inner`. Therefore
/// `main` prints `Dropping Outer!` and then `Dropping Inner!`.
2017-05-22 16:33:55 -07:00
///
/// ```
/// struct Inner;
/// struct Outer(Inner);
///
/// impl Drop for Inner {
/// fn drop(&mut self) {
/// println!("Dropping Inner!");
/// }
/// }
///
/// impl Drop for Outer {
/// fn drop(&mut self) {
/// println!("Dropping Outer!");
/// }
/// }
///
/// fn main() {
/// let _x = Outer(Inner);
/// }
/// ```
///
/// Because variables are dropped in the reverse order they are declared,
/// `main` will print `Declared second!` and then `Declared first!`.
///
/// ```
/// struct PrintOnDrop(&'static str);
2017-05-22 16:33:55 -07:00
///
/// fn main() {
/// let _first = PrintOnDrop("Declared first!");
/// let _second = PrintOnDrop("Declared second!");
/// }
/// ```
#[lang = "drop"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Drop {
/// A method called when the value goes out of scope.
2016-01-04 12:19:48 -05:00
///
/// When this method has been called, `self` has not yet been deallocated.
/// If it were, `self` would be a dangling reference.
///
/// After this function is over, the memory of `self` will be deallocated.
///
/// This function cannot be called explicitly. This is compiler error
2016-10-21 00:49:47 +01:00
/// [E0040]. However, the [`std::mem::drop`] function in the prelude can be
/// used to call the argument's `Drop` implementation.
///
2016-10-21 00:49:47 +01:00
/// [E0040]: ../../error-index.html#E0040
/// [`std::mem::drop`]: ../../std/mem/fn.drop.html
///
2016-01-04 12:19:48 -05:00
/// # Panics
///
/// Given that a `panic!` will call `drop()` as it unwinds, any `panic!` in
/// a `drop()` implementation will likely abort.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2013-09-16 21:18:07 -04:00
fn drop(&mut self);
}
/// The addition operator `+`.
///
/// # Examples
///
/// This example creates a `Point` struct that implements the `Add` trait, and
/// then demonstrates adding two `Point`s.
///
/// ```
/// use std::ops::Add;
///
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// impl Add for Point {
/// type Output = Point;
///
/// fn add(self, other: Point) -> Point {
/// Point {
/// x: self.x + other.x,
/// y: self.y + other.y,
/// }
/// }
/// }
2014-12-31 15:45:13 -05:00
///
/// impl PartialEq for Point {
/// fn eq(&self, other: &Self) -> bool {
/// self.x == other.x && self.y == other.y
/// }
/// }
///
/// fn main() {
/// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
/// Point { x: 3, y: 3 });
/// }
/// ```
///
/// Here is an example of the same `Point` struct implementing the `Add` trait
/// using generics.
///
/// ```
/// use std::ops::Add;
///
/// #[derive(Debug)]
/// struct Point<T> {
/// x: T,
/// y: T,
/// }
///
/// // Notice that the implementation uses the `Output` associated type
/// impl<T: Add<Output=T>> Add for Point<T> {
/// type Output = Point<T>;
///
/// fn add(self, other: Point<T>) -> Point<T> {
/// Point {
/// x: self.x + other.x,
/// y: self.y + other.y,
/// }
/// }
/// }
///
/// impl<T: PartialEq> PartialEq for Point<T> {
/// fn eq(&self, other: &Self) -> bool {
/// self.x == other.x && self.y == other.y
/// }
/// }
///
/// fn main() {
/// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
/// Point { x: 3, y: 3 });
/// }
/// ```
///
/// Note that `RHS = Self` by default, but this is not mandatory. For example,
/// [std::time::SystemTime] implements `Add<Duration>`, which permits
/// operations of the form `SystemTime = SystemTime + Duration`.
///
/// [std::time::SystemTime]: ../../std/time/struct.SystemTime.html
#[lang = "add"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} + {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Add<RHS=Self> {
/// The resulting type after applying the `+` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `+` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn add(self, rhs: RHS) -> Self::Output;
}
macro_rules! add_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl Add for $t {
type Output = $t;
#[inline]
#[rustc_inherit_overflow_checks]
fn add(self, other: $t) -> $t { self + other }
}
forward_ref_binop! { impl Add, add for $t, $t }
)*)
}
add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
/// The subtraction operator `-`.
///
/// # Examples
///
/// This example creates a `Point` struct that implements the `Sub` trait, and
/// then demonstrates subtracting two `Point`s.
///
/// ```
/// use std::ops::Sub;
///
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// impl Sub for Point {
/// type Output = Point;
2014-12-31 15:45:13 -05:00
///
/// fn sub(self, other: Point) -> Point {
/// Point {
/// x: self.x - other.x,
/// y: self.y - other.y,
/// }
/// }
/// }
///
/// impl PartialEq for Point {
/// fn eq(&self, other: &Self) -> bool {
/// self.x == other.x && self.y == other.y
/// }
/// }
///
/// fn main() {
/// assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 },
/// Point { x: 1, y: 0 });
/// }
/// ```
///
/// Note that `RHS = Self` by default, but this is not mandatory. For example,
/// [std::time::SystemTime] implements `Sub<Duration>`, which permits
/// operations of the form `SystemTime = SystemTime - Duration`.
///
/// [std::time::SystemTime]: ../../std/time/struct.SystemTime.html
#[lang = "sub"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} - {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Sub<RHS=Self> {
/// The resulting type after applying the `-` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `-` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn sub(self, rhs: RHS) -> Self::Output;
}
macro_rules! sub_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl Sub for $t {
type Output = $t;
#[inline]
#[rustc_inherit_overflow_checks]
fn sub(self, other: $t) -> $t { self - other }
}
forward_ref_binop! { impl Sub, sub for $t, $t }
)*)
}
sub_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
/// The multiplication operator `*`.
///
/// # Examples
///
/// Implementing a `Mul`tipliable rational number struct:
///
/// ```
/// use std::ops::Mul;
///
/// // The uniqueness of rational numbers in lowest terms is a consequence of
/// // the fundamental theorem of arithmetic.
/// #[derive(Eq)]
/// #[derive(PartialEq, Debug)]
/// struct Rational {
/// nominator: usize,
/// denominator: usize,
/// }
///
/// impl Rational {
/// fn new(nominator: usize, denominator: usize) -> Self {
/// if denominator == 0 {
/// panic!("Zero is an invalid denominator!");
/// }
2014-12-31 15:45:13 -05:00
///
/// // Reduce to lowest terms by dividing by the greatest common
/// // divisor.
/// let gcd = gcd(nominator, denominator);
/// Rational {
/// nominator: nominator / gcd,
/// denominator: denominator / gcd,
/// }
/// }
/// }
///
/// impl Mul for Rational {
/// // The multiplication of rational numbers is a closed operation.
/// type Output = Self;
///
/// fn mul(self, rhs: Self) -> Self {
/// let nominator = self.nominator * rhs.nominator;
/// let denominator = self.denominator * rhs.denominator;
/// Rational::new(nominator, denominator)
/// }
/// }
///
/// // Euclid's two-thousand-year-old algorithm for finding the greatest common
/// // divisor.
/// fn gcd(x: usize, y: usize) -> usize {
/// let mut x = x;
/// let mut y = y;
/// while y != 0 {
/// let t = y;
/// y = x % y;
/// x = t;
/// }
/// x
/// }
///
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
/// assert_eq!(Rational::new(2, 3) * Rational::new(3, 4),
/// Rational::new(1, 2));
/// ```
///
/// Note that `RHS = Self` by default, but this is not mandatory. Here is an
/// implementation which enables multiplication of vectors by scalars, as is
/// done in linear algebra.
///
/// ```
/// use std::ops::Mul;
///
/// struct Scalar {value: usize};
///
/// #[derive(Debug)]
/// struct Vector {value: Vec<usize>};
///
/// impl Mul<Vector> for Scalar {
/// type Output = Vector;
///
/// fn mul(self, rhs: Vector) -> Vector {
/// Vector {value: rhs.value.iter().map(|v| self.value * v).collect()}
/// }
/// }
///
/// impl PartialEq<Vector> for Vector {
/// fn eq(&self, other: &Self) -> bool {
/// self.value == other.value
/// }
/// }
///
/// let scalar = Scalar{value: 3};
/// let vector = Vector{value: vec![2, 4, 6]};
/// assert_eq!(scalar * vector, Vector{value: vec![6, 12, 18]});
/// ```
#[lang = "mul"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} * {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Mul<RHS=Self> {
/// The resulting type after applying the `*` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `*` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn mul(self, rhs: RHS) -> Self::Output;
}
macro_rules! mul_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl Mul for $t {
type Output = $t;
#[inline]
#[rustc_inherit_overflow_checks]
fn mul(self, other: $t) -> $t { self * other }
}
forward_ref_binop! { impl Mul, mul for $t, $t }
)*)
}
mul_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
/// The division operator `/`.
///
/// # Examples
///
/// Implementing a `Div`idable rational number struct:
///
/// ```
/// use std::ops::Div;
///
/// // The uniqueness of rational numbers in lowest terms is a consequence of
/// // the fundamental theorem of arithmetic.
/// #[derive(Eq)]
/// #[derive(PartialEq, Debug)]
/// struct Rational {
/// nominator: usize,
/// denominator: usize,
/// }
///
/// impl Rational {
/// fn new(nominator: usize, denominator: usize) -> Self {
/// if denominator == 0 {
/// panic!("Zero is an invalid denominator!");
/// }
2014-12-31 15:45:13 -05:00
///
/// // Reduce to lowest terms by dividing by the greatest common
/// // divisor.
/// let gcd = gcd(nominator, denominator);
/// Rational {
/// nominator: nominator / gcd,
/// denominator: denominator / gcd,
/// }
/// }
/// }
///
/// impl Div for Rational {
/// // The division of rational numbers is a closed operation.
/// type Output = Self;
///
/// fn div(self, rhs: Self) -> Self {
/// if rhs.nominator == 0 {
/// panic!("Cannot divide by zero-valued `Rational`!");
/// }
///
/// let nominator = self.nominator * rhs.denominator;
/// let denominator = self.denominator * rhs.nominator;
/// Rational::new(nominator, denominator)
/// }
/// }
///
/// // Euclid's two-thousand-year-old algorithm for finding the greatest common
/// // divisor.
/// fn gcd(x: usize, y: usize) -> usize {
/// let mut x = x;
/// let mut y = y;
/// while y != 0 {
/// let t = y;
/// y = x % y;
/// x = t;
/// }
/// x
/// }
///
/// fn main() {
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
/// assert_eq!(Rational::new(1, 2) / Rational::new(3, 4),
/// Rational::new(2, 3));
/// }
/// ```
///
/// Note that `RHS = Self` by default, but this is not mandatory. Here is an
/// implementation which enables division of vectors by scalars, as is done in
/// linear algebra.
///
/// ```
/// use std::ops::Div;
///
/// struct Scalar {value: f32};
///
/// #[derive(Debug)]
/// struct Vector {value: Vec<f32>};
///
/// impl Div<Scalar> for Vector {
/// type Output = Vector;
///
/// fn div(self, rhs: Scalar) -> Vector {
/// Vector {value: self.value.iter().map(|v| v / rhs.value).collect()}
/// }
/// }
///
/// impl PartialEq<Vector> for Vector {
/// fn eq(&self, other: &Self) -> bool {
/// self.value == other.value
/// }
/// }
///
/// let scalar = Scalar{value: 2f32};
/// let vector = Vector{value: vec![2f32, 4f32, 6f32]};
/// assert_eq!(vector / scalar, Vector{value: vec![1f32, 2f32, 3f32]});
/// ```
#[lang = "div"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} / {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Div<RHS=Self> {
/// The resulting type after applying the `/` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `/` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn div(self, rhs: RHS) -> Self::Output;
}
macro_rules! div_impl_integer {
($($t:ty)*) => ($(
/// This operation rounds towards zero, truncating any
/// fractional part of the exact result.
#[stable(feature = "rust1", since = "1.0.0")]
impl Div for $t {
type Output = $t;
#[inline]
fn div(self, other: $t) -> $t { self / other }
}
forward_ref_binop! { impl Div, div for $t, $t }
)*)
}
div_impl_integer! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
macro_rules! div_impl_float {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl Div for $t {
type Output = $t;
#[inline]
fn div(self, other: $t) -> $t { self / other }
}
forward_ref_binop! { impl Div, div for $t, $t }
)*)
}
div_impl_float! { f32 f64 }
/// The remainder operator `%`.
///
/// # Examples
///
/// This example implements `Rem` on a `SplitSlice` object. After `Rem` is
/// implemented, one can use the `%` operator to find out what the remaining
/// elements of the slice would be after splitting it into equal slices of a
/// given length.
///
/// ```
/// use std::ops::Rem;
///
/// #[derive(PartialEq, Debug)]
/// struct SplitSlice<'a, T: 'a> {
/// slice: &'a [T],
/// }
///
/// impl<'a, T> Rem<usize> for SplitSlice<'a, T> {
/// type Output = SplitSlice<'a, T>;
2014-12-31 15:45:13 -05:00
///
/// fn rem(self, modulus: usize) -> Self {
/// let len = self.slice.len();
/// let rem = len % modulus;
/// let start = len - rem;
/// SplitSlice {slice: &self.slice[start..]}
/// }
/// }
///
/// // If we were to divide &[0, 1, 2, 3, 4, 5, 6, 7] into slices of size 3,
/// // the remainder would be &[6, 7]
/// assert_eq!(SplitSlice { slice: &[0, 1, 2, 3, 4, 5, 6, 7] } % 3,
/// SplitSlice { slice: &[6, 7] });
/// ```
#[lang = "rem"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} % {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Rem<RHS=Self> {
/// The resulting type after applying the `%` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output = Self;
/// The method for the `%` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn rem(self, rhs: RHS) -> Self::Output;
}
macro_rules! rem_impl_integer {
($($t:ty)*) => ($(
/// This operation satisfies `n % d == n - (n / d) * d`. The
/// result has the same sign as the left operand.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl Rem for $t {
type Output = $t;
#[inline]
fn rem(self, other: $t) -> $t { self % other }
}
forward_ref_binop! { impl Rem, rem for $t, $t }
)*)
}
rem_impl_integer! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2014-12-31 15:45:13 -05:00
macro_rules! rem_impl_float {
($($t:ty)*) => ($(
#[stable(feature = "rust1", since = "1.0.0")]
impl Rem for $t {
type Output = $t;
#[inline]
fn rem(self, other: $t) -> $t { self % other }
}
forward_ref_binop! { impl Rem, rem for $t, $t }
)*)
}
rem_impl_float! { f32 f64 }
/// The unary negation operator `-`.
///
/// # Examples
///
/// An implementation of `Neg` for `Sign`, which allows the use of `-` to
/// negate its value.
///
/// ```
/// use std::ops::Neg;
///
/// #[derive(Debug, PartialEq)]
/// enum Sign {
/// Negative,
/// Zero,
/// Positive,
/// }
///
/// impl Neg for Sign {
/// type Output = Sign;
2015-01-02 22:56:24 -05:00
///
/// fn neg(self) -> Sign {
/// match self {
/// Sign::Negative => Sign::Positive,
/// Sign::Zero => Sign::Zero,
/// Sign::Positive => Sign::Negative,
/// }
/// }
/// }
///
/// // a negative positive is a negative
/// assert_eq!(-Sign::Positive, Sign::Negative);
/// // a double negative is a positive
/// assert_eq!(-Sign::Negative, Sign::Positive);
/// // zero is its own negation
/// assert_eq!(-Sign::Zero, Sign::Zero);
/// ```
#[lang = "neg"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
pub trait Neg {
/// The resulting type after applying the `-` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
type Output;
/// The method for the unary `-` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
fn neg(self) -> Self::Output;
}
macro_rules! neg_impl_core {
($id:ident => $body:expr, $($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
impl Neg for $t {
type Output = $t;
#[inline]
#[rustc_inherit_overflow_checks]
fn neg(self) -> $t { let $id = self; $body }
}
forward_ref_unop! { impl Neg, neg for $t }
)*)
}
macro_rules! neg_impl_numeric {
($($t:ty)*) => { neg_impl_core!{ x => -x, $($t)*} }
}
2017-05-12 08:21:13 +02:00
#[allow(unused_macros)]
macro_rules! neg_impl_unsigned {
($($t:ty)*) => {
neg_impl_core!{ x => {
!x.wrapping_add(1)
}, $($t)*} }
}
// neg_impl_unsigned! { usize u8 u16 u32 u64 }
neg_impl_numeric! { isize i8 i16 i32 i64 i128 f32 f64 }
/// The unary logical negation operator `!`.
///
/// # Examples
///
/// An implementation of `Not` for `Answer`, which enables the use of `!` to
/// invert its value.
///
/// ```
/// use std::ops::Not;
///
/// #[derive(Debug, PartialEq)]
/// enum Answer {
/// Yes,
/// No,
/// }
///
/// impl Not for Answer {
/// type Output = Answer;
2015-01-02 22:56:24 -05:00
///
/// fn not(self) -> Answer {
/// match self {
/// Answer::Yes => Answer::No,
/// Answer::No => Answer::Yes
/// }
/// }
/// }
///
/// assert_eq!(!Answer::Yes, Answer::No);
/// assert_eq!(!Answer::No, Answer::Yes);
/// ```
#[lang = "not"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
pub trait Not {
/// The resulting type after applying the `!` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
type Output;
/// The method for the unary `!` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
fn not(self) -> Self::Output;
}
macro_rules! not_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-02 22:56:24 -05:00
impl Not for $t {
type Output = $t;
#[inline]
fn not(self) -> $t { !self }
}
forward_ref_unop! { impl Not, not for $t }
)*)
}
not_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
/// The bitwise AND operator `&`.
///
/// # Examples
///
/// In this example, the `&` operator is lifted to a trivial `Scalar` type.
///
/// ```
/// use std::ops::BitAnd;
///
/// #[derive(Debug, PartialEq)]
/// struct Scalar(bool);
///
/// impl BitAnd for Scalar {
/// type Output = Self;
///
/// // rhs is the "right-hand side" of the expression `a & b`
/// fn bitand(self, rhs: Self) -> Self {
/// Scalar(self.0 & rhs.0)
/// }
/// }
///
/// fn main() {
/// assert_eq!(Scalar(true) & Scalar(true), Scalar(true));
/// assert_eq!(Scalar(true) & Scalar(false), Scalar(false));
/// assert_eq!(Scalar(false) & Scalar(true), Scalar(false));
/// assert_eq!(Scalar(false) & Scalar(false), Scalar(false));
/// }
/// ```
///
/// In this example, the `BitAnd` trait is implemented for a `BooleanVector`
/// struct.
///
/// ```
/// use std::ops::BitAnd;
///
/// #[derive(Debug, PartialEq)]
/// struct BooleanVector(Vec<bool>);
///
/// impl BitAnd for BooleanVector {
/// type Output = Self;
///
/// fn bitand(self, BooleanVector(rhs): Self) -> Self {
/// let BooleanVector(lhs) = self;
/// assert_eq!(lhs.len(), rhs.len());
/// BooleanVector(lhs.iter().zip(rhs.iter()).map(|(x, y)| *x && *y).collect())
/// }
/// }
///
/// fn main() {
/// let bv1 = BooleanVector(vec![true, true, false, false]);
/// let bv2 = BooleanVector(vec![true, false, true, false]);
/// let expected = BooleanVector(vec![true, false, false, false]);
/// assert_eq!(bv1 & bv2, expected);
/// }
/// ```
#[lang = "bitand"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} & {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait BitAnd<RHS=Self> {
/// The resulting type after applying the `&` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `&` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn bitand(self, rhs: RHS) -> Self::Output;
}
macro_rules! bitand_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl BitAnd for $t {
type Output = $t;
#[inline]
fn bitand(self, rhs: $t) -> $t { self & rhs }
}
forward_ref_binop! { impl BitAnd, bitand for $t, $t }
)*)
}
bitand_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
/// The bitwise OR operator `|`.
///
/// # Examples
///
/// In this example, the `|` operator is lifted to a trivial `Scalar` type.
///
/// ```
/// use std::ops::BitOr;
///
/// #[derive(Debug, PartialEq)]
/// struct Scalar(bool);
///
/// impl BitOr for Scalar {
/// type Output = Self;
2014-12-31 15:45:13 -05:00
///
/// // rhs is the "right-hand side" of the expression `a | b`
/// fn bitor(self, rhs: Self) -> Self {
/// Scalar(self.0 | rhs.0)
/// }
/// }
///
/// fn main() {
/// assert_eq!(Scalar(true) | Scalar(true), Scalar(true));
/// assert_eq!(Scalar(true) | Scalar(false), Scalar(true));
/// assert_eq!(Scalar(false) | Scalar(true), Scalar(true));
/// assert_eq!(Scalar(false) | Scalar(false), Scalar(false));
/// }
/// ```
///
/// In this example, the `BitOr` trait is implemented for a `BooleanVector`
/// struct.
///
/// ```
/// use std::ops::BitOr;
///
/// #[derive(Debug, PartialEq)]
/// struct BooleanVector(Vec<bool>);
///
/// impl BitOr for BooleanVector {
/// type Output = Self;
2014-12-31 15:45:13 -05:00
///
/// fn bitor(self, BooleanVector(rhs): Self) -> Self {
/// let BooleanVector(lhs) = self;
/// assert_eq!(lhs.len(), rhs.len());
/// BooleanVector(lhs.iter().zip(rhs.iter()).map(|(x, y)| *x || *y).collect())
/// }
/// }
///
/// fn main() {
/// let bv1 = BooleanVector(vec![true, true, false, false]);
/// let bv2 = BooleanVector(vec![true, false, true, false]);
/// let expected = BooleanVector(vec![true, true, true, false]);
/// assert_eq!(bv1 | bv2, expected);
/// }
/// ```
#[lang = "bitor"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} | {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait BitOr<RHS=Self> {
/// The resulting type after applying the `|` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `|` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn bitor(self, rhs: RHS) -> Self::Output;
}
macro_rules! bitor_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl BitOr for $t {
type Output = $t;
#[inline]
fn bitor(self, rhs: $t) -> $t { self | rhs }
}
forward_ref_binop! { impl BitOr, bitor for $t, $t }
)*)
}
bitor_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
/// The bitwise XOR operator `^`.
///
/// # Examples
///
/// In this example, the `^` operator is lifted to a trivial `Scalar` type.
///
/// ```
/// use std::ops::BitXor;
///
/// #[derive(Debug, PartialEq)]
/// struct Scalar(bool);
///
/// impl BitXor for Scalar {
/// type Output = Self;
2014-12-31 15:45:13 -05:00
///
/// // rhs is the "right-hand side" of the expression `a ^ b`
/// fn bitxor(self, rhs: Self) -> Self {
/// Scalar(self.0 ^ rhs.0)
/// }
/// }
///
/// fn main() {
/// assert_eq!(Scalar(true) ^ Scalar(true), Scalar(false));
/// assert_eq!(Scalar(true) ^ Scalar(false), Scalar(true));
/// assert_eq!(Scalar(false) ^ Scalar(true), Scalar(true));
/// assert_eq!(Scalar(false) ^ Scalar(false), Scalar(false));
/// }
/// ```
///
/// In this example, the `BitXor` trait is implemented for a `BooleanVector`
/// struct.
///
/// ```
/// use std::ops::BitXor;
///
/// #[derive(Debug, PartialEq)]
/// struct BooleanVector(Vec<bool>);
///
/// impl BitXor for BooleanVector {
/// type Output = Self;
2014-12-31 15:45:13 -05:00
///
/// fn bitxor(self, BooleanVector(rhs): Self) -> Self {
/// let BooleanVector(lhs) = self;
/// assert_eq!(lhs.len(), rhs.len());
/// BooleanVector(lhs.iter()
/// .zip(rhs.iter())
/// .map(|(x, y)| (*x || *y) && !(*x && *y))
/// .collect())
/// }
/// }
///
/// fn main() {
/// let bv1 = BooleanVector(vec![true, true, false, false]);
/// let bv2 = BooleanVector(vec![true, false, true, false]);
/// let expected = BooleanVector(vec![false, true, true, false]);
/// assert_eq!(bv1 ^ bv2, expected);
/// }
/// ```
#[lang = "bitxor"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} ^ {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait BitXor<RHS=Self> {
/// The resulting type after applying the `^` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `^` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn bitxor(self, rhs: RHS) -> Self::Output;
}
macro_rules! bitxor_impl {
($($t:ty)*) => ($(
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
impl BitXor for $t {
type Output = $t;
#[inline]
fn bitxor(self, other: $t) -> $t { self ^ other }
}
forward_ref_binop! { impl BitXor, bitxor for $t, $t }
)*)
}
bitxor_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
/// The left shift operator `<<`.
///
/// # Examples
///
/// An implementation of `Shl` that lifts the `<<` operation on integers to a
/// `Scalar` struct.
///
/// ```
/// use std::ops::Shl;
///
/// #[derive(PartialEq, Debug)]
/// struct Scalar(usize);
///
/// impl Shl<Scalar> for Scalar {
/// type Output = Self;
2014-12-31 15:45:13 -05:00
///
/// fn shl(self, Scalar(rhs): Self) -> Scalar {
/// let Scalar(lhs) = self;
/// Scalar(lhs << rhs)
/// }
/// }
/// fn main() {
/// assert_eq!(Scalar(4) << Scalar(2), Scalar(16));
/// }
/// ```
///
/// An implementation of `Shl` that spins a vector leftward by a given amount.
///
/// ```
/// use std::ops::Shl;
///
/// #[derive(PartialEq, Debug)]
/// struct SpinVector<T: Clone> {
/// vec: Vec<T>,
/// }
///
/// impl<T: Clone> Shl<usize> for SpinVector<T> {
/// type Output = Self;
///
/// fn shl(self, rhs: usize) -> SpinVector<T> {
/// // rotate the vector by `rhs` places
/// let (a, b) = self.vec.split_at(rhs);
/// let mut spun_vector: Vec<T> = vec![];
/// spun_vector.extend_from_slice(b);
/// spun_vector.extend_from_slice(a);
/// SpinVector { vec: spun_vector }
/// }
/// }
///
/// fn main() {
/// assert_eq!(SpinVector { vec: vec![0, 1, 2, 3, 4] } << 2,
/// SpinVector { vec: vec![2, 3, 4, 0, 1] });
/// }
/// ```
#[lang = "shl"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} << {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Shl<RHS> {
/// The resulting type after applying the `<<` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `<<` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn shl(self, rhs: RHS) -> Self::Output;
}
macro_rules! shl_impl {
($t:ty, $f:ty) => (
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl Shl<$f> for $t {
2014-12-31 15:45:13 -05:00
type Output = $t;
#[inline]
#[rustc_inherit_overflow_checks]
fn shl(self, other: $f) -> $t {
self << other
}
}
forward_ref_binop! { impl Shl, shl for $t, $f }
)
}
macro_rules! shl_impl_all {
($($t:ty)*) => ($(
shl_impl! { $t, u8 }
shl_impl! { $t, u16 }
shl_impl! { $t, u32 }
shl_impl! { $t, u64 }
shl_impl! { $t, u128 }
shl_impl! { $t, usize }
shl_impl! { $t, i8 }
shl_impl! { $t, i16 }
shl_impl! { $t, i32 }
shl_impl! { $t, i64 }
shl_impl! { $t, i128 }
shl_impl! { $t, isize }
)*)
}
shl_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 isize i128 }
/// The right shift operator `>>`.
///
/// # Examples
///
/// An implementation of `Shr` that lifts the `>>` operation on integers to a
/// `Scalar` struct.
///
/// ```
/// use std::ops::Shr;
///
/// #[derive(PartialEq, Debug)]
/// struct Scalar(usize);
///
/// impl Shr<Scalar> for Scalar {
/// type Output = Self;
2014-12-31 15:45:13 -05:00
///
/// fn shr(self, Scalar(rhs): Self) -> Scalar {
/// let Scalar(lhs) = self;
/// Scalar(lhs >> rhs)
/// }
/// }
/// fn main() {
/// assert_eq!(Scalar(16) >> Scalar(2), Scalar(4));
/// }
/// ```
///
/// An implementation of `Shr` that spins a vector rightward by a given amount.
///
/// ```
/// use std::ops::Shr;
///
/// #[derive(PartialEq, Debug)]
/// struct SpinVector<T: Clone> {
/// vec: Vec<T>,
/// }
///
/// impl<T: Clone> Shr<usize> for SpinVector<T> {
/// type Output = Self;
///
/// fn shr(self, rhs: usize) -> SpinVector<T> {
/// // rotate the vector by `rhs` places
/// let (a, b) = self.vec.split_at(self.vec.len() - rhs);
/// let mut spun_vector: Vec<T> = vec![];
/// spun_vector.extend_from_slice(b);
/// spun_vector.extend_from_slice(a);
/// SpinVector { vec: spun_vector }
/// }
/// }
///
/// fn main() {
/// assert_eq!(SpinVector { vec: vec![0, 1, 2, 3, 4] } >> 2,
/// SpinVector { vec: vec![3, 4, 0, 1, 2] });
/// }
/// ```
#[lang = "shr"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} >> {RHS}`"]
2014-12-31 15:45:13 -05:00
pub trait Shr<RHS> {
/// The resulting type after applying the `>>` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
type Output;
/// The method for the `>>` operator
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-31 15:45:13 -05:00
fn shr(self, rhs: RHS) -> Self::Output;
}
macro_rules! shr_impl {
($t:ty, $f:ty) => (
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
impl Shr<$f> for $t {
2014-12-31 15:45:13 -05:00
type Output = $t;
#[inline]
#[rustc_inherit_overflow_checks]
fn shr(self, other: $f) -> $t {
self >> other
}
}
forward_ref_binop! { impl Shr, shr for $t, $f }
)
}
macro_rules! shr_impl_all {
($($t:ty)*) => ($(
shr_impl! { $t, u8 }
shr_impl! { $t, u16 }
shr_impl! { $t, u32 }
shr_impl! { $t, u64 }
shr_impl! { $t, u128 }
shr_impl! { $t, usize }
shr_impl! { $t, i8 }
shr_impl! { $t, i16 }
shr_impl! { $t, i32 }
shr_impl! { $t, i64 }
shr_impl! { $t, i128 }
shr_impl! { $t, isize }
)*)
}
shr_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }
/// The addition assignment operator `+=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// This example creates a `Point` struct that implements the `AddAssign`
/// trait, and then demonstrates add-assigning to a mutable `Point`.
2015-09-10 19:16:57 -05:00
///
/// ```
/// use std::ops::AddAssign;
///
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
2015-09-10 19:16:57 -05:00
///
/// impl AddAssign for Point {
/// fn add_assign(&mut self, other: Point) {
/// *self = Point {
/// x: self.x + other.x,
/// y: self.y + other.y,
/// };
2015-09-10 19:16:57 -05:00
/// }
/// }
///
/// impl PartialEq for Point {
/// fn eq(&self, other: &Self) -> bool {
/// self.x == other.x && self.y == other.y
/// }
2015-09-10 19:16:57 -05:00
/// }
///
/// let mut point = Point { x: 1, y: 0 };
/// point += Point { x: 2, y: 3 };
/// assert_eq!(point, Point { x: 3, y: 3 });
2015-09-10 19:16:57 -05:00
/// ```
#[lang = "add_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} += {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait AddAssign<Rhs=Self> {
/// The method for the `+=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn add_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! add_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl AddAssign for $t {
#[inline]
#[rustc_inherit_overflow_checks]
2015-09-10 19:16:57 -05:00
fn add_assign(&mut self, other: $t) { *self += other }
}
)+)
}
add_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
2015-09-10 19:16:57 -05:00
/// The subtraction assignment operator `-=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// This example creates a `Point` struct that implements the `SubAssign`
/// trait, and then demonstrates sub-assigning to a mutable `Point`.
2015-09-10 19:16:57 -05:00
///
/// ```
/// use std::ops::SubAssign;
///
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
2015-09-10 19:16:57 -05:00
///
/// impl SubAssign for Point {
/// fn sub_assign(&mut self, other: Point) {
/// *self = Point {
/// x: self.x - other.x,
/// y: self.y - other.y,
/// };
2015-09-10 19:16:57 -05:00
/// }
/// }
///
/// impl PartialEq for Point {
/// fn eq(&self, other: &Self) -> bool {
/// self.x == other.x && self.y == other.y
/// }
2015-09-10 19:16:57 -05:00
/// }
///
/// let mut point = Point { x: 3, y: 3 };
/// point -= Point { x: 2, y: 3 };
/// assert_eq!(point, Point {x: 1, y: 0});
2015-09-10 19:16:57 -05:00
/// ```
#[lang = "sub_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} -= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait SubAssign<Rhs=Self> {
/// The method for the `-=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn sub_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! sub_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl SubAssign for $t {
#[inline]
#[rustc_inherit_overflow_checks]
2015-09-10 19:16:57 -05:00
fn sub_assign(&mut self, other: $t) { *self -= other }
}
)+)
}
sub_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
2015-09-10 19:16:57 -05:00
/// The multiplication assignment operator `*=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `MulAssign`. When `Foo *= Foo` happens, it ends up
/// calling `mul_assign`, and therefore, `main` prints `Multiplying!`.
///
/// ```
/// use std::ops::MulAssign;
///
/// struct Foo;
///
/// impl MulAssign for Foo {
/// fn mul_assign(&mut self, _rhs: Foo) {
/// println!("Multiplying!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo *= Foo;
/// }
/// ```
#[lang = "mul_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} *= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait MulAssign<Rhs=Self> {
/// The method for the `*=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn mul_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! mul_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl MulAssign for $t {
#[inline]
#[rustc_inherit_overflow_checks]
2015-09-10 19:16:57 -05:00
fn mul_assign(&mut self, other: $t) { *self *= other }
}
)+)
}
mul_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
2015-09-10 19:16:57 -05:00
/// The division assignment operator `/=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `DivAssign`. When `Foo /= Foo` happens, it ends up
/// calling `div_assign`, and therefore, `main` prints `Dividing!`.
///
/// ```
/// use std::ops::DivAssign;
///
/// struct Foo;
///
/// impl DivAssign for Foo {
/// fn div_assign(&mut self, _rhs: Foo) {
/// println!("Dividing!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo /= Foo;
/// }
/// ```
#[lang = "div_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} /= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait DivAssign<Rhs=Self> {
/// The method for the `/=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn div_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! div_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl DivAssign for $t {
#[inline]
fn div_assign(&mut self, other: $t) { *self /= other }
}
)+)
}
div_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
2015-09-10 19:16:57 -05:00
/// The remainder assignment operator `%=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `RemAssign`. When `Foo %= Foo` happens, it ends up
/// calling `rem_assign`, and therefore, `main` prints `Remainder-ing!`.
///
/// ```
/// use std::ops::RemAssign;
///
/// struct Foo;
///
/// impl RemAssign for Foo {
/// fn rem_assign(&mut self, _rhs: Foo) {
/// println!("Remainder-ing!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo %= Foo;
/// }
/// ```
#[lang = "rem_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} %= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait RemAssign<Rhs=Self> {
/// The method for the `%=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn rem_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! rem_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl RemAssign for $t {
#[inline]
fn rem_assign(&mut self, other: $t) { *self %= other }
}
)+)
}
rem_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }
2015-09-10 19:16:57 -05:00
/// The bitwise AND assignment operator `&=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// In this example, the `&=` operator is lifted to a trivial `Scalar` type.
2015-09-10 19:16:57 -05:00
///
/// ```
/// use std::ops::BitAndAssign;
///
/// #[derive(Debug, PartialEq)]
/// struct Scalar(bool);
2015-09-10 19:16:57 -05:00
///
/// impl BitAndAssign for Scalar {
/// // rhs is the "right-hand side" of the expression `a &= b`
/// fn bitand_assign(&mut self, rhs: Self) {
/// *self = Scalar(self.0 & rhs.0)
2015-09-10 19:16:57 -05:00
/// }
/// }
///
/// fn main() {
/// let mut scalar = Scalar(true);
/// scalar &= Scalar(true);
/// assert_eq!(scalar, Scalar(true));
///
/// let mut scalar = Scalar(true);
/// scalar &= Scalar(false);
/// assert_eq!(scalar, Scalar(false));
///
/// let mut scalar = Scalar(false);
/// scalar &= Scalar(true);
/// assert_eq!(scalar, Scalar(false));
///
/// let mut scalar = Scalar(false);
/// scalar &= Scalar(false);
/// assert_eq!(scalar, Scalar(false));
/// }
/// ```
///
/// In this example, the `BitAndAssign` trait is implemented for a
/// `BooleanVector` struct.
///
/// ```
/// use std::ops::BitAndAssign;
///
/// #[derive(Debug, PartialEq)]
/// struct BooleanVector(Vec<bool>);
///
/// impl BitAndAssign for BooleanVector {
/// // rhs is the "right-hand side" of the expression `a &= b`
/// fn bitand_assign(&mut self, rhs: Self) {
/// assert_eq!(self.0.len(), rhs.0.len());
/// *self = BooleanVector(self.0
/// .iter()
/// .zip(rhs.0.iter())
/// .map(|(x, y)| *x && *y)
/// .collect());
/// }
/// }
///
/// fn main() {
/// let mut bv = BooleanVector(vec![true, true, false, false]);
/// bv &= BooleanVector(vec![true, false, true, false]);
/// let expected = BooleanVector(vec![true, false, false, false]);
/// assert_eq!(bv, expected);
2015-09-10 19:16:57 -05:00
/// }
/// ```
#[lang = "bitand_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} &= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait BitAndAssign<Rhs=Self> {
/// The method for the `&=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn bitand_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! bitand_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl BitAndAssign for $t {
#[inline]
fn bitand_assign(&mut self, other: $t) { *self &= other }
}
)+)
}
bitand_assign_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2015-09-10 19:16:57 -05:00
/// The bitwise OR assignment operator `|=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `BitOrAssign`. When `Foo |= Foo` happens, it ends up
/// calling `bitor_assign`, and therefore, `main` prints `Bitwise Or-ing!`.
///
/// ```
/// use std::ops::BitOrAssign;
///
/// struct Foo;
///
/// impl BitOrAssign for Foo {
/// fn bitor_assign(&mut self, _rhs: Foo) {
/// println!("Bitwise Or-ing!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo |= Foo;
/// }
/// ```
#[lang = "bitor_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} |= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait BitOrAssign<Rhs=Self> {
/// The method for the `|=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn bitor_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! bitor_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl BitOrAssign for $t {
#[inline]
fn bitor_assign(&mut self, other: $t) { *self |= other }
}
)+)
}
bitor_assign_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2015-09-10 19:16:57 -05:00
/// The bitwise XOR assignment operator `^=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `BitXorAssign`. When `Foo ^= Foo` happens, it ends up
/// calling `bitxor_assign`, and therefore, `main` prints `Bitwise Xor-ing!`.
///
/// ```
/// use std::ops::BitXorAssign;
///
/// struct Foo;
///
/// impl BitXorAssign for Foo {
/// fn bitxor_assign(&mut self, _rhs: Foo) {
/// println!("Bitwise Xor-ing!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo ^= Foo;
/// }
/// ```
#[lang = "bitxor_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} ^= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait BitXorAssign<Rhs=Self> {
/// The method for the `^=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn bitxor_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! bitxor_assign_impl {
($($t:ty)+) => ($(
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl BitXorAssign for $t {
#[inline]
fn bitxor_assign(&mut self, other: $t) { *self ^= other }
}
)+)
}
bitxor_assign_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2015-09-10 19:16:57 -05:00
/// The left shift assignment operator `<<=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `ShlAssign`. When `Foo <<= Foo` happens, it ends up
/// calling `shl_assign`, and therefore, `main` prints `Shifting left!`.
///
/// ```
/// use std::ops::ShlAssign;
///
/// struct Foo;
///
/// impl ShlAssign<Foo> for Foo {
/// fn shl_assign(&mut self, _rhs: Foo) {
/// println!("Shifting left!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo <<= Foo;
/// }
/// ```
#[lang = "shl_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} <<= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait ShlAssign<Rhs> {
/// The method for the `<<=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn shl_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! shl_assign_impl {
($t:ty, $f:ty) => (
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl ShlAssign<$f> for $t {
#[inline]
#[rustc_inherit_overflow_checks]
2015-09-10 19:16:57 -05:00
fn shl_assign(&mut self, other: $f) {
*self <<= other
}
}
)
}
macro_rules! shl_assign_impl_all {
($($t:ty)*) => ($(
shl_assign_impl! { $t, u8 }
shl_assign_impl! { $t, u16 }
shl_assign_impl! { $t, u32 }
shl_assign_impl! { $t, u64 }
shl_assign_impl! { $t, u128 }
2015-09-10 19:16:57 -05:00
shl_assign_impl! { $t, usize }
shl_assign_impl! { $t, i8 }
shl_assign_impl! { $t, i16 }
shl_assign_impl! { $t, i32 }
shl_assign_impl! { $t, i64 }
shl_assign_impl! { $t, i128 }
2015-09-10 19:16:57 -05:00
shl_assign_impl! { $t, isize }
)*)
}
shl_assign_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }
2015-09-10 19:16:57 -05:00
/// The right shift assignment operator `>>=`.
2015-09-10 19:16:57 -05:00
///
/// # Examples
///
/// A trivial implementation of `ShrAssign`. When `Foo >>= Foo` happens, it ends up
/// calling `shr_assign`, and therefore, `main` prints `Shifting right!`.
///
/// ```
/// use std::ops::ShrAssign;
///
/// struct Foo;
///
/// impl ShrAssign<Foo> for Foo {
/// fn shr_assign(&mut self, _rhs: Foo) {
/// println!("Shifting right!");
/// }
/// }
///
2015-11-03 15:27:03 +00:00
/// # #[allow(unused_assignments)]
2015-09-10 19:16:57 -05:00
/// fn main() {
/// let mut foo = Foo;
/// foo >>= Foo;
/// }
/// ```
#[lang = "shr_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented = "no implementation for `{Self} >>= {Rhs}`"]
2015-09-10 19:16:57 -05:00
pub trait ShrAssign<Rhs=Self> {
/// The method for the `>>=` operator
#[stable(feature = "op_assign_traits", since = "1.8.0")]
fn shr_assign(&mut self, rhs: Rhs);
2015-09-10 19:16:57 -05:00
}
macro_rules! shr_assign_impl {
($t:ty, $f:ty) => (
#[stable(feature = "op_assign_traits", since = "1.8.0")]
2015-09-10 19:16:57 -05:00
impl ShrAssign<$f> for $t {
#[inline]
#[rustc_inherit_overflow_checks]
2015-09-10 19:16:57 -05:00
fn shr_assign(&mut self, other: $f) {
*self >>= other
}
}
)
}
macro_rules! shr_assign_impl_all {
($($t:ty)*) => ($(
shr_assign_impl! { $t, u8 }
shr_assign_impl! { $t, u16 }
shr_assign_impl! { $t, u32 }
shr_assign_impl! { $t, u64 }
shr_assign_impl! { $t, u128 }
2015-09-10 19:16:57 -05:00
shr_assign_impl! { $t, usize }
shr_assign_impl! { $t, i8 }
shr_assign_impl! { $t, i16 }
shr_assign_impl! { $t, i32 }
shr_assign_impl! { $t, i64 }
shr_assign_impl! { $t, i128 }
2015-09-10 19:16:57 -05:00
shr_assign_impl! { $t, isize }
)*)
}
shr_assign_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }
2015-09-10 19:16:57 -05:00
/// The `Index` trait is used to specify the functionality of indexing operations
/// like `container[index]` when used in an immutable context.
///
2016-10-28 01:42:47 +02:00
/// `container[index]` is actually syntactic sugar for `*container.index(index)`,
/// but only when used as an immutable value. If a mutable value is requested,
/// [`IndexMut`] is used instead. This allows nice things such as
/// `let value = v[index]` if `value` implements [`Copy`].
///
/// [`IndexMut`]: ../../std/ops/trait.IndexMut.html
/// [`Copy`]: ../../std/marker/trait.Copy.html
///
/// # Examples
///
2016-10-28 01:42:47 +02:00
/// The following example implements `Index` on a read-only `NucleotideCount`
/// container, enabling individual counts to be retrieved with index syntax.
///
/// ```
/// use std::ops::Index;
///
/// enum Nucleotide {
/// A,
/// C,
/// G,
/// T,
/// }
///
/// struct NucleotideCount {
/// a: usize,
/// c: usize,
/// g: usize,
/// t: usize,
/// }
2015-01-03 09:46:29 -05:00
///
/// impl Index<Nucleotide> for NucleotideCount {
/// type Output = usize;
///
/// fn index(&self, nucleotide: Nucleotide) -> &usize {
/// match nucleotide {
/// Nucleotide::A => &self.a,
/// Nucleotide::C => &self.c,
/// Nucleotide::G => &self.g,
/// Nucleotide::T => &self.t,
/// }
/// }
/// }
///
/// let nucleotide_count = NucleotideCount {a: 14, c: 9, g: 10, t: 12};
/// assert_eq!(nucleotide_count[Nucleotide::A], 14);
/// assert_eq!(nucleotide_count[Nucleotide::C], 9);
/// assert_eq!(nucleotide_count[Nucleotide::G], 10);
/// assert_eq!(nucleotide_count[Nucleotide::T], 12);
/// ```
#[lang = "index"]
#[rustc_on_unimplemented = "the type `{Self}` cannot be indexed by `{Idx}`"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Index<Idx: ?Sized> {
/// The returned type after indexing
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-06 10:16:49 +13:00
type Output: ?Sized;
2015-01-03 09:46:29 -05:00
/// The method for the indexing (`container[index]`) operation
#[stable(feature = "rust1", since = "1.0.0")]
2015-09-03 15:19:08 +05:30
fn index(&self, index: Idx) -> &Self::Output;
2015-01-03 09:46:29 -05:00
}
/// The `IndexMut` trait is used to specify the functionality of indexing
2016-10-28 01:42:47 +02:00
/// operations like `container[index]` when used in a mutable context.
///
/// `container[index]` is actually syntactic sugar for
/// `*container.index_mut(index)`, but only when used as a mutable value. If
/// an immutable value is requested, the [`Index`] trait is used instead. This
/// allows nice things such as `v[index] = value` if `value` implements [`Copy`].
///
/// [`Index`]: ../../std/ops/trait.Index.html
/// [`Copy`]: ../../std/marker/trait.Copy.html
///
/// # Examples
///
2016-10-28 01:42:47 +02:00
/// A very simple implementation of a `Balance` struct that has two sides, where
/// each can be indexed mutably and immutably.
///
/// ```
2016-10-28 01:42:47 +02:00
/// use std::ops::{Index,IndexMut};
///
2016-10-28 01:42:47 +02:00
/// #[derive(Debug)]
/// enum Side {
/// Left,
/// Right,
/// }
///
2016-10-28 01:42:47 +02:00
/// #[derive(Debug, PartialEq)]
/// enum Weight {
/// Kilogram(f32),
/// Pound(f32),
/// }
///
/// struct Balance {
/// pub left: Weight,
/// pub right:Weight,
/// }
2015-01-03 09:46:29 -05:00
///
2016-10-28 01:42:47 +02:00
/// impl Index<Side> for Balance {
/// type Output = Weight;
///
/// fn index<'a>(&'a self, index: Side) -> &'a Weight {
/// println!("Accessing {:?}-side of balance immutably", index);
/// match index {
/// Side::Left => &self.left,
/// Side::Right => &self.right,
/// }
/// }
/// }
///
2016-10-28 01:42:47 +02:00
/// impl IndexMut<Side> for Balance {
/// fn index_mut<'a>(&'a mut self, index: Side) -> &'a mut Weight {
/// println!("Accessing {:?}-side of balance mutably", index);
/// match index {
/// Side::Left => &mut self.left,
/// Side::Right => &mut self.right,
/// }
/// }
/// }
///
/// fn main() {
2016-10-28 01:42:47 +02:00
/// let mut balance = Balance {
/// right: Weight::Kilogram(2.5),
/// left: Weight::Pound(1.5),
/// };
///
/// // In this case balance[Side::Right] is sugar for
/// // *balance.index(Side::Right), since we are only reading
/// // balance[Side::Right], not writing it.
/// assert_eq!(balance[Side::Right],Weight::Kilogram(2.5));
///
/// // However in this case balance[Side::Left] is sugar for
/// // *balance.index_mut(Side::Left), since we are writing
/// // balance[Side::Left].
/// balance[Side::Left] = Weight::Kilogram(3.0);
/// }
/// ```
#[lang = "index_mut"]
#[rustc_on_unimplemented = "the type `{Self}` cannot be mutably indexed by `{Idx}`"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait IndexMut<Idx: ?Sized>: Index<Idx> {
/// The method for the mutable indexing (`container[index]`) operation
#[stable(feature = "rust1", since = "1.0.0")]
2015-09-03 15:19:08 +05:30
fn index_mut(&mut self, index: Idx) -> &mut Self::Output;
}
/// The `Deref` trait is used to specify the functionality of dereferencing
/// operations, like `*v`.
///
/// `Deref` also enables ['`Deref` coercions'][coercions].
///
/// [coercions]: ../../book/deref-coercions.html
///
/// # Examples
///
/// A struct with a single field which is accessible via dereferencing the
/// struct.
///
/// ```
/// use std::ops::Deref;
///
/// struct DerefExample<T> {
/// value: T
/// }
///
2015-01-01 14:53:20 -05:00
/// impl<T> Deref for DerefExample<T> {
/// type Target = T;
///
2015-09-26 20:40:22 +02:00
/// fn deref(&self) -> &T {
/// &self.value
/// }
/// }
///
/// fn main() {
/// let x = DerefExample { value: 'a' };
/// assert_eq!('a', *x);
/// }
/// ```
#[lang = "deref"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-04 21:39:02 -05:00
pub trait Deref {
/// The resulting type after dereferencing
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-06 10:16:49 +13:00
type Target: ?Sized;
2015-01-01 14:53:20 -05:00
/// The method called to dereference a value
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-09-03 15:19:08 +05:30
fn deref(&self) -> &Self::Target;
2014-02-26 23:02:35 +02:00
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-06 10:16:49 +13:00
impl<'a, T: ?Sized> Deref for &'a T {
2015-01-01 14:53:20 -05:00
type Target = T;
fn deref(&self) -> &T { *self }
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-06 10:16:49 +13:00
impl<'a, T: ?Sized> Deref for &'a mut T {
2015-01-01 14:53:20 -05:00
type Target = T;
fn deref(&self) -> &T { *self }
}
/// The `DerefMut` trait is used to specify the functionality of dereferencing
/// mutably like `*v = 1;`
///
/// `DerefMut` also enables ['`Deref` coercions'][coercions].
///
/// [coercions]: ../../book/deref-coercions.html
///
/// # Examples
///
/// A struct with a single field which is modifiable via dereferencing the
/// struct.
///
/// ```
/// use std::ops::{Deref, DerefMut};
///
/// struct DerefMutExample<T> {
/// value: T
/// }
///
2015-01-01 14:53:20 -05:00
/// impl<T> Deref for DerefMutExample<T> {
/// type Target = T;
///
/// fn deref(&self) -> &T {
/// &self.value
/// }
/// }
///
2015-01-01 14:53:20 -05:00
/// impl<T> DerefMut for DerefMutExample<T> {
/// fn deref_mut(&mut self) -> &mut T {
/// &mut self.value
/// }
/// }
///
/// fn main() {
/// let mut x = DerefMutExample { value: 'a' };
/// *x = 'b';
/// assert_eq!('b', *x);
/// }
/// ```
#[lang = "deref_mut"]
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub trait DerefMut: Deref {
/// The method called to mutably dereference a value
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-09-03 15:19:08 +05:30
fn deref_mut(&mut self) -> &mut Self::Target;
2014-02-26 23:02:35 +02:00
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-06 10:16:49 +13:00
impl<'a, T: ?Sized> DerefMut for &'a mut T {
fn deref_mut(&mut self) -> &mut T { *self }
}
/// Trait that indicates that this is a pointer or a wrapper for one,
/// where unsizing can be performed on the pointee.
///
/// See the [DST coercion RfC][dst-coerce] and [the nomicon entry on coercion][nomicon-coerce]
/// for more details.
///
/// For builtin pointer types, pointers to `T` will coerce to pointers to `U` if `T: Unsize<U>`
/// by converting from a thin pointer to a fat pointer.
///
/// For custom types, the coercion here works by coercing `Foo<T>` to `Foo<U>`
/// provided an impl of `CoerceUnsized<Foo<U>> for Foo<T>` exists.
/// Such an impl can only be written if `Foo<T>` has only a single non-phantomdata
/// field involving `T`. If the type of that field is `Bar<T>`, an implementation
/// of `CoerceUnsized<Bar<U>> for Bar<T>` must exist. The coercion will work by
/// by coercing the `Bar<T>` field into `Bar<U>` and filling in the rest of the fields
/// from `Foo<T>` to create a `Foo<U>`. This will effectively drill down to a pointer
/// field and coerce that.
///
/// Generally, for smart pointers you will implement
/// `CoerceUnsized<Ptr<U>> for Ptr<T> where T: Unsize<U>, U: ?Sized`, with an
/// optional `?Sized` bound on `T` itself. For wrapper types that directly embed `T`
/// like `Cell<T>` and `RefCell<T>`, you
/// can directly implement `CoerceUnsized<Wrap<U>> for Wrap<T> where T: CoerceUnsized<U>`.
/// This will let coercions of types like `Cell<Box<T>>` work.
///
/// [`Unsize`][unsize] is used to mark types which can be coerced to DSTs if behind
/// pointers. It is implemented automatically by the compiler.
///
/// [dst-coerce]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
/// [unsize]: ../marker/trait.Unsize.html
/// [nomicon-coerce]: ../../nomicon/coercions.html
#[unstable(feature = "coerce_unsized", issue = "27732")]
#[lang="coerce_unsized"]
pub trait CoerceUnsized<T> {
// Empty.
}
2015-05-12 14:41:08 +12:00
// &mut T -> &mut U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<&'a mut U> for &'a mut T {}
2015-05-12 14:41:08 +12:00
// &mut T -> &U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'a, 'b: 'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b mut T {}
2015-05-12 14:41:08 +12:00
// &mut T -> *mut U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for &'a mut T {}
2015-05-12 14:41:08 +12:00
// &mut T -> *const U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for &'a mut T {}
2015-05-12 14:41:08 +12:00
// &T -> &U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'a, 'b: 'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b T {}
2015-05-12 14:41:08 +12:00
// &T -> *const U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for &'a T {}
2015-05-12 14:41:08 +12:00
// *mut T -> *mut U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for *mut T {}
2015-05-12 14:41:08 +12:00
// *mut T -> *const U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for *mut T {}
2015-05-12 14:41:08 +12:00
// *const T -> *const U
2015-11-16 19:54:28 +03:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for *const T {}
/// Both `PLACE <- EXPR` and `box EXPR` desugar into expressions
/// that allocate an intermediate "place" that holds uninitialized
/// state. The desugaring evaluates EXPR, and writes the result at
/// the address returned by the `pointer` method of this trait.
///
/// A `Place` can be thought of as a special representation for a
/// hypothetical `&uninit` reference (which Rust cannot currently
/// express directly). That is, it represents a pointer to
/// uninitialized storage.
///
/// The client is responsible for two steps: First, initializing the
/// payload (it can access its address via `pointer`). Second,
/// converting the agent to an instance of the owning pointer, via the
/// appropriate `finalize` method (see the `InPlace`.
///
/// If evaluating EXPR fails, then it is up to the destructor for the
/// implementation of Place to clean up any intermediate state
/// (e.g. deallocate box storage, pop a stack, etc).
#[unstable(feature = "placement_new_protocol", issue = "27779")]
pub trait Place<Data: ?Sized> {
/// Returns the address where the input value will be written.
/// Note that the data at this address is generally uninitialized,
/// and thus one should use `ptr::write` for initializing it.
fn pointer(&mut self) -> *mut Data;
}
/// Interface to implementations of `PLACE <- EXPR`.
///
/// `PLACE <- EXPR` effectively desugars into:
///
/// ```rust,ignore
/// let p = PLACE;
/// let mut place = Placer::make_place(p);
/// let raw_place = Place::pointer(&mut place);
/// let value = EXPR;
/// unsafe {
/// std::ptr::write(raw_place, value);
/// InPlace::finalize(place)
/// }
/// ```
///
/// The type of `PLACE <- EXPR` is derived from the type of `PLACE`;
/// if the type of `PLACE` is `P`, then the final type of the whole
/// expression is `P::Place::Owner` (see the `InPlace` and `Boxed`
/// traits).
///
/// Values for types implementing this trait usually are transient
/// intermediate values (e.g. the return value of `Vec::emplace_back`)
/// or `Copy`, since the `make_place` method takes `self` by value.
#[unstable(feature = "placement_new_protocol", issue = "27779")]
pub trait Placer<Data: ?Sized> {
/// `Place` is the intermedate agent guarding the
/// uninitialized state for `Data`.
type Place: InPlace<Data>;
/// Creates a fresh place from `self`.
fn make_place(self) -> Self::Place;
}
/// Specialization of `Place` trait supporting `PLACE <- EXPR`.
#[unstable(feature = "placement_new_protocol", issue = "27779")]
pub trait InPlace<Data: ?Sized>: Place<Data> {
/// `Owner` is the type of the end value of `PLACE <- EXPR`
///
/// Note that when `PLACE <- EXPR` is solely used for
/// side-effecting an existing data-structure,
/// e.g. `Vec::emplace_back`, then `Owner` need not carry any
/// information at all (e.g. it can be the unit type `()` in that
/// case).
type Owner;
/// Converts self into the final value, shifting
/// deallocation/cleanup responsibilities (if any remain), over to
/// the returned instance of `Owner` and forgetting self.
unsafe fn finalize(self) -> Self::Owner;
}
/// Core trait for the `box EXPR` form.
///
/// `box EXPR` effectively desugars into:
///
/// ```rust,ignore
/// let mut place = BoxPlace::make_place();
/// let raw_place = Place::pointer(&mut place);
/// let value = EXPR;
/// unsafe {
/// ::std::ptr::write(raw_place, value);
/// Boxed::finalize(place)
/// }
/// ```
///
/// The type of `box EXPR` is supplied from its surrounding
/// context; in the above expansion, the result type `T` is used
/// to determine which implementation of `Boxed` to use, and that
/// `<T as Boxed>` in turn dictates determines which
/// implementation of `BoxPlace` to use, namely:
/// `<<T as Boxed>::Place as BoxPlace>`.
#[unstable(feature = "placement_new_protocol", issue = "27779")]
pub trait Boxed {
/// The kind of data that is stored in this kind of box.
type Data; /* (`Data` unused b/c cannot yet express below bound.) */
/// The place that will negotiate the storage of the data.
type Place: BoxPlace<Self::Data>;
/// Converts filled place into final owning value, shifting
/// deallocation/cleanup responsibilities (if any remain), over to
/// returned instance of `Self` and forgetting `filled`.
unsafe fn finalize(filled: Self::Place) -> Self;
}
/// Specialization of `Place` trait supporting `box EXPR`.
#[unstable(feature = "placement_new_protocol", issue = "27779")]
pub trait BoxPlace<Data: ?Sized> : Place<Data> {
/// Creates a globally fresh place.
fn make_place() -> Self;
}
/// This trait has been superseded by the `Try` trait, but must remain
/// here as `?` is still lowered to it in stage0 .
#[cfg(stage0)]
#[unstable(feature = "question_mark_carrier", issue = "31436")]
pub trait Carrier {
/// The type of the value when computation succeeds.
type Success;
/// The type of the value when computation errors out.
type Error;
/// Create a `Carrier` from a success value.
fn from_success(_: Self::Success) -> Self;
/// Create a `Carrier` from an error value.
fn from_error(_: Self::Error) -> Self;
/// Translate this `Carrier` to another implementation of `Carrier` with the
/// same associated types.
fn translate<T>(self) -> T where T: Carrier<Success=Self::Success, Error=Self::Error>;
}
#[cfg(stage0)]
#[unstable(feature = "question_mark_carrier", issue = "31436")]
impl<U, V> Carrier for Result<U, V> {
type Success = U;
type Error = V;
fn from_success(u: U) -> Result<U, V> {
Ok(u)
}
fn from_error(e: V) -> Result<U, V> {
Err(e)
}
fn translate<T>(self) -> T
where T: Carrier<Success=U, Error=V>
{
match self {
Ok(u) => T::from_success(u),
Err(e) => T::from_error(e),
}
}
}
struct _DummyErrorType;
impl Try for _DummyErrorType {
type Ok = ();
type Error = ();
fn into_result(self) -> Result<Self::Ok, Self::Error> {
Ok(())
}
fn from_ok(_: ()) -> _DummyErrorType {
_DummyErrorType
}
fn from_error(_: ()) -> _DummyErrorType {
_DummyErrorType
}
}
/// A trait for customizing the behaviour of the `?` operator.
///
/// A type implementing `Try` is one that has a canonical way to view it
/// in terms of a success/failure dichotomy. This trait allows both
/// extracting those success or failure values from an existing instance and
/// creating a new instance from a success or failure value.
#[unstable(feature = "try_trait", issue = "42327")]
pub trait Try {
/// The type of this value when viewed as successful.
#[unstable(feature = "try_trait", issue = "42327")]
type Ok;
/// The type of this value when viewed as failed.
#[unstable(feature = "try_trait", issue = "42327")]
type Error;
/// Applies the "?" operator. A return of `Ok(t)` means that the
/// execution should continue normally, and the result of `?` is the
/// value `t`. A return of `Err(e)` means that execution should branch
/// to the innermost enclosing `catch`, or return from the function.
///
/// If an `Err(e)` result is returned, the value `e` will be "wrapped"
/// in the return type of the enclosing scope (which must itself implement
/// `Try`). Specifically, the value `X::from_error(From::from(e))`
/// is returned, where `X` is the return type of the enclosing function.
#[unstable(feature = "try_trait", issue = "42327")]
fn into_result(self) -> Result<Self::Ok, Self::Error>;
/// Wrap an error value to construct the composite result. For example,
/// `Result::Err(x)` and `Result::from_error(x)` are equivalent.
#[unstable(feature = "try_trait", issue = "42327")]
fn from_error(v: Self::Error) -> Self;
/// Wrap an OK value to construct the composite result. For example,
/// `Result::Ok(x)` and `Result::from_ok(x)` are equivalent.
#[unstable(feature = "try_trait", issue = "42327")]
fn from_ok(v: Self::Ok) -> Self;
}