rust/src/interpreter/terminator.rs

607 lines
24 KiB
Rust
Raw Normal View History

use rustc::hir::def_id::DefId;
use rustc::mir::repr as mir;
use rustc::traits::{self, ProjectionMode};
use rustc::ty::fold::TypeFoldable;
use rustc::ty::layout::Layout;
use rustc::ty::subst::{self, Substs};
use rustc::ty::{self, Ty, TyCtxt, BareFnTy};
use std::rc::Rc;
use std::iter;
use syntax::{ast, attr};
use syntax::codemap::{DUMMY_SP, Span};
use super::{EvalContext, IntegerExt};
use error::{EvalError, EvalResult};
use memory::{Pointer, FunctionDefinition};
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
pub(super) fn eval_terminator(
&mut self,
terminator: &mir::Terminator<'tcx>,
) -> EvalResult<'tcx, ()> {
use rustc::mir::repr::TerminatorKind::*;
match terminator.kind {
Return => self.pop_stack_frame(),
Goto { target } => {
self.frame_mut().block = target;
},
If { ref cond, targets: (then_target, else_target) } => {
let cond_ptr = self.eval_operand(cond)?;
let cond_val = self.memory.read_bool(cond_ptr)?;
self.frame_mut().block = if cond_val { then_target } else { else_target };
}
SwitchInt { ref discr, ref values, ref targets, .. } => {
let discr_ptr = self.eval_lvalue(discr)?.to_ptr();
let discr_ty = self.lvalue_ty(discr);
let discr_size = self
.type_layout(discr_ty)
.size(&self.tcx.data_layout)
.bytes() as usize;
let discr_val = self.memory.read_uint(discr_ptr, discr_size)?;
if let ty::TyChar = discr_ty.sty {
if ::std::char::from_u32(discr_val as u32).is_none() {
return Err(EvalError::InvalidChar(discr_val as u32));
}
}
// Branch to the `otherwise` case by default, if no match is found.
let mut target_block = targets[targets.len() - 1];
for (index, val_const) in values.iter().enumerate() {
let ptr = self.const_to_ptr(val_const)?;
let val = self.memory.read_uint(ptr, discr_size)?;
if discr_val == val {
target_block = targets[index];
break;
}
}
self.frame_mut().block = target_block;
}
Switch { ref discr, ref targets, adt_def } => {
let adt_ptr = self.eval_lvalue(discr)?.to_ptr();
let adt_ty = self.lvalue_ty(discr);
let discr_val = self.read_discriminant_value(adt_ptr, adt_ty)?;
let matching = adt_def.variants.iter()
.position(|v| discr_val == v.disr_val.to_u64_unchecked());
match matching {
Some(i) => {
self.frame_mut().block = targets[i];
},
None => return Err(EvalError::InvalidDiscriminant),
}
}
Call { ref func, ref args, ref destination, .. } => {
let mut return_ptr = None;
if let Some((ref lv, target)) = *destination {
self.frame_mut().block = target;
return_ptr = Some(self.eval_lvalue(lv)?.to_ptr());
}
let func_ty = self.operand_ty(func);
match func_ty.sty {
ty::TyFnPtr(bare_fn_ty) => {
let ptr = self.eval_operand(func)?;
let fn_ptr = self.memory.read_ptr(ptr)?;
let FunctionDefinition { def_id, substs, fn_ty } = self.memory.get_fn(fn_ptr.alloc_id)?;
if fn_ty != bare_fn_ty {
return Err(EvalError::FunctionPointerTyMismatch(fn_ty, bare_fn_ty));
}
self.eval_fn_call(def_id, substs, bare_fn_ty, return_ptr, args,
terminator.source_info.span)?
},
ty::TyFnDef(def_id, substs, fn_ty) => {
self.eval_fn_call(def_id, substs, fn_ty, return_ptr, args,
terminator.source_info.span)?
}
_ => return Err(EvalError::Unimplemented(format!("can't handle callee of type {:?}", func_ty))),
}
}
Drop { ref location, target, .. } => {
let ptr = self.eval_lvalue(location)?.to_ptr();
let ty = self.lvalue_ty(location);
self.drop(ptr, ty)?;
self.frame_mut().block = target;
}
Assert { ref cond, expected, ref msg, target, .. } => {
let cond_ptr = self.eval_operand(cond)?;
if expected == self.memory.read_bool(cond_ptr)? {
self.frame_mut().block = target;
} else {
return match *msg {
mir::AssertMessage::BoundsCheck { ref len, ref index } => {
let len = self.eval_operand(len).expect("can't eval len");
let len = self.memory.read_usize(len).expect("can't read len");
let index = self.eval_operand(index).expect("can't eval index");
let index = self.memory.read_usize(index).expect("can't read index");
Err(EvalError::ArrayIndexOutOfBounds(terminator.source_info.span, len, index))
},
mir::AssertMessage::Math(ref err) => Err(EvalError::Math(terminator.source_info.span, err.clone())),
}
}
},
DropAndReplace { .. } => unimplemented!(),
Resume => unimplemented!(),
Unreachable => unimplemented!(),
}
Ok(())
}
fn eval_fn_call(
&mut self,
def_id: DefId,
substs: &'tcx Substs<'tcx>,
fn_ty: &'tcx BareFnTy,
return_ptr: Option<Pointer>,
args: &[mir::Operand<'tcx>],
span: Span,
) -> EvalResult<'tcx, ()> {
use syntax::abi::Abi;
match fn_ty.abi {
Abi::RustIntrinsic => {
let name = self.tcx.item_name(def_id).as_str();
match fn_ty.sig.0.output {
ty::FnConverging(ty) => {
let layout = self.type_layout(ty);
let ret = return_ptr.unwrap();
self.call_intrinsic(&name, substs, args, ret, layout)
}
ty::FnDiverging => unimplemented!(),
}
}
Abi::C => {
match fn_ty.sig.0.output {
ty::FnConverging(ty) => {
let size = self.type_size(ty);
self.call_c_abi(def_id, args, return_ptr.unwrap(), size)
}
ty::FnDiverging => unimplemented!(),
}
}
Abi::Rust | Abi::RustCall => {
// TODO(solson): Adjust the first argument when calling a Fn or
// FnMut closure via FnOnce::call_once.
// Only trait methods can have a Self parameter.
let (resolved_def_id, resolved_substs) = if substs.self_ty().is_some() {
self.trait_method(def_id, substs)
} else {
(def_id, substs)
};
let mut arg_srcs = Vec::new();
for arg in args {
let src = self.eval_operand(arg)?;
let src_ty = self.operand_ty(arg);
arg_srcs.push((src, src_ty));
}
if fn_ty.abi == Abi::RustCall && !args.is_empty() {
arg_srcs.pop();
let last_arg = args.last().unwrap();
let last = self.eval_operand(last_arg)?;
let last_ty = self.operand_ty(last_arg);
let last_layout = self.type_layout(last_ty);
match (&last_ty.sty, last_layout) {
(&ty::TyTuple(fields),
&Layout::Univariant { ref variant, .. }) => {
let offsets = iter::once(0)
.chain(variant.offset_after_field.iter()
.map(|s| s.bytes()));
for (offset, ty) in offsets.zip(fields) {
let src = last.offset(offset as isize);
arg_srcs.push((src, ty));
}
}
ty => panic!("expected tuple as last argument in function with 'rust-call' ABI, got {:?}", ty),
}
}
let mir = self.load_mir(resolved_def_id);
2016-07-05 10:47:10 +02:00
self.push_stack_frame(def_id, span, mir, resolved_substs, return_ptr)?;
for (i, (src, src_ty)) in arg_srcs.into_iter().enumerate() {
let dest = self.frame().locals[i];
self.move_(src, dest, src_ty)?;
}
Ok(())
}
abi => Err(EvalError::Unimplemented(format!("can't handle function with {:?} ABI", abi))),
}
}
fn read_discriminant_value(&self, adt_ptr: Pointer, adt_ty: Ty<'tcx>) -> EvalResult<'tcx, u64> {
use rustc::ty::layout::Layout::*;
let adt_layout = self.type_layout(adt_ty);
let discr_val = match *adt_layout {
General { discr, .. } | CEnum { discr, .. } => {
let discr_size = discr.size().bytes();
self.memory.read_uint(adt_ptr, discr_size as usize)?
}
RawNullablePointer { nndiscr, .. } => {
self.read_nonnull_discriminant_value(adt_ptr, nndiscr)?
}
StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
let offset = self.nonnull_offset(adt_ty, nndiscr, discrfield)?;
let nonnull = adt_ptr.offset(offset.bytes() as isize);
self.read_nonnull_discriminant_value(nonnull, nndiscr)?
}
// The discriminant_value intrinsic returns 0 for non-sum types.
Array { .. } | FatPointer { .. } | Scalar { .. } | Univariant { .. } |
Vector { .. } => 0,
};
Ok(discr_val)
}
fn read_nonnull_discriminant_value(&self, ptr: Pointer, nndiscr: u64) -> EvalResult<'tcx, u64> {
let not_null = match self.memory.read_usize(ptr) {
Ok(0) => false,
Ok(_) | Err(EvalError::ReadPointerAsBytes) => true,
Err(e) => return Err(e),
};
assert!(nndiscr == 0 || nndiscr == 1);
Ok(if not_null { nndiscr } else { 1 - nndiscr })
}
fn call_intrinsic(
&mut self,
name: &str,
substs: &'tcx Substs<'tcx>,
args: &[mir::Operand<'tcx>],
dest: Pointer,
dest_layout: &'tcx Layout,
) -> EvalResult<'tcx, ()> {
let args_res: EvalResult<Vec<Pointer>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let args_ptrs = args_res?;
let pointer_size = self.memory.pointer_size();
match name {
"add_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Add, &args[0], &args[1], dest, dest_layout)?,
"sub_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Sub, &args[0], &args[1], dest, dest_layout)?,
"mul_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Mul, &args[0], &args[1], dest, dest_layout)?,
// FIXME: turn into an assertion to catch wrong `assume` that would cause UB in llvm
"assume" => {}
"copy_nonoverlapping" => {
let elem_ty = *substs.types.get(subst::FnSpace, 0);
let elem_size = self.type_size(elem_ty);
2016-07-06 11:12:44 +02:00
let elem_align = self.type_align(elem_ty);
let src = self.memory.read_ptr(args_ptrs[0])?;
let dest = self.memory.read_ptr(args_ptrs[1])?;
let count = self.memory.read_isize(args_ptrs[2])?;
2016-07-22 16:35:39 +02:00
self.memory.copy(src, dest, count as usize * elem_size, elem_align)?;
}
"discriminant_value" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let adt_ptr = self.memory.read_ptr(args_ptrs[0])?;
let discr_val = self.read_discriminant_value(adt_ptr, ty)?;
self.memory.write_uint(dest, discr_val, 8)?;
}
"forget" => {}
"init" => self.memory.write_repeat(dest, 0, dest_layout.size(&self.tcx.data_layout).bytes() as usize)?,
"min_align_of" => {
2016-07-06 11:12:44 +02:00
let elem_ty = *substs.types.get(subst::FnSpace, 0);
let elem_align = self.type_align(elem_ty);
self.memory.write_uint(dest, elem_align as u64, pointer_size)?;
}
"move_val_init" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let ptr = self.memory.read_ptr(args_ptrs[0])?;
self.move_(args_ptrs[1], ptr, ty)?;
}
"offset" => {
let pointee_ty = *substs.types.get(subst::FnSpace, 0);
let pointee_size = self.type_size(pointee_ty) as isize;
let ptr_arg = args_ptrs[0];
let offset = self.memory.read_isize(args_ptrs[1])?;
match self.memory.read_ptr(ptr_arg) {
Ok(ptr) => {
let result_ptr = ptr.offset(offset as isize * pointee_size);
self.memory.write_ptr(dest, result_ptr)?;
}
Err(EvalError::ReadBytesAsPointer) => {
let addr = self.memory.read_isize(ptr_arg)?;
let result_addr = addr + offset * pointee_size as i64;
self.memory.write_isize(dest, result_addr)?;
}
Err(e) => return Err(e),
}
}
"overflowing_sub" => {
self.intrinsic_overflowing(mir::BinOp::Sub, &args[0], &args[1], dest)?;
}
"overflowing_mul" => {
self.intrinsic_overflowing(mir::BinOp::Mul, &args[0], &args[1], dest)?;
}
"overflowing_add" => {
self.intrinsic_overflowing(mir::BinOp::Add, &args[0], &args[1], dest)?;
}
"size_of" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let size = self.type_size(ty) as u64;
self.memory.write_uint(dest, size, pointer_size)?;
}
"size_of_val" => {
let ty = *substs.types.get(subst::FnSpace, 0);
if self.type_is_sized(ty) {
let size = self.type_size(ty) as u64;
self.memory.write_uint(dest, size, pointer_size)?;
} else {
match ty.sty {
ty::TySlice(_) | ty::TyStr => {
let elem_ty = ty.sequence_element_type(self.tcx);
let elem_size = self.type_size(elem_ty) as u64;
let ptr_size = self.memory.pointer_size() as isize;
let n = self.memory.read_usize(args_ptrs[0].offset(ptr_size))?;
self.memory.write_uint(dest, n * elem_size, pointer_size)?;
}
_ => return Err(EvalError::Unimplemented(format!("unimplemented: size_of_val::<{:?}>", ty))),
}
}
}
"transmute" => {
let ty = *substs.types.get(subst::FnSpace, 0);
self.move_(args_ptrs[0], dest, ty)?;
}
"uninit" => self.memory.mark_definedness(dest, dest_layout.size(&self.tcx.data_layout).bytes() as usize, false)?,
name => return Err(EvalError::Unimplemented(format!("unimplemented intrinsic: {}", name))),
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(())
}
fn call_c_abi(
&mut self,
def_id: DefId,
args: &[mir::Operand<'tcx>],
dest: Pointer,
dest_size: usize,
) -> EvalResult<'tcx, ()> {
let name = self.tcx.item_name(def_id);
let attrs = self.tcx.get_attrs(def_id);
let link_name = match attr::first_attr_value_str_by_name(&attrs, "link_name") {
Some(ln) => ln.clone(),
None => name.as_str(),
};
let args_res: EvalResult<Vec<Pointer>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let args = args_res?;
if link_name.starts_with("pthread_") {
warn!("ignoring C ABI call: {}", link_name);
return Ok(());
}
match &link_name[..] {
"__rust_allocate" => {
let size = self.memory.read_usize(args[0])?;
let align = self.memory.read_usize(args[1])?;
let ptr = self.memory.allocate(size as usize, align as usize)?;
self.memory.write_ptr(dest, ptr)?;
}
"__rust_reallocate" => {
let ptr = self.memory.read_ptr(args[0])?;
let size = self.memory.read_usize(args[2])?;
let align = self.memory.read_usize(args[3])?;
let new_ptr = self.memory.reallocate(ptr, size as usize, align as usize)?;
self.memory.write_ptr(dest, new_ptr)?;
}
"memcmp" => {
let left = self.memory.read_ptr(args[0])?;
let right = self.memory.read_ptr(args[1])?;
let n = self.memory.read_usize(args[2])? as usize;
let result = {
let left_bytes = self.memory.read_bytes(left, n)?;
let right_bytes = self.memory.read_bytes(right, n)?;
use std::cmp::Ordering::*;
match left_bytes.cmp(right_bytes) {
Less => -1,
Equal => 0,
Greater => 1,
}
};
self.memory.write_int(dest, result, dest_size)?;
}
_ => {
return Err(EvalError::Unimplemented(format!("can't call C ABI function: {}", link_name)));
}
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(())
}
fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> {
// Do the initial selection for the obligation. This yields the shallow result we are
// looking for -- that is, what specific impl.
self.tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| {
let mut selcx = traits::SelectionContext::new(&infcx);
let obligation = traits::Obligation::new(
traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
trait_ref.to_poly_trait_predicate(),
);
let selection = selcx.select(&obligation).unwrap().unwrap();
// Currently, we use a fulfillment context to completely resolve all nested obligations.
// This is because they can inform the inference of the impl's type parameters.
let mut fulfill_cx = traits::FulfillmentContext::new();
let vtable = selection.map(|predicate| {
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
infcx.drain_fulfillment_cx_or_panic(DUMMY_SP, &mut fulfill_cx, &vtable)
})
}
/// Trait method, which has to be resolved to an impl method.
fn trait_method(
&self,
def_id: DefId,
substs: &'tcx Substs<'tcx>
) -> (DefId, &'tcx Substs<'tcx>) {
let method_item = self.tcx.impl_or_trait_item(def_id);
let trait_id = method_item.container().id();
let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id));
match self.fulfill_obligation(trait_ref) {
traits::VtableImpl(vtable_impl) => {
let impl_did = vtable_impl.impl_def_id;
let mname = self.tcx.item_name(def_id);
// Create a concatenated set of substitutions which includes those from the impl
// and those from the method:
let impl_substs = vtable_impl.substs.with_method_from(substs);
let substs = self.tcx.mk_substs(impl_substs);
let mth = get_impl_method(self.tcx, impl_did, substs, mname);
(mth.method.def_id, mth.substs)
}
traits::VtableClosure(vtable_closure) =>
(vtable_closure.closure_def_id, vtable_closure.substs.func_substs),
traits::VtableFnPointer(_fn_ty) => {
let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap();
unimplemented!()
// let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty);
// let method_ty = def_ty(tcx, def_id, substs);
// let fn_ptr_ty = match method_ty.sty {
// ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)),
// _ => unreachable!("expected fn item type, found {}",
// method_ty)
// };
// Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty))
}
traits::VtableObject(ref _data) => {
unimplemented!()
// Callee {
// data: Virtual(traits::get_vtable_index_of_object_method(
// tcx, data, def_id)),
// ty: def_ty(tcx, def_id, substs)
// }
}
vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable),
}
}
pub(super) fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment())
}
fn drop(&mut self, ptr: Pointer, ty: Ty<'tcx>) -> EvalResult<'tcx, ()> {
if !self.type_needs_drop(ty) {
debug!("no need to drop {:?}", ty);
return Ok(());
}
trace!("-need to drop {:?}", ty);
// TODO(solson): Call user-defined Drop::drop impls.
match ty.sty {
ty::TyBox(_contents_ty) => {
let contents_ptr = self.memory.read_ptr(ptr)?;
// self.drop(contents_ptr, contents_ty)?;
trace!("-deallocating box");
self.memory.deallocate(contents_ptr)?;
}
// TODO(solson): Implement drop for other relevant types (e.g. aggregates).
_ => {}
}
Ok(())
}
}
#[derive(Debug)]
struct ImplMethod<'tcx> {
method: Rc<ty::Method<'tcx>>,
substs: &'tcx Substs<'tcx>,
is_provided: bool,
}
/// Locates the applicable definition of a method, given its name.
fn get_impl_method<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
impl_def_id: DefId,
substs: &'tcx Substs<'tcx>,
name: ast::Name,
) -> ImplMethod<'tcx> {
assert!(!substs.types.needs_infer());
let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
let trait_def = tcx.lookup_trait_def(trait_def_id);
match trait_def.ancestors(impl_def_id).fn_defs(tcx, name).next() {
Some(node_item) => {
let substs = tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| {
let substs = traits::translate_substs(&infcx, impl_def_id,
substs, node_item.node);
tcx.lift(&substs).unwrap_or_else(|| {
bug!("trans::meth::get_impl_method: translate_substs \
returned {:?} which contains inference types/regions",
substs);
})
});
ImplMethod {
method: node_item.item,
substs: substs,
is_provided: node_item.node.is_from_trait(),
}
}
None => {
bug!("method {:?} not found in {:?}", name, impl_def_id)
}
}
}