rust/compiler/rustc_codegen_llvm/src/coverageinfo/mod.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

366 lines
16 KiB
Rust
Raw Normal View History

use crate::llvm;
use crate::builder::Builder;
use crate::common::CodegenCx;
use crate::coverageinfo::ffi::{CounterExpression, CounterMappingRegion};
use crate::coverageinfo::map_data::FunctionCoverageCollector;
use libc::c_uint;
use rustc_codegen_ssa::traits::{
BaseTypeMethods, BuilderMethods, ConstMethods, CoverageInfoBuilderMethods, MiscMethods,
StaticMethods,
};
use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
use rustc_llvm::RustString;
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
use rustc_middle::bug;
use rustc_middle::mir::coverage::CoverageKind;
use rustc_middle::ty::layout::HasTyCtxt;
use rustc_middle::ty::Instance;
use rustc_target::abi::{Align, Size};
use std::cell::RefCell;
pub(crate) mod ffi;
pub(crate) mod map_data;
pub mod mapgen;
/// A context object for maintaining all state needed by the coverageinfo module.
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
pub struct CrateCoverageContext<'ll, 'tcx> {
/// Coverage data for each instrumented function identified by DefId.
pub(crate) function_coverage_map:
RefCell<FxIndexMap<Instance<'tcx>, FunctionCoverageCollector<'tcx>>>,
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
pub(crate) pgo_func_name_var_map: RefCell<FxHashMap<Instance<'tcx>, &'ll llvm::Value>>,
pub(crate) mcdc_condition_bitmap_map: RefCell<FxHashMap<Instance<'tcx>, Vec<&'ll llvm::Value>>>,
}
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
impl<'ll, 'tcx> CrateCoverageContext<'ll, 'tcx> {
pub fn new() -> Self {
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
Self {
function_coverage_map: Default::default(),
pgo_func_name_var_map: Default::default(),
mcdc_condition_bitmap_map: Default::default(),
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
}
}
pub fn take_function_coverage_map(
&self,
) -> FxIndexMap<Instance<'tcx>, FunctionCoverageCollector<'tcx>> {
self.function_coverage_map.replace(FxIndexMap::default())
}
/// LLVM use a temp value to record evaluated mcdc test vector of each decision, which is called condition bitmap.
/// In order to handle nested decisions, several condition bitmaps can be
/// allocated for a function body.
/// These values are named `mcdc.addr.{i}` and are a 32-bit integers.
/// They respectively hold the condition bitmaps for decisions with a depth of `i`.
fn try_get_mcdc_condition_bitmap(
&self,
instance: &Instance<'tcx>,
decision_depth: u16,
) -> Option<&'ll llvm::Value> {
self.mcdc_condition_bitmap_map
.borrow()
.get(instance)
.and_then(|bitmap_map| bitmap_map.get(decision_depth as usize))
.copied() // Dereference Option<&&Value> to Option<&Value>
}
}
// These methods used to be part of trait `CoverageInfoMethods`, which no longer
// exists after most coverage code was moved out of SSA.
impl<'ll, 'tcx> CodegenCx<'ll, 'tcx> {
pub(crate) fn coverageinfo_finalize(&self) {
mapgen::finalize(self)
}
/// For LLVM codegen, returns a function-specific `Value` for a global
/// string, to hold the function name passed to LLVM intrinsic
/// `instrprof.increment()`. The `Value` is only created once per instance.
/// Multiple invocations with the same instance return the same `Value`.
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
fn get_pgo_func_name_var(&self, instance: Instance<'tcx>) -> &'ll llvm::Value {
if let Some(coverage_context) = self.coverage_context() {
debug!("getting pgo_func_name_var for instance={:?}", instance);
let mut pgo_func_name_var_map = coverage_context.pgo_func_name_var_map.borrow_mut();
pgo_func_name_var_map
.entry(instance)
.or_insert_with(|| create_pgo_func_name_var(self, instance))
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
} else {
bug!("Could not get the `coverage_context`");
}
}
}
impl<'tcx> CoverageInfoBuilderMethods<'tcx> for Builder<'_, '_, 'tcx> {
fn init_coverage(&mut self, instance: Instance<'tcx>) {
let Some(function_coverage_info) =
self.tcx.instance_mir(instance.def).function_coverage_info.as_deref()
else {
return;
};
// If there are no MC/DC bitmaps to set up, return immediately.
if function_coverage_info.mcdc_bitmap_bytes == 0 {
return;
}
let fn_name = self.get_pgo_func_name_var(instance);
let hash = self.const_u64(function_coverage_info.function_source_hash);
let bitmap_bytes = self.const_u32(function_coverage_info.mcdc_bitmap_bytes);
self.mcdc_parameters(fn_name, hash, bitmap_bytes);
// Create pointers named `mcdc.addr.{i}` to stack-allocated condition bitmaps.
let mut cond_bitmaps = vec![];
for i in 0..function_coverage_info.mcdc_num_condition_bitmaps {
// MC/DC intrinsics will perform loads/stores that use the ABI default
// alignment for i32, so our variable declaration should match.
let align = self.tcx.data_layout.i32_align.abi;
let cond_bitmap = self.alloca(Size::from_bytes(4), align);
llvm::set_value_name(cond_bitmap, format!("mcdc.addr.{i}").as_bytes());
self.store(self.const_i32(0), cond_bitmap, align);
cond_bitmaps.push(cond_bitmap);
}
self.coverage_context()
.expect("always present when coverage is enabled")
.mcdc_condition_bitmap_map
.borrow_mut()
.insert(instance, cond_bitmaps);
}
#[instrument(level = "debug", skip(self))]
fn add_coverage(&mut self, instance: Instance<'tcx>, kind: &CoverageKind) {
// Our caller should have already taken care of inlining subtleties,
// so we can assume that counter/expression IDs in this coverage
// statement are meaningful for the given instance.
//
// (Either the statement was not inlined and directly belongs to this
// instance, or it was inlined *from* this instance.)
let bx = self;
let Some(function_coverage_info) =
bx.tcx.instance_mir(instance.def).function_coverage_info.as_deref()
else {
debug!("function has a coverage statement but no coverage info");
return;
};
let Some(coverage_context) = bx.coverage_context() else { return };
let mut coverage_map = coverage_context.function_coverage_map.borrow_mut();
let func_coverage = coverage_map
.entry(instance)
.or_insert_with(|| FunctionCoverageCollector::new(instance, function_coverage_info));
match *kind {
CoverageKind::SpanMarker | CoverageKind::BlockMarker { .. } => unreachable!(
"marker statement {kind:?} should have been removed by CleanupPostBorrowck"
),
CoverageKind::CounterIncrement { id } => {
func_coverage.mark_counter_id_seen(id);
// We need to explicitly drop the `RefMut` before calling into `instrprof_increment`,
// as that needs an exclusive borrow.
drop(coverage_map);
// The number of counters passed to `llvm.instrprof.increment` might
// be smaller than the number originally inserted by the instrumentor,
// if some high-numbered counters were removed by MIR optimizations.
// If so, LLVM's profiler runtime will use fewer physical counters.
let num_counters =
bx.tcx().coverage_ids_info(instance.def).max_counter_id.as_u32() + 1;
assert!(
num_counters as usize <= function_coverage_info.num_counters,
"num_counters disagreement: query says {num_counters} but function info only has {}",
function_coverage_info.num_counters
);
let fn_name = bx.get_pgo_func_name_var(instance);
let hash = bx.const_u64(function_coverage_info.function_source_hash);
let num_counters = bx.const_u32(num_counters);
let index = bx.const_u32(id.as_u32());
debug!(
"codegen intrinsic instrprof.increment(fn_name={:?}, hash={:?}, num_counters={:?}, index={:?})",
fn_name, hash, num_counters, index,
);
bx.instrprof_increment(fn_name, hash, num_counters, index);
}
CoverageKind::ExpressionUsed { id } => {
func_coverage.mark_expression_id_seen(id);
}
CoverageKind::CondBitmapUpdate { id, value, decision_depth } => {
drop(coverage_map);
assert_ne!(
id.as_u32(),
0,
"ConditionId of evaluated conditions should never be zero"
);
let cond_bitmap = coverage_context
.try_get_mcdc_condition_bitmap(&instance, decision_depth)
.expect("mcdc cond bitmap should have been allocated for updating");
let cond_loc = bx.const_i32(id.as_u32() as i32 - 1);
let bool_value = bx.const_bool(value);
let fn_name = bx.get_pgo_func_name_var(instance);
let hash = bx.const_u64(function_coverage_info.function_source_hash);
bx.mcdc_condbitmap_update(fn_name, hash, cond_loc, cond_bitmap, bool_value);
}
CoverageKind::TestVectorBitmapUpdate { bitmap_idx, decision_depth } => {
drop(coverage_map);
let cond_bitmap = coverage_context
.try_get_mcdc_condition_bitmap(&instance, decision_depth)
.expect("mcdc cond bitmap should have been allocated for merging into the global bitmap");
let bitmap_bytes = function_coverage_info.mcdc_bitmap_bytes;
assert!(bitmap_idx < bitmap_bytes, "bitmap index of the decision out of range");
let fn_name = bx.get_pgo_func_name_var(instance);
let hash = bx.const_u64(function_coverage_info.function_source_hash);
let bitmap_bytes = bx.const_u32(bitmap_bytes);
let bitmap_index = bx.const_u32(bitmap_idx);
bx.mcdc_tvbitmap_update(fn_name, hash, bitmap_bytes, bitmap_index, cond_bitmap);
}
}
}
}
/// Calls llvm::createPGOFuncNameVar() with the given function instance's
/// mangled function name. The LLVM API returns an llvm::GlobalVariable
/// containing the function name, with the specific variable name and linkage
/// required by LLVM InstrProf source-based coverage instrumentation. Use
/// `bx.get_pgo_func_name_var()` to ensure the variable is only created once per
/// `Instance`.
fn create_pgo_func_name_var<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
instance: Instance<'tcx>,
) -> &'ll llvm::Value {
let mangled_fn_name: &str = cx.tcx.symbol_name(instance).name;
let llfn = cx.get_fn(instance);
unsafe {
llvm::LLVMRustCoverageCreatePGOFuncNameVar(
llfn,
mangled_fn_name.as_ptr().cast(),
mangled_fn_name.len(),
)
}
}
pub(crate) fn write_filenames_section_to_buffer<'a>(
filenames: impl IntoIterator<Item = &'a str>,
buffer: &RustString,
) {
let (pointers, lengths) = filenames
.into_iter()
.map(|s: &str| (s.as_ptr().cast(), s.len()))
.unzip::<_, _, Vec<_>, Vec<_>>();
unsafe {
llvm::LLVMRustCoverageWriteFilenamesSectionToBuffer(
pointers.as_ptr(),
pointers.len(),
lengths.as_ptr(),
lengths.len(),
buffer,
);
}
}
pub(crate) fn write_mapping_to_buffer(
virtual_file_mapping: Vec<u32>,
expressions: Vec<CounterExpression>,
mapping_regions: Vec<CounterMappingRegion>,
buffer: &RustString,
) {
unsafe {
llvm::LLVMRustCoverageWriteMappingToBuffer(
virtual_file_mapping.as_ptr(),
virtual_file_mapping.len() as c_uint,
expressions.as_ptr(),
expressions.len() as c_uint,
mapping_regions.as_ptr(),
mapping_regions.len() as c_uint,
buffer,
);
}
}
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 16:32:45 -07:00
pub(crate) fn hash_bytes(bytes: &[u8]) -> u64 {
unsafe { llvm::LLVMRustCoverageHashByteArray(bytes.as_ptr().cast(), bytes.len()) }
}
pub(crate) fn mapping_version() -> u32 {
unsafe { llvm::LLVMRustCoverageMappingVersion() }
}
pub(crate) fn save_cov_data_to_mod<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
cov_data_val: &'ll llvm::Value,
) {
let covmap_var_name = llvm::build_string(|s| unsafe {
llvm::LLVMRustCoverageWriteMappingVarNameToString(s);
})
.expect("Rust Coverage Mapping var name failed UTF-8 conversion");
debug!("covmap var name: {:?}", covmap_var_name);
let covmap_section_name = llvm::build_string(|s| unsafe {
llvm::LLVMRustCoverageWriteMapSectionNameToString(cx.llmod, s);
})
.expect("Rust Coverage section name failed UTF-8 conversion");
debug!("covmap section name: {:?}", covmap_section_name);
let llglobal = llvm::add_global(cx.llmod, cx.val_ty(cov_data_val), &covmap_var_name);
llvm::set_initializer(llglobal, cov_data_val);
llvm::set_global_constant(llglobal, true);
llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
llvm::set_section(llglobal, &covmap_section_name);
2024-04-04 11:04:32 +11:00
// LLVM's coverage mapping format specifies 8-byte alignment for items in this section.
llvm::set_alignment(llglobal, Align::EIGHT);
cx.add_used_global(llglobal);
}
pub(crate) fn save_func_record_to_mod<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
covfun_section_name: &str,
func_name_hash: u64,
func_record_val: &'ll llvm::Value,
is_used: bool,
) {
// Assign a name to the function record. This is used to merge duplicates.
//
// In LLVM, a "translation unit" (effectively, a `Crate` in Rust) can describe functions that
// are included-but-not-used. If (or when) Rust generates functions that are
// included-but-not-used, note that a dummy description for a function included-but-not-used
// in a Crate can be replaced by full description provided by a different Crate. The two kinds
// of descriptions play distinct roles in LLVM IR; therefore, assign them different names (by
// appending "u" to the end of the function record var name, to prevent `linkonce_odr` merging.
let func_record_var_name =
format!("__covrec_{:X}{}", func_name_hash, if is_used { "u" } else { "" });
debug!("function record var name: {:?}", func_record_var_name);
debug!("function record section name: {:?}", covfun_section_name);
let llglobal = llvm::add_global(cx.llmod, cx.val_ty(func_record_val), &func_record_var_name);
llvm::set_initializer(llglobal, func_record_val);
llvm::set_global_constant(llglobal, true);
llvm::set_linkage(llglobal, llvm::Linkage::LinkOnceODRLinkage);
llvm::set_visibility(llglobal, llvm::Visibility::Hidden);
llvm::set_section(llglobal, covfun_section_name);
2024-04-04 11:04:32 +11:00
// LLVM's coverage mapping format specifies 8-byte alignment for items in this section.
llvm::set_alignment(llglobal, Align::EIGHT);
llvm::set_comdat(cx.llmod, llglobal, &func_record_var_name);
cx.add_used_global(llglobal);
}
/// Returns the section name string to pass through to the linker when embedding
/// per-function coverage information in the object file, according to the target
/// platform's object file format.
///
/// LLVM's coverage tools read coverage mapping details from this section when
/// producing coverage reports.
///
/// Typical values are:
/// - `__llvm_covfun` on Linux
/// - `__LLVM_COV,__llvm_covfun` on macOS (includes `__LLVM_COV,` segment prefix)
/// - `.lcovfun$M` on Windows (includes `$M` sorting suffix)
pub(crate) fn covfun_section_name(cx: &CodegenCx<'_, '_>) -> String {
llvm::build_string(|s| unsafe {
llvm::LLVMRustCoverageWriteFuncSectionNameToString(cx.llmod, s);
})
.expect("Rust Coverage function record section name failed UTF-8 conversion")
}