rust/src/librustc/dep_graph/dep_node.rs

265 lines
11 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use hir::def_id::CrateNum;
use std::fmt::Debug;
use std::sync::Arc;
macro_rules! try_opt {
($e:expr) => (
match $e {
Some(r) => r,
None => return None,
}
)
}
2016-08-05 20:00:20 -04:00
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub enum DepNode<D: Clone + Debug> {
// The `D` type is "how definitions are identified".
// During compilation, it is always `DefId`, but when serializing
// it is mapped to `DefPath`.
// Represents the `Krate` as a whole (the `hir::Krate` value) (as
// distinct from the krate module). This is basically a hash of
// the entire krate, so if you read from `Krate` (e.g., by calling
// `tcx.hir.krate()`), we will have to assume that any change
// means that you need to be recompiled. This is because the
// `Krate` value gives you access to all other items. To avoid
// this fate, do not call `tcx.hir.krate()`; instead, prefer
// wrappers like `tcx.visit_all_items_in_krate()`. If there is no
// suitable wrapper, you can use `tcx.dep_graph.ignore()` to gain
// access to the krate, but you must remember to add suitable
// edges yourself for the individual items that you read.
Krate,
// Represents the HIR node with the given node-id
Hir(D),
2016-11-24 19:42:07 +01:00
// Represents the body of a function or method. The def-id is that of the
// function/method.
HirBody(D),
// Represents the metadata for a given HIR node, typically found
// in an extern crate.
MetaData(D),
// Represents some artifact that we save to disk. Note that these
// do not have a def-id as part of their identifier.
WorkProduct(Arc<WorkProductId>),
// Represents different phases in the compiler.
RegionResolveCrate,
Coherence,
Resolve,
CoherenceCheckTrait(D),
CoherenceCheckImpl(D),
CoherenceOverlapCheck(D),
CoherenceOverlapCheckSpecial(D),
Variance,
PrivacyAccessLevels(CrateNum),
// Represents the MIR for a fn; also used as the task node for
// things read/modify that MIR.
MirKrate,
Mir(D),
MirShim(Vec<D>),
BorrowCheckKrate,
BorrowCheck(D),
RvalueCheck(D),
Reachability,
LateLintCheck,
TransCrateItem(D),
TransInlinedItem(D),
TransWriteMetadata,
// Nodes representing bits of computed IR in the tcx. Each shared
// table in the tcx (or elsewhere) maps to one of these
// nodes. Often we map multiple tables to the same node if there
// is no point in distinguishing them (e.g., both the type and
// predicates for an item wind up in `ItemSignature`).
AssociatedItems(D),
ItemSignature(D),
IsForeignItem(D),
TypeParamPredicates((D, D)),
SizedConstraint(D),
DtorckConstraint(D),
AdtDestructor(D),
AssociatedItemDefIds(D),
InherentImpls(D),
TypeckBodiesKrate,
2017-01-25 16:24:00 -05:00
TypeckTables(D),
UsedTraitImports(D),
ConstEval(D),
// The set of impls for a given trait. Ultimately, it would be
// nice to get more fine-grained here (e.g., to include a
// simplified type), but we can't do that until we restructure the
// HIR to distinguish the *header* of an impl from its body. This
// is because changes to the header may change the self-type of
// the impl and hence would require us to be more conservative
// than changes in the impl body.
TraitImpls(D),
// Nodes representing caches. To properly handle a true cache, we
// don't use a DepTrackingMap, but rather we push a task node.
// Otherwise the write into the map would be incorrectly
// attributed to the first task that happened to fill the cache,
// which would yield an overly conservative dep-graph.
TraitItems(D),
ReprHints(D),
// Trait selection cache is a little funny. Given a trait
// reference like `Foo: SomeTrait<Bar>`, there could be
// arbitrarily many def-ids to map on in there (e.g., `Foo`,
// `SomeTrait`, `Bar`). We could have a vector of them, but it
// requires heap-allocation, and trait sel in general can be a
// surprisingly hot path. So instead we pick two def-ids: the
// trait def-id, and the first def-id in the input types. If there
// is no def-id in the input types, then we use the trait def-id
// again. So for example:
//
// - `i32: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Clone }`
// - `u32: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Clone }`
// - `Clone: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Clone }`
// - `Vec<i32>: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Vec }`
// - `String: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: String }`
// - `Foo: Trait<Bar>` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
// - `Foo: Trait<i32>` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
// - `(Foo, Bar): Trait` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
// - `i32: Trait<Foo>` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
//
// You can see that we map many trait refs to the same
// trait-select node. This is not a problem, it just means
// imprecision in our dep-graph tracking. The important thing is
// that for any given trait-ref, we always map to the **same**
// trait-select node.
TraitSelect { trait_def_id: D, input_def_id: D },
// For proj. cache, we just keep a list of all def-ids, since it is
// not a hotspot.
ProjectionCache { def_ids: Vec<D> },
}
impl<D: Clone + Debug> DepNode<D> {
/// Used in testing
pub fn from_label_string(label: &str, data: D) -> Result<DepNode<D>, ()> {
macro_rules! check {
($($name:ident,)*) => {
match label {
$(stringify!($name) => Ok(DepNode::$name(data)),)*
_ => Err(())
}
}
}
if label == "Krate" {
// special case
return Ok(DepNode::Krate);
}
check! {
BorrowCheck,
Hir,
HirBody,
TransCrateItem,
AssociatedItems,
ItemSignature,
IsForeignItem,
AssociatedItemDefIds,
InherentImpls,
2017-01-25 16:24:00 -05:00
TypeckTables,
UsedTraitImports,
TraitImpls,
ReprHints,
}
}
pub fn map_def<E, OP>(&self, mut op: OP) -> Option<DepNode<E>>
where OP: FnMut(&D) -> Option<E>, E: Clone + Debug
{
use self::DepNode::*;
match *self {
Krate => Some(Krate),
BorrowCheckKrate => Some(BorrowCheckKrate),
MirKrate => Some(MirKrate),
TypeckBodiesKrate => Some(TypeckBodiesKrate),
RegionResolveCrate => Some(RegionResolveCrate),
Coherence => Some(Coherence),
Resolve => Some(Resolve),
Variance => Some(Variance),
PrivacyAccessLevels(k) => Some(PrivacyAccessLevels(k)),
Reachability => Some(Reachability),
LateLintCheck => Some(LateLintCheck),
TransWriteMetadata => Some(TransWriteMetadata),
// work product names do not need to be mapped, because
// they are always absolute.
WorkProduct(ref id) => Some(WorkProduct(id.clone())),
Hir(ref d) => op(d).map(Hir),
HirBody(ref d) => op(d).map(HirBody),
MetaData(ref d) => op(d).map(MetaData),
CoherenceCheckTrait(ref d) => op(d).map(CoherenceCheckTrait),
CoherenceCheckImpl(ref d) => op(d).map(CoherenceCheckImpl),
CoherenceOverlapCheck(ref d) => op(d).map(CoherenceOverlapCheck),
CoherenceOverlapCheckSpecial(ref d) => op(d).map(CoherenceOverlapCheckSpecial),
Mir(ref d) => op(d).map(Mir),
MirShim(ref def_ids) => {
let def_ids: Option<Vec<E>> = def_ids.iter().map(op).collect();
def_ids.map(MirShim)
}
BorrowCheck(ref d) => op(d).map(BorrowCheck),
RvalueCheck(ref d) => op(d).map(RvalueCheck),
TransCrateItem(ref d) => op(d).map(TransCrateItem),
TransInlinedItem(ref d) => op(d).map(TransInlinedItem),
AssociatedItems(ref d) => op(d).map(AssociatedItems),
ItemSignature(ref d) => op(d).map(ItemSignature),
IsForeignItem(ref d) => op(d).map(IsForeignItem),
TypeParamPredicates((ref item, ref param)) => {
Some(TypeParamPredicates((try_opt!(op(item)), try_opt!(op(param)))))
}
SizedConstraint(ref d) => op(d).map(SizedConstraint),
DtorckConstraint(ref d) => op(d).map(DtorckConstraint),
AdtDestructor(ref d) => op(d).map(AdtDestructor),
AssociatedItemDefIds(ref d) => op(d).map(AssociatedItemDefIds),
InherentImpls(ref d) => op(d).map(InherentImpls),
2017-01-25 16:24:00 -05:00
TypeckTables(ref d) => op(d).map(TypeckTables),
UsedTraitImports(ref d) => op(d).map(UsedTraitImports),
ConstEval(ref d) => op(d).map(ConstEval),
TraitImpls(ref d) => op(d).map(TraitImpls),
TraitItems(ref d) => op(d).map(TraitItems),
ReprHints(ref d) => op(d).map(ReprHints),
TraitSelect { ref trait_def_id, ref input_def_id } => {
op(trait_def_id).and_then(|trait_def_id| {
op(input_def_id).and_then(|input_def_id| {
Some(TraitSelect { trait_def_id: trait_def_id,
input_def_id: input_def_id })
})
})
}
ProjectionCache { ref def_ids } => {
let def_ids: Option<Vec<E>> = def_ids.iter().map(op).collect();
def_ids.map(|d| ProjectionCache { def_ids: d })
}
}
}
}
/// A "work product" corresponds to a `.o` (or other) file that we
/// save in between runs. These ids do not have a DefId but rather
/// some independent path or string that persists between runs without
/// the need to be mapped or unmapped. (This ensures we can serialize
/// them even in the absence of a tcx.)
2016-08-05 20:00:20 -04:00
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct WorkProductId(pub String);