1
Fork 0
rust/src/librustdoc/html/render/mod.rs

2448 lines
83 KiB
Rust
Raw Normal View History

2019-02-08 14:53:55 +01:00
//! Rustdoc's HTML rendering module.
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering threads. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among threads). The context, however, should be a lightweight structure. This
//! is cloned per-thread and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These threads are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
2018-02-24 19:14:36 +01:00
crate mod cache;
#[cfg(test)]
mod tests;
mod context;
mod print_item;
2021-02-13 23:17:38 -08:00
mod write_shared;
crate use context::*;
use std::cell::{Cell, RefCell};
use std::collections::VecDeque;
use std::default::Default;
2021-02-13 23:17:38 -08:00
use std::fmt;
use std::path::{Path, PathBuf};
use std::str;
2020-05-04 23:36:22 +02:00
use std::string::ToString;
use itertools::Itertools;
use rustc_ast_pretty::pprust;
use rustc_attr::{Deprecation, StabilityLevel};
2019-12-24 05:02:53 +01:00
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir as hir;
use rustc_hir::def::CtorKind;
use rustc_hir::def_id::DefId;
use rustc_hir::Mutability;
2020-03-29 17:19:48 +02:00
use rustc_middle::middle::stability;
2020-12-16 14:34:08 -05:00
use rustc_middle::ty::TyCtxt;
2020-01-01 19:40:49 +01:00
use rustc_span::edition::Edition;
use rustc_span::symbol::{kw, sym, Symbol};
2019-12-22 17:42:04 -05:00
use serde::ser::SerializeSeq;
use serde::{Serialize, Serializer};
use crate::clean::{self, GetDefId, RenderedLink, SelfTy, TypeKind};
use crate::docfs::{DocFS, PathError};
use crate::error::Error;
2021-01-12 23:36:04 +01:00
use crate::formats::cache::Cache;
use crate::formats::item_type::ItemType;
2020-06-26 08:18:20 -05:00
use crate::formats::{AssocItemRender, FormatRenderer, Impl, RenderMode};
2019-02-23 16:40:07 +09:00
use crate::html::escape::Escape;
use crate::html::format::{
href, print_abi_with_space, print_default_space, print_generic_bounds, Buffer, Function,
PrintWithSpace, WhereClause,
};
2021-02-13 23:17:38 -08:00
use crate::html::layout;
use crate::html::markdown::{self, ErrorCodes, Markdown, MarkdownHtml, MarkdownSummaryLine};
2014-12-23 09:58:38 +08:00
/// A pair of name and its optional document.
crate type NameDoc = (String, Option<String>);
2014-12-23 09:58:38 +08:00
crate fn ensure_trailing_slash(v: &str) -> impl fmt::Display + '_ {
crate::html::format::display_fn(move |f| {
if !v.ends_with('/') && !v.is_empty() { write!(f, "{}/", v) } else { f.write_str(v) }
})
2019-01-31 15:42:45 +01:00
}
2020-12-16 14:34:08 -05:00
crate struct SharedContext<'tcx> {
crate tcx: TyCtxt<'tcx>,
/// The path to the crate root source minus the file name.
/// Used for simplifying paths to the highlighted source code files.
crate src_root: PathBuf,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon and added html).
crate layout: layout::Layout,
2018-04-01 21:06:35 +02:00
/// This flag indicates whether `[src]` links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
crate include_sources: bool,
/// The local file sources we've emitted and their respective url-paths.
crate local_sources: FxHashMap<PathBuf, String>,
2019-08-10 16:43:39 -04:00
/// Whether the collapsed pass ran
crate collapsed: bool,
/// The base-URL of the issue tracker for when an item has been tagged with
/// an issue number.
crate issue_tracker_base_url: Option<String>,
/// The directories that have already been created in this doc run. Used to reduce the number
/// of spurious `create_dir_all` calls.
crate created_dirs: RefCell<FxHashSet<PathBuf>>,
/// This flag indicates whether listings of modules (in the side bar and documentation itself)
/// should be ordered alphabetically or in order of appearance (in the source code).
crate sort_modules_alphabetically: bool,
/// Additional CSS files to be added to the generated docs.
crate style_files: Vec<StylePath>,
2018-03-28 11:18:45 +02:00
/// Suffix to be added on resource files (if suffix is "-v2" then "light.css" becomes
/// "light-v2.css").
crate resource_suffix: String,
/// Optional path string to be used to load static files on output pages. If not set, uses
/// combinations of `../` to reach the documentation root.
crate static_root_path: Option<String>,
2019-05-20 14:04:04 +12:00
/// The fs handle we are working with.
crate fs: DocFS,
2019-09-13 09:51:32 -04:00
/// The default edition used to parse doctests.
crate edition: Edition,
crate codes: ErrorCodes,
2019-09-13 10:40:22 -04:00
playground: Option<markdown::Playground>,
}
2020-12-16 14:34:08 -05:00
impl SharedContext<'_> {
crate fn ensure_dir(&self, dst: &Path) -> Result<(), Error> {
let mut dirs = self.created_dirs.borrow_mut();
if !dirs.contains(dst) {
2019-05-20 14:04:04 +12:00
try_err!(self.fs.create_dir_all(dst), dst);
dirs.insert(dst.to_path_buf());
}
Ok(())
}
/// Based on whether the `collapse-docs` pass was run, return either the `doc_value` or the
/// `collapsed_doc_value` of the given item.
2020-12-19 15:04:42 +01:00
crate fn maybe_collapsed_doc_value<'a>(&self, item: &'a clean::Item) -> Option<String> {
2020-12-26 14:03:33 +01:00
if self.collapsed { item.collapsed_doc_value() } else { item.doc_value() }
}
}
// Helper structs for rendering items/sidebars and carrying along contextual
// information
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
2018-04-19 17:46:13 +02:00
#[derive(Debug)]
crate struct IndexItem {
crate ty: ItemType,
crate name: String,
crate path: String,
crate desc: String,
crate parent: Option<DefId>,
crate parent_idx: Option<usize>,
crate search_type: Option<IndexItemFunctionType>,
}
impl Serialize for IndexItem {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
2020-04-30 20:54:06 +02:00
assert_eq!(
self.parent.is_some(),
self.parent_idx.is_some(),
"`{}` is missing idx",
self.name
);
2016-02-16 19:48:28 +01:00
2019-12-22 17:42:04 -05:00
(self.ty, &self.name, &self.path, &self.desc, self.parent_idx, &self.search_type)
.serialize(serializer)
2016-02-16 19:48:28 +01:00
}
}
/// A type used for the search index.
2018-04-19 17:46:13 +02:00
#[derive(Debug)]
2020-07-27 17:34:17 -05:00
crate struct RenderType {
ty: Option<DefId>,
idx: Option<usize>,
name: Option<String>,
generics: Option<Vec<Generic>>,
}
2020-03-03 15:53:16 +01:00
impl Serialize for RenderType {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
if let Some(name) = &self.name {
let mut seq = serializer.serialize_seq(None)?;
if let Some(id) = self.idx {
seq.serialize_element(&id)?;
} else {
seq.serialize_element(&name)?;
}
if let Some(generics) = &self.generics {
seq.serialize_element(&generics)?;
2018-06-16 20:44:55 +02:00
}
seq.end()
} else {
serializer.serialize_none()
}
}
}
/// A type used for the search index.
#[derive(Debug)]
2020-07-27 17:34:17 -05:00
crate struct Generic {
name: String,
defid: Option<DefId>,
idx: Option<usize>,
}
impl Serialize for Generic {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
if let Some(id) = self.idx {
serializer.serialize_some(&id)
} else {
serializer.serialize_some(&self.name)
}
}
}
/// Full type of functions/methods in the search index.
2018-04-19 17:46:13 +02:00
#[derive(Debug)]
crate struct IndexItemFunctionType {
inputs: Vec<TypeWithKind>,
output: Option<Vec<TypeWithKind>>,
}
impl Serialize for IndexItemFunctionType {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
// If we couldn't figure out a type, just write `null`.
2019-03-07 22:47:43 +01:00
let mut iter = self.inputs.iter();
if match self.output {
Some(ref output) => iter.chain(output.iter()).any(|ref i| i.ty.name.is_none()),
None => iter.any(|ref i| i.ty.name.is_none()),
2019-03-07 22:47:43 +01:00
} {
serializer.serialize_none()
2016-02-16 19:48:28 +01:00
} else {
let mut seq = serializer.serialize_seq(None)?;
seq.serialize_element(&self.inputs)?;
if let Some(output) = &self.output {
2019-03-07 22:47:43 +01:00
if output.len() > 1 {
seq.serialize_element(&output)?;
2019-03-07 22:47:43 +01:00
} else {
seq.serialize_element(&output[0])?;
2019-03-07 22:47:43 +01:00
}
2018-05-05 17:06:08 +02:00
}
seq.end()
}
}
}
#[derive(Debug)]
2020-07-27 17:34:17 -05:00
crate struct TypeWithKind {
2020-03-03 15:53:16 +01:00
ty: RenderType,
kind: TypeKind,
}
2020-03-03 15:53:16 +01:00
impl From<(RenderType, TypeKind)> for TypeWithKind {
fn from(x: (RenderType, TypeKind)) -> TypeWithKind {
2020-02-23 19:09:00 +01:00
TypeWithKind { ty: x.0, kind: x.1 }
}
}
impl Serialize for TypeWithKind {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut seq = serializer.serialize_seq(None)?;
seq.serialize_element(&self.ty.name)?;
let x: ItemType = self.kind.into();
seq.serialize_element(&x)?;
seq.end()
}
}
#[derive(Debug, Clone)]
crate struct StylePath {
/// The path to the theme
crate path: PathBuf,
/// What the `disabled` attribute should be set to in the HTML tag
crate disabled: bool,
}
thread_local!(crate static CURRENT_DEPTH: Cell<usize> = Cell::new(0));
2017-11-24 23:12:35 +01:00
crate const INITIAL_IDS: [&'static str; 15] = [
"main",
"search",
"help",
"TOC",
"render-detail",
"associated-types",
"associated-const",
"required-methods",
"provided-methods",
"implementors",
"synthetic-implementors",
"implementors-list",
"synthetic-implementors-list",
"methods",
"implementations",
];
2021-01-12 23:36:04 +01:00
fn write_srclink(cx: &Context<'_>, item: &clean::Item, buf: &mut Buffer) {
if let Some(l) = cx.src_href(item) {
write!(buf, "<a class=\"srclink\" href=\"{}\" title=\"goto source code\">[src]</a>", l)
}
}
2018-03-30 11:19:49 +02:00
#[derive(Debug, Eq, PartialEq, Hash)]
struct ItemEntry {
url: String,
name: String,
}
impl ItemEntry {
fn new(mut url: String, name: String) -> ItemEntry {
while url.starts_with('/') {
url.remove(0);
}
2019-12-22 17:42:04 -05:00
ItemEntry { url, name }
2018-03-30 11:19:49 +02:00
}
}
impl ItemEntry {
crate fn print(&self) -> impl fmt::Display + '_ {
crate::html::format::display_fn(move |f| {
2020-10-16 00:52:49 +08:00
write!(f, "<a href=\"{}\">{}</a>", self.url, Escape(&self.name))
})
2018-03-30 11:19:49 +02:00
}
}
impl PartialOrd for ItemEntry {
fn partial_cmp(&self, other: &ItemEntry) -> Option<::std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for ItemEntry {
fn cmp(&self, other: &ItemEntry) -> ::std::cmp::Ordering {
self.name.cmp(&other.name)
}
}
#[derive(Debug)]
struct AllTypes {
structs: FxHashSet<ItemEntry>,
enums: FxHashSet<ItemEntry>,
unions: FxHashSet<ItemEntry>,
primitives: FxHashSet<ItemEntry>,
traits: FxHashSet<ItemEntry>,
macros: FxHashSet<ItemEntry>,
functions: FxHashSet<ItemEntry>,
typedefs: FxHashSet<ItemEntry>,
2019-08-01 00:41:54 +01:00
opaque_tys: FxHashSet<ItemEntry>,
statics: FxHashSet<ItemEntry>,
constants: FxHashSet<ItemEntry>,
keywords: FxHashSet<ItemEntry>,
attributes: FxHashSet<ItemEntry>,
derives: FxHashSet<ItemEntry>,
2019-02-05 14:27:09 +01:00
trait_aliases: FxHashSet<ItemEntry>,
2018-03-30 11:19:49 +02:00
}
impl AllTypes {
fn new() -> AllTypes {
let new_set = |cap| FxHashSet::with_capacity_and_hasher(cap, Default::default());
2018-03-30 11:19:49 +02:00
AllTypes {
structs: new_set(100),
enums: new_set(100),
unions: new_set(100),
primitives: new_set(26),
traits: new_set(100),
macros: new_set(100),
functions: new_set(100),
typedefs: new_set(100),
2019-08-01 00:41:54 +01:00
opaque_tys: new_set(100),
statics: new_set(100),
constants: new_set(100),
keywords: new_set(100),
attributes: new_set(100),
derives: new_set(100),
2019-02-05 14:27:09 +01:00
trait_aliases: new_set(100),
2018-03-30 11:19:49 +02:00
}
}
2018-04-07 13:10:49 +02:00
fn append(&mut self, item_name: String, item_type: &ItemType) {
2018-03-30 11:19:49 +02:00
let mut url: Vec<_> = item_name.split("::").skip(1).collect();
if let Some(name) = url.pop() {
let new_url = format!("{}/{}.{}.html", url.join("/"), item_type, name);
url.push(name);
let name = url.join("::");
2018-04-07 13:10:49 +02:00
match *item_type {
ItemType::Struct => self.structs.insert(ItemEntry::new(new_url, name)),
ItemType::Enum => self.enums.insert(ItemEntry::new(new_url, name)),
ItemType::Union => self.unions.insert(ItemEntry::new(new_url, name)),
ItemType::Primitive => self.primitives.insert(ItemEntry::new(new_url, name)),
ItemType::Trait => self.traits.insert(ItemEntry::new(new_url, name)),
ItemType::Macro => self.macros.insert(ItemEntry::new(new_url, name)),
ItemType::Function => self.functions.insert(ItemEntry::new(new_url, name)),
ItemType::Typedef => self.typedefs.insert(ItemEntry::new(new_url, name)),
2019-08-01 00:41:54 +01:00
ItemType::OpaqueTy => self.opaque_tys.insert(ItemEntry::new(new_url, name)),
2018-04-07 13:10:49 +02:00
ItemType::Static => self.statics.insert(ItemEntry::new(new_url, name)),
ItemType::Constant => self.constants.insert(ItemEntry::new(new_url, name)),
ItemType::ProcAttribute => self.attributes.insert(ItemEntry::new(new_url, name)),
ItemType::ProcDerive => self.derives.insert(ItemEntry::new(new_url, name)),
2019-02-05 14:27:09 +01:00
ItemType::TraitAlias => self.trait_aliases.insert(ItemEntry::new(new_url, name)),
2018-03-30 11:19:49 +02:00
_ => true,
};
}
}
}
2019-08-31 12:31:55 -04:00
impl AllTypes {
fn print(self, f: &mut Buffer) {
fn print_entries(f: &mut Buffer, e: &FxHashSet<ItemEntry>, title: &str, class: &str) {
if !e.is_empty() {
let mut e: Vec<&ItemEntry> = e.iter().collect();
e.sort();
write!(f, "<h3 id=\"{}\">{}</h3><ul class=\"{} docblock\">", title, title, class);
for s in e.iter() {
write!(f, "<li>{}</li>", s.print());
}
f.write_str("</ul>");
}
}
f.write_str(
2020-10-16 00:52:49 +08:00
"<h1 class=\"fqn\">\
2021-01-28 04:42:27 +01:00
<span class=\"in-band\">List of all items</span>\
2020-10-16 00:52:49 +08:00
<span class=\"out-of-band\">\
<span id=\"render-detail\">\
2020-08-31 13:16:50 +02:00
<a id=\"toggle-all-docs\" href=\"javascript:void(0)\" \
title=\"collapse all docs\">\
2020-10-16 00:52:49 +08:00
[<span class=\"inner\">&#x2212;</span>]\
2020-08-31 13:16:50 +02:00
</a>\
</span>
</span>
</h1>",
2019-12-22 17:42:04 -05:00
);
// Note: print_entries does not escape the title, because we know the current set of titles
// don't require escaping.
2019-08-31 12:31:55 -04:00
print_entries(f, &self.structs, "Structs", "structs");
print_entries(f, &self.enums, "Enums", "enums");
print_entries(f, &self.unions, "Unions", "unions");
print_entries(f, &self.primitives, "Primitives", "primitives");
print_entries(f, &self.traits, "Traits", "traits");
print_entries(f, &self.macros, "Macros", "macros");
print_entries(f, &self.attributes, "Attribute Macros", "attributes");
print_entries(f, &self.derives, "Derive Macros", "derives");
print_entries(f, &self.functions, "Functions", "functions");
print_entries(f, &self.typedefs, "Typedefs", "typedefs");
print_entries(f, &self.trait_aliases, "Trait Aliases", "trait-aliases");
print_entries(f, &self.opaque_tys, "Opaque Types", "opaque-types");
print_entries(f, &self.statics, "Statics", "statics");
print_entries(f, &self.constants, "Constants", "constants")
}
2018-03-30 11:19:49 +02:00
}
2019-09-23 00:49:29 +02:00
#[derive(Debug)]
enum Setting {
2020-10-11 02:53:37 +02:00
Section {
description: &'static str,
sub_settings: Vec<Setting>,
},
Toggle {
js_data_name: &'static str,
description: &'static str,
default_value: bool,
},
Select {
js_data_name: &'static str,
description: &'static str,
default_value: &'static str,
options: Vec<(String, String)>,
},
2019-09-23 00:49:29 +02:00
}
impl Setting {
2020-10-11 02:53:37 +02:00
fn display(&self, root_path: &str, suffix: &str) -> String {
2019-09-23 00:49:29 +02:00
match *self {
2020-10-11 17:47:34 +02:00
Setting::Section { description, ref sub_settings } => format!(
2020-10-16 00:52:49 +08:00
"<div class=\"setting-line\">\
<div class=\"title\">{}</div>\
<div class=\"sub-settings\">{}</div>
2020-08-31 13:16:50 +02:00
</div>",
2019-12-22 17:42:04 -05:00
description,
2020-10-11 02:53:37 +02:00
sub_settings.iter().map(|s| s.display(root_path, suffix)).collect::<String>()
2019-12-22 17:42:04 -05:00
),
2020-10-11 17:47:34 +02:00
Setting::Toggle { js_data_name, description, default_value } => format!(
2020-10-16 00:52:49 +08:00
"<div class=\"setting-line\">\
<label class=\"toggle\">\
<input type=\"checkbox\" id=\"{}\" {}>\
<span class=\"slider\"></span>\
2020-08-31 13:16:50 +02:00
</label>\
<div>{}</div>\
</div>",
2019-12-22 17:42:04 -05:00
js_data_name,
2020-10-11 17:47:34 +02:00
if default_value { " checked" } else { "" },
2019-12-22 17:42:04 -05:00
description,
),
2020-10-11 17:47:34 +02:00
Setting::Select { js_data_name, description, default_value, ref options } => format!(
2020-10-11 17:52:47 +02:00
"<div class=\"setting-line\">\
2020-10-11 02:53:37 +02:00
<div>{}</div>\
2020-10-11 17:52:47 +02:00
<label class=\"select-wrapper\">\
<select id=\"{}\" autocomplete=\"off\">{}</select>\
<img src=\"{}down-arrow{}.svg\" alt=\"Select item\">\
2020-10-11 02:53:37 +02:00
</label>\
</div>",
description,
js_data_name,
options
.iter()
.map(|opt| format!(
"<option value=\"{}\" {}>{}</option>",
opt.0,
if opt.0 == default_value { "selected" } else { "" },
2020-10-11 02:53:37 +02:00
opt.1,
))
.collect::<String>(),
root_path,
suffix,
),
2019-09-23 00:49:29 +02:00
}
}
}
impl From<(&'static str, &'static str, bool)> for Setting {
fn from(values: (&'static str, &'static str, bool)) -> Setting {
2020-10-11 02:53:37 +02:00
Setting::Toggle { js_data_name: values.0, description: values.1, default_value: values.2 }
2019-09-23 00:49:29 +02:00
}
}
impl<T: Into<Setting>> From<(&'static str, Vec<T>)> for Setting {
fn from(values: (&'static str, Vec<T>)) -> Setting {
Setting::Section {
description: values.0,
sub_settings: values.1.into_iter().map(|v| v.into()).collect::<Vec<_>>(),
}
}
}
2020-10-11 02:53:37 +02:00
fn settings(root_path: &str, suffix: &str, themes: &[StylePath]) -> Result<String, Error> {
let theme_names: Vec<(String, String)> = themes
.iter()
.map(|entry| {
let theme =
try_none!(try_none!(entry.path.file_stem(), &entry.path).to_str(), &entry.path)
.to_string();
Ok((theme.clone(), theme))
})
.collect::<Result<_, Error>>()?;
2018-04-13 22:54:09 +02:00
// (id, explanation, default value)
2019-09-23 00:49:29 +02:00
let settings: &[Setting] = &[
2020-10-11 02:53:37 +02:00
(
"Theme preferences",
vec![
Setting::from(("use-system-theme", "Use system theme", true)),
Setting::Select {
js_data_name: "preferred-dark-theme",
description: "Preferred dark theme",
default_value: "dark",
options: theme_names.clone(),
},
Setting::Select {
js_data_name: "preferred-light-theme",
description: "Preferred light theme",
default_value: "light",
options: theme_names,
},
],
)
.into(),
2019-12-22 17:42:04 -05:00
(
"Auto-hide item declarations",
vec![
("auto-hide-struct", "Auto-hide structs declaration", true),
("auto-hide-enum", "Auto-hide enums declaration", false),
("auto-hide-union", "Auto-hide unions declaration", true),
("auto-hide-trait", "Auto-hide traits declaration", true),
("auto-hide-macro", "Auto-hide macros declaration", false),
],
)
.into(),
2019-09-23 00:49:29 +02:00
("auto-hide-attributes", "Auto-hide item attributes.", true).into(),
("auto-hide-method-docs", "Auto-hide item methods' documentation", false).into(),
2020-07-09 22:51:04 +02:00
("auto-hide-trait-implementations", "Auto-hide trait implementation documentation", true)
2019-12-22 17:42:04 -05:00
.into(),
2020-07-09 22:51:04 +02:00
("auto-collapse-implementors", "Auto-hide implementors of a trait", true).into(),
2019-12-22 17:42:04 -05:00
("go-to-only-result", "Directly go to item in search if there is only one result", false)
.into(),
2019-09-23 00:49:29 +02:00
("line-numbers", "Show line numbers on code examples", false).into(),
("disable-shortcuts", "Disable keyboard shortcuts", false).into(),
2019-08-31 12:27:27 -04:00
];
2020-10-11 02:53:37 +02:00
Ok(format!(
2020-10-16 00:52:49 +08:00
"<h1 class=\"fqn\">\
<span class=\"in-band\">Rustdoc settings</span>\
2020-10-11 02:53:37 +02:00
</h1>\
2020-10-16 00:52:49 +08:00
<div class=\"settings\">{}</div>\
<script src=\"{}settings{}.js\"></script>",
2020-10-11 02:53:37 +02:00
settings.iter().map(|s| s.display(root_path, suffix)).collect::<String>(),
2019-12-22 17:42:04 -05:00
root_path,
suffix
2020-10-11 02:53:37 +02:00
))
2018-04-13 22:54:09 +02:00
}
2020-12-16 14:34:08 -05:00
fn document(w: &mut Buffer, cx: &Context<'_>, item: &clean::Item, parent: Option<&clean::Item>) {
if let Some(ref name) = item.name {
info!("Documenting {}", name);
}
document_item_info(w, cx, item, false, parent);
2019-08-31 15:47:55 -04:00
document_full(w, item, cx, "", false);
}
Remove hoedown from rustdoc Is it really time? Have our months, no, *years* of suffering come to an end? Are we finally able to cast off the pall of Hoedown? The weight which has dragged us down for so long? ----- So, timeline for those who need to catch up: * Way back in December 2016, [we decided we wanted to switch out the markdown renderer](https://github.com/rust-lang/rust/issues/38400). However, this was put on hold because the build system at the time made it difficult to pull in dependencies from crates.io. * A few months later, in March 2017, [the first PR was done, to switch out the renderers entirely](https://github.com/rust-lang/rust/pull/40338). The PR itself was fraught with CI and build system issues, but eventually landed. * However, not all was well in the Rustdoc world. During the PR and shortly after, we noticed [some differences in the way the two parsers handled some things](https://github.com/rust-lang/rust/issues/40912), and some of these differences were major enough to break the docs for some crates. * A couple weeks afterward, [Hoedown was put back in](https://github.com/rust-lang/rust/pull/41290), at this point just to catch tests that Pulldown was "spuriously" running. This would at least provide some warning about spurious tests, rather than just breaking spontaneously. * However, the problems had created enough noise by this point that just a few days after that, [Hoedown was switched back to the default](https://github.com/rust-lang/rust/pull/41431) while we came up with a solution for properly warning about the differences. * That solution came a few weeks later, [as a series of warnings when the HTML emitted by the two parsers was semantically different](https://github.com/rust-lang/rust/pull/41991). But that came at a cost, as now rustdoc needed proc-macro support (the new crate needed some custom derives farther down its dependency tree), and the build system was not equipped to handle it at the time. It was worked on for three months as the issue stumped more and more people. * In that time, [bootstrap was completely reworked](https://github.com/rust-lang/rust/pull/43059) to change how it ordered compilation, and [the method by which it built rustdoc would change](https://github.com/rust-lang/rust/pull/43482), as well. This allowed it to only be built after stage1, when proc-macros would be available, allowing the "rendering differences" PR to finally land. * The warnings were not perfect, and revealed a few [spurious](https://github.com/rust-lang/rust/pull/44368) [differences](https://github.com/rust-lang/rust/pull/45421) between how we handled the renderers. * Once these were handled, [we flipped the switch to turn on the "rendering difference" warnings all the time](https://github.com/rust-lang/rust/pull/45324), in October 2017. This began the "warning cycle" for this change, and landed in stable in 1.23, on 2018-01-04. * Once those warnings hit stable, and after a couple weeks of seeing whether we would get any more reports than what we got from sitting on nightly/beta, [we switched the renderers](https://github.com/rust-lang/rust/pull/47398), making Pulldown the default but still offering the option to use Hoedown. And that brings us to the present. We haven't received more new issues from this in the meantime, and the "switch by default" is now on beta. Our reasoning is that, at this point, anyone who would have been affected by this has run into it already.
2018-02-16 15:09:19 +01:00
/// Render md_text as markdown.
2019-07-16 18:29:50 +02:00
fn render_markdown(
2019-08-31 15:47:55 -04:00
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-07-16 18:29:50 +02:00
md_text: &str,
links: Vec<RenderedLink>,
2019-07-16 18:29:50 +02:00
prefix: &str,
is_hidden: bool,
2019-08-31 15:47:55 -04:00
) {
let mut ids = cx.id_map.borrow_mut();
2019-12-22 17:42:04 -05:00
write!(
w,
2020-10-16 00:52:49 +08:00
"<div class=\"docblock{}\">{}{}</div>",
2019-12-22 17:42:04 -05:00
if is_hidden { " hidden" } else { "" },
prefix,
Markdown(
md_text,
&links,
&mut ids,
cx.shared.codes,
cx.shared.edition,
&cx.shared.playground
)
.into_string()
2019-12-22 17:42:04 -05:00
)
}
/// Writes a documentation block containing only the first paragraph of the documentation. If the
/// docs are longer, a "Read more" link is appended to the end.
2019-02-23 17:02:57 +09:00
fn document_short(
2019-08-31 15:47:55 -04:00
w: &mut Buffer,
2019-02-23 17:02:57 +09:00
item: &clean::Item,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-02-23 17:02:57 +09:00
link: AssocItemLink<'_>,
2019-07-16 18:29:50 +02:00
prefix: &str,
is_hidden: bool,
2020-11-24 17:36:16 +01:00
parent: Option<&clean::Item>,
show_def_docs: bool,
2019-08-31 15:47:55 -04:00
) {
2020-11-24 17:36:16 +01:00
document_item_info(w, cx, item, is_hidden, parent);
if !show_def_docs {
return;
}
if let Some(s) = item.doc_value() {
2021-01-12 23:36:04 +01:00
let mut summary_html = MarkdownSummaryLine(&s, &item.links(&cx.cache)).into_string();
if s.contains('\n') {
2021-01-12 23:36:04 +01:00
let link =
format!(r#" <a href="{}">Read more</a>"#, naive_assoc_href(item, link, cx.cache()));
if let Some(idx) = summary_html.rfind("</p>") {
summary_html.insert_str(idx, &link);
} else {
summary_html.push_str(&link);
}
}
write!(
w,
"<div class='docblock{}'>{}{}</div>",
if is_hidden { " hidden" } else { "" },
prefix,
summary_html,
);
} else if !prefix.is_empty() {
2019-12-22 17:42:04 -05:00
write!(
w,
2020-10-16 00:52:49 +08:00
"<div class=\"docblock{}\">{}</div>",
2019-12-22 17:42:04 -05:00
if is_hidden { " hidden" } else { "" },
prefix
);
}
}
2020-12-16 14:34:08 -05:00
fn document_full(
w: &mut Buffer,
item: &clean::Item,
cx: &Context<'_>,
prefix: &str,
is_hidden: bool,
) {
if let Some(s) = cx.shared.maybe_collapsed_doc_value(item) {
debug!("Doc block: =====\n{}\n=====", s);
2021-01-12 23:36:04 +01:00
render_markdown(w, cx, &*s, item.links(&cx.cache), prefix, is_hidden);
} else if !prefix.is_empty() {
if is_hidden {
w.write_str("<div class=\"docblock hidden\">");
} else {
w.write_str("<div class=\"docblock\">");
}
w.write_str(prefix);
w.write_str("</div>");
}
}
/// Add extra information about an item such as:
///
/// * Stability
/// * Deprecated
/// * Required features (through the `doc_cfg` feature)
fn document_item_info(
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
item: &clean::Item,
is_hidden: bool,
parent: Option<&clean::Item>,
) {
let item_infos = short_item_info(item, cx, parent);
if !item_infos.is_empty() {
if is_hidden {
w.write_str("<div class=\"item-info hidden\">");
} else {
w.write_str("<div class=\"item-info\">");
}
for info in item_infos {
w.write_str(&info);
}
w.write_str("</div>");
}
}
fn portability(item: &clean::Item, parent: Option<&clean::Item>) -> Option<String> {
let cfg = match (&item.attrs.cfg, parent.and_then(|p| p.attrs.cfg.as_ref())) {
(Some(cfg), Some(parent_cfg)) => cfg.simplify_with(parent_cfg),
(cfg, _) => cfg.as_deref().cloned(),
};
debug!(
"Portability {:?} - {:?} = {:?}",
item.attrs.cfg,
parent.and_then(|p| p.attrs.cfg.as_ref()),
cfg
);
Some(format!("<div class=\"stab portability\">{}</div>", cfg?.render_long_html()))
}
/// Render the stability, deprecation and portability information that is displayed at the top of
/// the item's documentation.
2020-12-16 14:34:08 -05:00
fn short_item_info(
item: &clean::Item,
cx: &Context<'_>,
parent: Option<&clean::Item>,
) -> Vec<String> {
let mut extra_info = vec![];
let error_codes = cx.shared.codes;
if let Some(Deprecation { note, since, is_since_rustc_version, suggestion: _ }) =
item.deprecation(cx.tcx())
{
// We display deprecation messages for #[deprecated] and #[rustc_deprecated]
// but only display the future-deprecation messages for #[rustc_deprecated].
let mut message = if let Some(since) = since {
let since = &since.as_str();
if !stability::deprecation_in_effect(is_since_rustc_version, Some(since)) {
if *since == "TBD" {
String::from("Deprecating in a future Rust version")
} else {
format!("Deprecating in {}", Escape(since))
}
} else {
format!("Deprecated since {}", Escape(since))
}
} else {
String::from("Deprecated")
};
if let Some(note) = note {
let note = note.as_str();
let mut ids = cx.id_map.borrow_mut();
2019-09-13 09:51:32 -04:00
let html = MarkdownHtml(
2019-12-22 17:42:04 -05:00
&note,
&mut ids,
error_codes,
cx.shared.edition,
&cx.shared.playground,
);
message.push_str(&format!(": {}", html.into_string()));
}
extra_info.push(format!(
2020-10-16 00:52:49 +08:00
"<div class=\"stab deprecated\"><span class=\"emoji\">👎</span> {}</div>",
2020-05-08 15:19:14 +02:00
message,
));
}
// Render unstable items. But don't render "rustc_private" crates (internal compiler crates).
// Those crates are permanently unstable so it makes no sense to render "unstable" everywhere.
if let Some((StabilityLevel::Unstable { reason, issue, .. }, feature)) = item
.stability(cx.tcx())
2020-07-19 18:20:01 -04:00
.as_ref()
.filter(|stab| stab.feature != sym::rustc_private)
.map(|stab| (stab.level, stab.feature))
2020-07-19 18:20:01 -04:00
{
let mut message =
2020-10-16 00:52:49 +08:00
"<span class=\"emoji\">🔬</span> This is a nightly-only experimental API.".to_owned();
let mut feature = format!("<code>{}</code>", Escape(&feature.as_str()));
if let (Some(url), Some(issue)) = (&cx.shared.issue_tracker_base_url, issue) {
2020-07-19 18:20:01 -04:00
feature.push_str(&format!(
"&nbsp;<a href=\"{url}{issue}\">#{issue}</a>",
url = url,
issue = issue
));
}
2020-07-19 18:20:01 -04:00
message.push_str(&format!(" ({})", feature));
if let Some(unstable_reason) = reason {
let mut ids = cx.id_map.borrow_mut();
message = format!(
"<details><summary>{}</summary>{}</details>",
message,
MarkdownHtml(
&unstable_reason.as_str(),
&mut ids,
error_codes,
2019-09-13 09:51:32 -04:00
cx.shared.edition,
2019-09-13 10:40:22 -04:00
&cx.shared.playground,
2019-12-22 17:42:04 -05:00
)
.into_string()
);
}
2015-12-12 23:01:27 +03:00
extra_info.push(format!("<div class=\"stab unstable\">{}</div>", message));
}
if let Some(portability) = portability(item, parent) {
extra_info.push(portability);
}
extra_info
}
fn render_impls(
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
w: &mut Buffer,
traits: &[&&Impl],
containing_item: &clean::Item,
) {
2019-12-22 17:42:04 -05:00
let mut impls = traits
.iter()
.map(|i| {
2021-01-15 15:36:15 +01:00
let did = i.trait_did_full(cx.cache()).unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.inner_impl().provided_trait_methods);
2019-12-22 17:42:04 -05:00
let mut buffer = if w.is_for_html() { Buffer::html() } else { Buffer::new() };
render_impl(
&mut buffer,
cx,
i,
containing_item,
2019-12-22 17:42:04 -05:00
assoc_link,
RenderMode::Normal,
containing_item.stable_since(cx.tcx()).as_deref(),
containing_item.const_stable_since(cx.tcx()).as_deref(),
2019-12-22 17:42:04 -05:00
true,
None,
false,
true,
&[],
2019-12-22 17:42:04 -05:00
);
buffer.into_inner()
})
.collect::<Vec<_>>();
impls.sort();
w.write_str(&impls.join(""));
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
}
2021-01-12 23:36:04 +01:00
fn naive_assoc_href(it: &clean::Item, link: AssocItemLink<'_>, cache: &Cache) -> String {
use crate::formats::item_type::ItemType::*;
2016-03-25 00:10:15 +01:00
let name = it.name.as_ref().unwrap();
let ty = match it.type_() {
Typedef | AssocType => AssocType,
s => s,
2016-03-25 00:10:15 +01:00
};
let anchor = format!("#{}.{}", ty, name);
match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
2016-03-25 00:10:15 +01:00
AssocItemLink::GotoSource(did, _) => {
2021-01-12 23:36:04 +01:00
href(did, cache).map(|p| format!("{}{}", p.0, anchor)).unwrap_or(anchor)
2016-03-25 00:10:15 +01:00
}
}
}
2019-12-22 17:42:04 -05:00
fn assoc_const(
w: &mut Buffer,
it: &clean::Item,
ty: &clean::Type,
_default: Option<&String>,
link: AssocItemLink<'_>,
extra: &str,
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
) {
write!(
w,
2020-10-16 00:52:49 +08:00
"{}{}const <a href=\"{}\" class=\"constant\"><b>{}</b></a>: {}",
2019-12-22 17:42:04 -05:00
extra,
2021-01-12 23:36:04 +01:00
it.visibility.print_with_space(cx.tcx(), it.def_id, cx.cache()),
naive_assoc_href(it, link, cx.cache()),
2019-12-22 17:42:04 -05:00
it.name.as_ref().unwrap(),
2021-01-12 23:36:04 +01:00
ty.print(cx.cache())
2019-12-22 17:42:04 -05:00
);
}
2019-12-22 17:42:04 -05:00
fn assoc_type(
w: &mut Buffer,
it: &clean::Item,
bounds: &[clean::GenericBound],
default: Option<&clean::Type>,
link: AssocItemLink<'_>,
extra: &str,
2021-01-12 23:36:04 +01:00
cache: &Cache,
2019-12-22 17:42:04 -05:00
) {
write!(
w,
2020-10-16 00:52:49 +08:00
"{}type <a href=\"{}\" class=\"type\">{}</a>",
2019-12-22 17:42:04 -05:00
extra,
2021-01-12 23:36:04 +01:00
naive_assoc_href(it, link, cache),
2019-12-22 17:42:04 -05:00
it.name.as_ref().unwrap()
);
if !bounds.is_empty() {
2021-01-12 23:36:04 +01:00
write!(w, ": {}", print_generic_bounds(bounds, cache))
}
2016-03-25 00:10:15 +01:00
if let Some(default) = default {
2021-01-12 23:36:04 +01:00
write!(w, " = {}", default.print(cache))
}
}
fn render_stability_since_raw(
w: &mut Buffer,
ver: Option<&str>,
const_ver: Option<&str>,
containing_ver: Option<&str>,
containing_const_ver: Option<&str>,
) {
let ver = ver.filter(|inner| !inner.is_empty());
let const_ver = const_ver.filter(|inner| !inner.is_empty());
match (ver, const_ver) {
(Some(v), Some(cv)) if const_ver != containing_const_ver => {
write!(
w,
"<span class=\"since\" title=\"Stable since Rust version {0}, const since {1}\">{0} (const: {1})</span>",
v, cv
);
}
(Some(v), _) if ver != containing_ver => {
write!(
w,
"<span class=\"since\" title=\"Stable since Rust version {0}\">{0}</span>",
v
);
}
_ => {}
}
}
2019-12-22 17:42:04 -05:00
fn render_assoc_item(
w: &mut Buffer,
item: &clean::Item,
link: AssocItemLink<'_>,
parent: ItemType,
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
) {
fn method(
w: &mut Buffer,
meth: &clean::Item,
header: hir::FnHeader,
g: &clean::Generics,
d: &clean::FnDecl,
link: AssocItemLink<'_>,
parent: ItemType,
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
) {
let name = meth.name.as_ref().unwrap();
let anchor = format!("#{}.{}", meth.type_(), name);
let href = match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
AssocItemLink::GotoSource(did, provided_methods) => {
// We're creating a link from an impl-item to the corresponding
// trait-item and need to map the anchored type accordingly.
let ty = if provided_methods.contains(&name) {
ItemType::Method
} else {
ItemType::TyMethod
};
2021-01-12 23:36:04 +01:00
href(did, cx.cache()).map(|p| format!("{}#{}.{}", p.0, ty, name)).unwrap_or(anchor)
}
};
let mut header_len = format!(
"{}{}{}{}{}{:#}fn {}{:#}",
2021-01-12 23:36:04 +01:00
meth.visibility.print_with_space(cx.tcx(), meth.def_id, cx.cache()),
header.constness.print_with_space(),
header.asyncness.print_with_space(),
header.unsafety.print_with_space(),
print_default_space(meth.is_default()),
print_abi_with_space(header.abi),
name,
2021-01-12 23:36:04 +01:00
g.print(cx.cache())
2019-12-22 17:42:04 -05:00
)
.len();
let (indent, end_newline) = if parent == ItemType::Trait {
header_len += 4;
(4, false)
} else {
(0, true)
};
2019-08-31 15:47:55 -04:00
render_attributes(w, meth, false);
2019-12-22 17:42:04 -05:00
write!(
w,
2020-10-16 00:52:49 +08:00
"{}{}{}{}{}{}{}fn <a href=\"{href}\" class=\"fnname\">{name}</a>\
2020-08-31 13:16:50 +02:00
{generics}{decl}{spotlight}{where_clause}",
2019-12-22 17:42:04 -05:00
if parent == ItemType::Trait { " " } else { "" },
2021-01-12 23:36:04 +01:00
meth.visibility.print_with_space(cx.tcx(), meth.def_id, cx.cache()),
2019-12-22 17:42:04 -05:00
header.constness.print_with_space(),
header.asyncness.print_with_space(),
header.unsafety.print_with_space(),
2019-12-22 17:42:04 -05:00
print_default_space(meth.is_default()),
print_abi_with_space(header.abi),
href = href,
name = name,
2021-01-12 23:36:04 +01:00
generics = g.print(cx.cache()),
decl = Function { decl: d, header_len, indent, asyncness: header.asyncness }
.print(cx.cache()),
spotlight = spotlight_decl(&d, cx.cache()),
where_clause = WhereClause { gens: g, indent, end_newline }.print(cx.cache())
2019-12-22 17:42:04 -05:00
)
}
match *item.kind {
2019-12-22 17:42:04 -05:00
clean::StrippedItem(..) => {}
clean::TyMethodItem(ref m) => {
method(w, item, m.header, &m.generics, &m.decl, link, parent, cx)
}
clean::MethodItem(ref m, _) => {
method(w, item, m.header, &m.generics, &m.decl, link, parent, cx)
}
2019-12-22 17:42:04 -05:00
clean::AssocConstItem(ref ty, ref default) => assoc_const(
w,
item,
ty,
default.as_ref(),
link,
if parent == ItemType::Trait { " " } else { "" },
cx,
2019-12-22 17:42:04 -05:00
),
clean::AssocTypeItem(ref bounds, ref default) => assoc_type(
w,
item,
bounds,
default.as_ref(),
link,
if parent == ItemType::Trait { " " } else { "" },
2021-01-12 23:36:04 +01:00
cx.cache(),
2019-12-22 17:42:04 -05:00
),
_ => panic!("render_assoc_item called on non-associated-item"),
}
}
const ALLOWED_ATTRIBUTES: &[Symbol] = &[
sym::export_name,
sym::lang,
sym::link_section,
sym::must_use,
sym::no_mangle,
sym::repr,
2019-12-22 17:42:04 -05:00
sym::non_exhaustive,
];
// The `top` parameter is used when generating the item declaration to ensure it doesn't have a
// left padding. For example:
//
// #[foo] <----- "top" attribute
// struct Foo {
// #[bar] <---- not "top" attribute
// bar: usize,
// }
2019-08-31 15:47:55 -04:00
fn render_attributes(w: &mut Buffer, it: &clean::Item, top: bool) {
let attrs = it
.attrs
.other_attrs
.iter()
.filter_map(|attr| {
if ALLOWED_ATTRIBUTES.contains(&attr.name_or_empty()) {
Some(pprust::attribute_to_string(&attr))
} else {
None
}
})
.join("\n");
2020-03-03 23:41:32 +00:00
if !attrs.is_empty() {
2019-12-22 17:42:04 -05:00
write!(
w,
"<span class=\"docblock attributes{}\">{}</span>",
if top { " top-attr" } else { "" },
&attrs
);
2016-11-06 20:06:01 +01:00
}
2015-02-13 00:47:03 +09:00
}
#[derive(Copy, Clone)]
enum AssocItemLink<'a> {
Anchor(Option<&'a str>),
GotoSource(DefId, &'a FxHashSet<Symbol>),
}
impl<'a> AssocItemLink<'a> {
fn anchor(&self, id: &'a str) -> Self {
match *self {
2019-12-22 17:42:04 -05:00
AssocItemLink::Anchor(_) => AssocItemLink::Anchor(Some(&id)),
ref other => *other,
}
}
}
2019-12-22 17:42:04 -05:00
fn render_assoc_items(
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
containing_item: &clean::Item,
it: DefId,
2020-01-15 18:52:04 +01:00
what: AssocItemRender<'_>,
2019-12-22 17:42:04 -05:00
) {
info!("Documenting associated items of {:?}", containing_item.name);
2021-01-12 23:36:04 +01:00
let v = match cx.cache.impls.get(&it) {
Some(v) => v,
2019-08-31 15:47:55 -04:00
None => return,
};
2019-12-22 17:42:04 -05:00
let (non_trait, traits): (Vec<_>, _) = v.iter().partition(|i| i.inner_impl().trait_.is_none());
if !non_trait.is_empty() {
let render_mode = match what {
AssocItemRender::All => {
w.write_str(
2020-10-16 00:52:49 +08:00
"<h2 id=\"implementations\" class=\"small-section-header\">\
Implementations<a href=\"#implementations\" class=\"anchor\"></a>\
</h2>",
2019-12-22 17:42:04 -05:00
);
RenderMode::Normal
}
AssocItemRender::DerefFor { trait_, type_, deref_mut_ } => {
let id = cx.derive_id(small_url_encode(format!(
2021-01-12 23:36:04 +01:00
"deref-methods-{:#}",
type_.print(cx.cache())
)));
debug!("Adding {} to deref id map", type_.print(cx.cache()));
2021-01-15 15:36:15 +01:00
cx.deref_id_map
.borrow_mut()
.insert(type_.def_id_full(cx.cache()).unwrap(), id.clone());
2019-12-22 17:42:04 -05:00
write!(
w,
"<h2 id=\"{id}\" class=\"small-section-header\">\
Methods from {trait_}&lt;Target = {type_}&gt;\
<a href=\"#{id}\" class=\"anchor\"></a>\
2020-08-31 13:16:50 +02:00
</h2>",
id = id,
2021-01-12 23:36:04 +01:00
trait_ = trait_.print(cx.cache()),
type_ = type_.print(cx.cache()),
2019-12-22 17:42:04 -05:00
);
2020-01-15 18:52:04 +01:00
RenderMode::ForDeref { mut_: deref_mut_ }
}
};
for i in &non_trait {
2019-12-22 17:42:04 -05:00
render_impl(
w,
cx,
i,
containing_item,
2019-12-22 17:42:04 -05:00
AssocItemLink::Anchor(None),
render_mode,
containing_item.stable_since(cx.tcx()).as_deref(),
containing_item.const_stable_since(cx.tcx()).as_deref(),
2019-12-22 17:42:04 -05:00
true,
None,
false,
true,
&[],
2019-12-22 17:42:04 -05:00
);
}
}
if !traits.is_empty() {
2021-01-12 23:36:04 +01:00
let deref_impl = traits
.iter()
2021-01-15 15:36:15 +01:00
.find(|t| t.inner_impl().trait_.def_id_full(cx.cache()) == cx.cache.deref_trait_did);
if let Some(impl_) = deref_impl {
2021-01-15 15:36:15 +01:00
let has_deref_mut = traits.iter().any(|t| {
t.inner_impl().trait_.def_id_full(cx.cache()) == cx.cache.deref_mut_trait_did
});
2021-01-12 23:36:04 +01:00
render_deref_methods(w, cx, impl_, containing_item, has_deref_mut);
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
// If we were already one level into rendering deref methods, we don't want to render
// anything after recursing into any further deref methods above.
if let AssocItemRender::DerefFor { .. } = what {
return;
}
2019-12-22 17:42:04 -05:00
let (synthetic, concrete): (Vec<&&Impl>, Vec<&&Impl>) =
traits.iter().partition(|t| t.inner_impl().synthetic);
let (blanket_impl, concrete): (Vec<&&Impl>, _) =
concrete.into_iter().partition(|t| t.inner_impl().blanket_impl.is_some());
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
2019-08-31 15:47:55 -04:00
let mut impls = Buffer::empty_from(&w);
2021-01-12 23:36:04 +01:00
render_impls(cx, &mut impls, &concrete, containing_item);
2019-08-31 15:47:55 -04:00
let impls = impls.into_inner();
if !impls.is_empty() {
2019-12-22 17:42:04 -05:00
write!(
w,
2020-10-16 00:52:49 +08:00
"<h2 id=\"trait-implementations\" class=\"small-section-header\">\
Trait Implementations<a href=\"#trait-implementations\" class=\"anchor\"></a>\
2020-08-31 13:16:50 +02:00
</h2>\
2020-10-16 00:52:49 +08:00
<div id=\"trait-implementations-list\">{}</div>",
2019-12-22 17:42:04 -05:00
impls
);
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
if !synthetic.is_empty() {
w.write_str(
2020-10-16 00:52:49 +08:00
"<h2 id=\"synthetic-implementations\" class=\"small-section-header\">\
2020-08-31 13:16:50 +02:00
Auto Trait Implementations\
2020-10-16 00:52:49 +08:00
<a href=\"#synthetic-implementations\" class=\"anchor\"></a>\
2020-08-31 13:16:50 +02:00
</h2>\
<div id=\"synthetic-implementations-list\">",
2019-12-22 17:42:04 -05:00
);
2021-01-12 23:36:04 +01:00
render_impls(cx, w, &synthetic, containing_item);
w.write_str("</div>");
}
if !blanket_impl.is_empty() {
w.write_str(
2020-10-16 00:52:49 +08:00
"<h2 id=\"blanket-implementations\" class=\"small-section-header\">\
2020-08-31 13:16:50 +02:00
Blanket Implementations\
2020-10-16 00:52:49 +08:00
<a href=\"#blanket-implementations\" class=\"anchor\"></a>\
2020-08-31 13:16:50 +02:00
</h2>\
<div id=\"blanket-implementations-list\">",
2019-12-22 17:42:04 -05:00
);
2021-01-12 23:36:04 +01:00
render_impls(cx, w, &blanket_impl, containing_item);
w.write_str("</div>");
}
}
}
2019-12-22 17:42:04 -05:00
fn render_deref_methods(
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
impl_: &Impl,
container_item: &clean::Item,
deref_mut: bool,
) {
let deref_type = impl_.inner_impl().trait_.as_ref().unwrap();
2020-01-10 02:07:13 +01:00
let (target, real_target) = impl_
2019-12-22 17:42:04 -05:00
.inner_impl()
.items
.iter()
.find_map(|item| match *item.kind {
2020-01-10 14:46:28 +01:00
clean::TypedefItem(ref t, true) => Some(match *t {
2020-01-15 18:52:04 +01:00
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
2020-01-10 14:46:28 +01:00
}),
_ => None,
2019-12-22 17:42:04 -05:00
})
.expect("Expected associated type binding");
debug!("Render deref methods for {:#?}, target {:#?}", impl_.inner_impl().for_, target);
2019-12-22 17:42:04 -05:00
let what =
2020-01-15 18:52:04 +01:00
AssocItemRender::DerefFor { trait_: deref_type, type_: real_target, deref_mut_: deref_mut };
2021-01-15 15:36:15 +01:00
if let Some(did) = target.def_id_full(cx.cache()) {
if let Some(type_did) = impl_.inner_impl().for_.def_id_full(cx.cache()) {
// `impl Deref<Target = S> for S`
if did == type_did {
// Avoid infinite cycles
return;
}
}
2021-01-12 23:36:04 +01:00
render_assoc_items(w, cx, container_item, did, what);
2020-01-15 18:52:04 +01:00
} else {
if let Some(prim) = target.primitive_type() {
2021-01-12 23:36:04 +01:00
if let Some(&did) = cx.cache.primitive_locations.get(&prim) {
render_assoc_items(w, cx, container_item, did, what);
2020-01-15 18:52:04 +01:00
}
}
}
}
2021-01-12 23:36:04 +01:00
fn should_render_item(item: &clean::Item, deref_mut_: bool, cache: &Cache) -> bool {
let self_type_opt = match *item.kind {
clean::MethodItem(ref method, _) => method.decl.self_type(),
2017-10-28 01:11:01 +02:00
clean::TyMethodItem(ref method) => method.decl.self_type(),
2019-12-22 17:42:04 -05:00
_ => None,
2017-10-28 01:11:01 +02:00
};
if let Some(self_ty) = self_type_opt {
let (by_mut_ref, by_box, by_value) = match self_ty {
2019-12-22 17:42:04 -05:00
SelfTy::SelfBorrowed(_, mutability)
| SelfTy::SelfExplicit(clean::BorrowedRef { mutability, .. }) => {
(mutability == Mutability::Mut, false, false)
2019-12-22 17:42:04 -05:00
}
2017-10-28 01:11:01 +02:00
SelfTy::SelfExplicit(clean::ResolvedPath { did, .. }) => {
2021-01-12 23:36:04 +01:00
(false, Some(did) == cache.owned_box_did, false)
2019-12-22 17:42:04 -05:00
}
SelfTy::SelfValue => (false, false, true),
_ => (false, false, false),
2017-10-28 01:11:01 +02:00
};
(deref_mut_ || !by_mut_ref) && !by_box && !by_value
2017-10-28 01:11:01 +02:00
} else {
false
}
}
2021-01-24 01:08:34 +01:00
fn spotlight_decl(decl: &clean::FnDecl, cache: &Cache) -> String {
let mut out = Buffer::html();
let mut trait_ = String::new();
2021-01-24 01:08:34 +01:00
if let Some(did) = decl.output.def_id_full(cache) {
if let Some(impls) = cache.impls.get(&did) {
for i in impls {
let impl_ = i.inner_impl();
2021-01-28 17:05:22 +01:00
if impl_.trait_.def_id().map_or(false, |d| {
cache.traits.get(&d).map(|t| t.is_spotlight).unwrap_or(false)
2021-01-28 17:05:22 +01:00
}) {
if out.is_empty() {
write!(
&mut out,
"<h3 class=\"notable\">Notable traits for {}</h3>\
2020-08-31 13:16:50 +02:00
<code class=\"content\">",
2021-01-24 01:08:34 +01:00
impl_.for_.print(cache)
);
2021-01-24 01:08:34 +01:00
trait_.push_str(&impl_.for_.print(cache).to_string());
}
//use the "where" class here to make it small
write!(
&mut out,
"<span class=\"where fmt-newline\">{}</span>",
impl_.print(cache, false)
);
2021-01-24 01:08:34 +01:00
let t_did = impl_.trait_.def_id_full(cache).unwrap();
for it in &impl_.items {
if let clean::TypedefItem(ref tydef, _) = *it.kind {
out.push_str("<span class=\"where fmt-newline\"> ");
assoc_type(
&mut out,
it,
&[],
Some(&tydef.type_),
AssocItemLink::GotoSource(t_did, &FxHashSet::default()),
"",
2021-01-24 01:08:34 +01:00
cache,
);
out.push_str(";</span>");
}
}
}
}
}
}
if !out.is_empty() {
out.insert_str(
0,
2020-10-16 00:52:49 +08:00
"<span class=\"notable-traits\"><span class=\"notable-traits-tooltip\">ⓘ\
<div class=\"notable-traits-tooltiptext\"><span class=\"docblock\">",
);
out.push_str("</code></span></div></span></span>");
}
out.into_inner()
}
2019-12-22 17:42:04 -05:00
fn render_impl(
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
i: &Impl,
parent: &clean::Item,
2019-12-22 17:42:04 -05:00
link: AssocItemLink<'_>,
render_mode: RenderMode,
outer_version: Option<&str>,
outer_const_version: Option<&str>,
2019-12-22 17:42:04 -05:00
show_def_docs: bool,
use_absolute: Option<bool>,
is_on_foreign_type: bool,
show_default_items: bool,
2020-03-06 12:13:55 +01:00
// This argument is used to reference same type with different paths to avoid duplication
// in documentation pages for trait with automatic implementations like "Send" and "Sync".
aliases: &[String],
2019-12-22 17:42:04 -05:00
) {
2021-01-12 23:36:04 +01:00
let traits = &cx.cache.traits;
2021-01-15 15:36:15 +01:00
let trait_ = i.trait_did_full(cx.cache()).map(|did| &traits[&did]);
if render_mode == RenderMode::Normal {
let id = cx.derive_id(match i.inner_impl().trait_ {
2019-12-22 17:42:04 -05:00
Some(ref t) => {
if is_on_foreign_type {
2021-01-12 23:36:04 +01:00
get_id_for_impl_on_foreign_type(&i.inner_impl().for_, t, cx.cache())
2019-12-22 17:42:04 -05:00
} else {
format!("impl-{}", small_url_encode(format!("{:#}", t.print(cx.cache()))))
2019-12-22 17:42:04 -05:00
}
}
None => "impl".to_string(),
});
let aliases = if aliases.is_empty() {
String::new()
} else {
format!(" aliases=\"{}\"", aliases.join(","))
};
2018-08-10 19:36:08 +02:00
if let Some(use_absolute) = use_absolute {
2020-10-16 00:52:49 +08:00
write!(w, "<h3 id=\"{}\" class=\"impl\"{}><code class=\"in-band\">", id, aliases);
write!(w, "{}", i.inner_impl().print(cx.cache(), use_absolute));
2018-08-11 11:52:44 +02:00
if show_def_docs {
for it in &i.inner_impl().items {
if let clean::TypedefItem(ref tydef, _) = *it.kind {
w.write_str("<span class=\"where fmt-newline\"> ");
2021-01-12 23:36:04 +01:00
assoc_type(
w,
it,
&[],
Some(&tydef.type_),
AssocItemLink::Anchor(None),
"",
cx.cache(),
);
w.write_str(";</span>");
2018-08-11 11:52:44 +02:00
}
2018-08-10 19:36:08 +02:00
}
}
w.write_str("</code>");
2018-08-10 19:36:08 +02:00
} else {
2019-12-22 17:42:04 -05:00
write!(
w,
2020-10-16 00:52:49 +08:00
"<h3 id=\"{}\" class=\"impl\"{}><code class=\"in-band\">{}</code>",
2019-12-22 17:42:04 -05:00
id,
aliases,
i.inner_impl().print(cx.cache(), false)
2019-08-31 15:47:55 -04:00
);
2018-08-10 19:36:08 +02:00
}
2020-10-16 00:52:49 +08:00
write!(w, "<a href=\"#{}\" class=\"anchor\"></a>", id);
render_stability_since_raw(
w,
i.impl_item.stable_since(cx.tcx()).as_deref(),
i.impl_item.const_stable_since(cx.tcx()).as_deref(),
outer_version,
outer_const_version,
);
2021-01-12 23:36:04 +01:00
write_srclink(cx, &i.impl_item, w);
w.write_str("</h3>");
if trait_.is_some() {
if let Some(portability) = portability(&i.impl_item, Some(parent)) {
write!(w, "<div class=\"item-info\">{}</div>", portability);
}
}
if let Some(ref dox) = cx.shared.maybe_collapsed_doc_value(&i.impl_item) {
let mut ids = cx.id_map.borrow_mut();
2019-12-22 17:42:04 -05:00
write!(
w,
2020-10-16 00:52:49 +08:00
"<div class=\"docblock\">{}</div>",
2019-12-22 17:42:04 -05:00
Markdown(
&*dox,
2021-01-12 23:36:04 +01:00
&i.impl_item.links(&cx.cache),
2019-12-22 17:42:04 -05:00
&mut ids,
cx.shared.codes,
cx.shared.edition,
&cx.shared.playground
)
.into_string()
2019-12-22 17:42:04 -05:00
);
}
}
2019-12-22 17:42:04 -05:00
fn doc_impl_item(
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
item: &clean::Item,
parent: &clean::Item,
2019-12-22 17:42:04 -05:00
link: AssocItemLink<'_>,
render_mode: RenderMode,
is_default_item: bool,
outer_version: Option<&str>,
outer_const_version: Option<&str>,
2019-12-22 17:42:04 -05:00
trait_: Option<&clean::Trait>,
show_def_docs: bool,
) {
let item_type = item.type_();
let name = item.name.as_ref().unwrap();
2016-02-28 12:11:13 +01:00
2019-09-13 14:32:59 -04:00
let render_method_item = match render_mode {
RenderMode::Normal => true,
2021-01-12 23:36:04 +01:00
RenderMode::ForDeref { mut_: deref_mut_ } => {
should_render_item(&item, deref_mut_, &cx.cache)
}
2016-02-28 12:11:13 +01:00
};
2019-12-22 17:42:04 -05:00
let (is_hidden, extra_class) =
if (trait_.is_none() || item.doc_value().is_some() || item.kind.is_type_alias())
2019-12-22 17:42:04 -05:00
&& !is_default_item
{
(false, "")
} else {
(true, " hidden")
};
match *item.kind {
clean::MethodItem(..) | clean::TyMethodItem(_) => {
// Only render when the method is not static or we allow static methods
if render_method_item {
let id = cx.derive_id(format!("{}.{}", item_type, name));
2020-10-16 00:52:49 +08:00
write!(w, "<h4 id=\"{}\" class=\"{}{}\">", id, item_type, extra_class);
w.write_str("<code>");
render_assoc_item(w, item, link.anchor(&id), ItemType::Impl, cx);
w.write_str("</code>");
render_stability_since_raw(
w,
item.stable_since(cx.tcx()).as_deref(),
item.const_stable_since(cx.tcx()).as_deref(),
outer_version,
outer_const_version,
);
2021-01-12 23:36:04 +01:00
write_srclink(cx, item, w);
w.write_str("</h4>");
}
}
clean::TypedefItem(ref tydef, _) => {
let id = cx.derive_id(format!("{}.{}", ItemType::AssocType, name));
2020-10-16 00:52:49 +08:00
write!(w, "<h4 id=\"{}\" class=\"{}{}\"><code>", id, item_type, extra_class);
2021-01-12 23:36:04 +01:00
assoc_type(
w,
item,
&Vec::new(),
Some(&tydef.type_),
link.anchor(&id),
"",
cx.cache(),
);
w.write_str("</code></h4>");
}
clean::AssocConstItem(ref ty, ref default) => {
let id = cx.derive_id(format!("{}.{}", item_type, name));
2020-10-16 00:52:49 +08:00
write!(w, "<h4 id=\"{}\" class=\"{}{}\"><code>", id, item_type, extra_class);
assoc_const(w, item, ty, default.as_ref(), link.anchor(&id), "", cx);
w.write_str("</code>");
render_stability_since_raw(
w,
item.stable_since(cx.tcx()).as_deref(),
item.const_stable_since(cx.tcx()).as_deref(),
outer_version,
outer_const_version,
);
2021-01-12 23:36:04 +01:00
write_srclink(cx, item, w);
w.write_str("</h4>");
}
clean::AssocTypeItem(ref bounds, ref default) => {
let id = cx.derive_id(format!("{}.{}", item_type, name));
2020-10-16 00:52:49 +08:00
write!(w, "<h4 id=\"{}\" class=\"{}{}\"><code>", id, item_type, extra_class);
2021-01-12 23:36:04 +01:00
assoc_type(w, item, bounds, default.as_ref(), link.anchor(&id), "", cx.cache());
w.write_str("</code></h4>");
}
2019-08-31 15:47:55 -04:00
clean::StrippedItem(..) => return,
2019-12-22 17:42:04 -05:00
_ => panic!("can't make docs for trait item with name {:?}", item.name),
}
2019-09-13 14:32:59 -04:00
if render_method_item {
2016-05-19 00:07:58 +05:30
if !is_default_item {
if let Some(t) = trait_ {
// The trait item may have been stripped so we might not
// find any documentation or stability for it.
if let Some(it) = t.items.iter().find(|i| i.name == item.name) {
// We need the stability of the item from the trait
// because impls can't have a stability.
if item.doc_value().is_some() {
2020-11-24 17:36:16 +01:00
document_item_info(w, cx, it, is_hidden, Some(parent));
2019-08-31 15:47:55 -04:00
document_full(w, item, cx, "", is_hidden);
2020-11-24 17:36:16 +01:00
} else {
// In case the item isn't documented,
// provide short documentation from the trait.
2020-11-24 17:36:16 +01:00
document_short(
w,
it,
cx,
link,
"",
is_hidden,
Some(parent),
show_def_docs,
);
}
}
} else {
document_item_info(w, cx, item, is_hidden, Some(parent));
if show_def_docs {
2019-08-31 15:47:55 -04:00
document_full(w, item, cx, "", is_hidden);
}
}
2016-05-19 00:07:58 +05:30
} else {
2020-11-24 17:36:16 +01:00
document_short(w, item, cx, link, "", is_hidden, Some(parent), show_def_docs);
}
}
}
w.write_str("<div class=\"impl-items\">");
for trait_item in &i.inner_impl().items {
2019-12-22 17:42:04 -05:00
doc_impl_item(
w,
cx,
trait_item,
if trait_.is_some() { &i.impl_item } else { parent },
2019-12-22 17:42:04 -05:00
link,
render_mode,
false,
outer_version,
outer_const_version,
trait_.map(|t| &t.trait_),
2019-12-22 17:42:04 -05:00
show_def_docs,
);
}
2019-12-22 17:42:04 -05:00
fn render_default_items(
w: &mut Buffer,
2020-12-16 14:34:08 -05:00
cx: &Context<'_>,
2019-12-22 17:42:04 -05:00
t: &clean::Trait,
i: &clean::Impl,
parent: &clean::Item,
2019-12-22 17:42:04 -05:00
render_mode: RenderMode,
outer_version: Option<&str>,
outer_const_version: Option<&str>,
2019-12-22 17:42:04 -05:00
show_def_docs: bool,
) {
2015-01-31 12:20:46 -05:00
for trait_item in &t.items {
2020-12-29 19:33:48 +01:00
let n = trait_item.name;
if i.items.iter().any(|m| m.name == n) {
2016-02-28 12:11:13 +01:00
continue;
}
2021-01-15 15:36:15 +01:00
let did = i.trait_.as_ref().unwrap().def_id_full(cx.cache()).unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.provided_trait_methods);
2019-12-22 17:42:04 -05:00
doc_impl_item(
w,
cx,
trait_item,
parent,
2019-12-22 17:42:04 -05:00
assoc_link,
render_mode,
true,
outer_version,
outer_const_version,
2019-12-22 17:42:04 -05:00
None,
show_def_docs,
);
}
}
// If we've implemented a trait, then also emit documentation for all
2016-03-25 00:10:15 +01:00
// default items which weren't overridden in the implementation block.
// We don't emit documentation for default items if they appear in the
// Implementations on Foreign Types or Implementors sections.
if show_default_items {
if let Some(t) = trait_ {
2019-12-22 17:42:04 -05:00
render_default_items(
w,
cx,
&t.trait_,
2019-12-22 17:42:04 -05:00
&i.inner_impl(),
&i.impl_item,
2019-12-22 17:42:04 -05:00
render_mode,
outer_version,
outer_const_version,
2019-12-22 17:42:04 -05:00
show_def_docs,
);
}
}
w.write_str("</div>");
}
2021-01-12 23:36:04 +01:00
fn print_sidebar(cx: &Context<'_>, it: &clean::Item, buffer: &mut Buffer) {
2019-12-22 17:42:04 -05:00
let parentlen = cx.current.len() - if it.is_mod() { 1 } else { 0 };
if it.is_struct()
|| it.is_trait()
|| it.is_primitive()
|| it.is_union()
|| it.is_enum()
|| it.is_mod()
|| it.is_typedef()
{
write!(
buffer,
2020-10-16 00:52:49 +08:00
"<p class=\"location\">{}{}</p>",
match *it.kind {
clean::StructItem(..) => "Struct ",
clean::TraitItem(..) => "Trait ",
clean::PrimitiveItem(..) => "Primitive Type ",
clean::UnionItem(..) => "Union ",
clean::EnumItem(..) => "Enum ",
clean::TypedefItem(..) => "Type Definition ",
clean::ForeignTypeItem => "Foreign Type ",
2019-12-22 17:42:04 -05:00
clean::ModuleItem(..) =>
if it.is_crate() {
"Crate "
} else {
"Module "
},
_ => "",
},
2019-12-22 17:42:04 -05:00
it.name.as_ref().unwrap()
);
}
if it.is_crate() {
2021-01-12 23:36:04 +01:00
if let Some(ref version) = cx.cache.crate_version {
2019-12-22 17:42:04 -05:00
write!(
buffer,
2020-10-16 00:52:49 +08:00
"<div class=\"block version\">\
2020-08-31 13:16:50 +02:00
<p>Version {}</p>\
</div>",
Escape(version)
2019-12-22 17:42:04 -05:00
);
}
}
buffer.write_str("<div class=\"sidebar-elems\">");
if it.is_crate() {
2019-12-22 17:42:04 -05:00
write!(
buffer,
2020-10-16 00:52:49 +08:00
"<a id=\"all-types\" href=\"all.html\"><p>See all {}'s items</p></a>",
2019-12-22 17:42:04 -05:00
it.name.as_ref().expect("crates always have a name")
);
}
match *it.kind {
clean::StructItem(ref s) => sidebar_struct(cx, buffer, it, s),
clean::TraitItem(ref t) => sidebar_trait(cx, buffer, it, t),
clean::PrimitiveItem(_) => sidebar_primitive(cx, buffer, it),
clean::UnionItem(ref u) => sidebar_union(cx, buffer, it, u),
clean::EnumItem(ref e) => sidebar_enum(cx, buffer, it, e),
clean::TypedefItem(_, _) => sidebar_typedef(cx, buffer, it),
2019-09-13 15:22:00 -04:00
clean::ModuleItem(ref m) => sidebar_module(buffer, &m.items),
clean::ForeignTypeItem => sidebar_foreign_type(cx, buffer, it),
_ => (),
}
// The sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
buffer.write_str("<p class=\"location\">");
for (i, name) in cx.current.iter().take(parentlen).enumerate() {
if i > 0 {
buffer.write_str("::<wbr>");
}
2019-12-22 17:42:04 -05:00
write!(
buffer,
2020-10-16 00:52:49 +08:00
"<a href=\"{}index.html\">{}</a>",
2019-12-22 17:42:04 -05:00
&cx.root_path()[..(cx.current.len() - i - 1) * 3],
*name
);
}
buffer.write_str("</p>");
// Sidebar refers to the enclosing module, not this module.
let relpath = if it.is_mod() { "../" } else { "" };
2019-12-22 17:42:04 -05:00
write!(
buffer,
2021-01-18 12:03:53 +01:00
"<div id=\"sidebar-vars\" data-name=\"{name}\" data-ty=\"{ty}\" data-relpath=\"{path}\">\
</div>",
name = it.name.unwrap_or(kw::Empty),
2019-12-22 17:42:04 -05:00
ty = it.type_(),
path = relpath
);
if parentlen == 0 {
// There is no sidebar-items.js beyond the crate root path
// FIXME maybe dynamic crate loading can be merged here
} else {
2019-12-22 17:42:04 -05:00
write!(buffer, "<script defer src=\"{path}sidebar-items.js\"></script>", path = relpath);
}
// Closes sidebar-elems div.
buffer.write_str("</div>");
}
fn get_next_url(used_links: &mut FxHashSet<String>, url: String) -> String {
if used_links.insert(url.clone()) {
return url;
}
let mut add = 1;
while !used_links.insert(format!("{}-{}", url, add)) {
add += 1;
}
format!("{}-{}", url, add)
}
fn get_methods(
i: &clean::Impl,
for_deref: bool,
used_links: &mut FxHashSet<String>,
deref_mut: bool,
2021-01-12 23:36:04 +01:00
cache: &Cache,
) -> Vec<String> {
2019-12-22 17:42:04 -05:00
i.items
.iter()
.filter_map(|item| match item.name {
Some(ref name) if !name.is_empty() && item.is_method() => {
2021-01-12 23:36:04 +01:00
if !for_deref || should_render_item(item, deref_mut, cache) {
2019-12-22 17:42:04 -05:00
Some(format!(
"<a href=\"#{}\">{}</a>",
get_next_url(used_links, format!("method.{}", name)),
name
))
2017-10-28 01:11:01 +02:00
} else {
None
}
}
_ => None,
2019-12-22 17:42:04 -05:00
})
.collect::<Vec<_>>()
}
2017-10-27 23:09:10 +02:00
// The point is to url encode any potential character from a type with genericity.
fn small_url_encode(s: String) -> String {
let mut st = String::new();
let mut last_match = 0;
for (idx, c) in s.char_indices() {
let escaped = match c {
'<' => "%3C",
'>' => "%3E",
' ' => "%20",
'?' => "%3F",
'\'' => "%27",
'&' => "%26",
',' => "%2C",
':' => "%3A",
';' => "%3B",
'[' => "%5B",
']' => "%5D",
'"' => "%22",
_ => continue,
};
st += &s[last_match..idx];
st += escaped;
// NOTE: we only expect single byte characters here - which is fine as long as we
// only match single byte characters
last_match = idx + 1;
}
if last_match != 0 {
st += &s[last_match..];
st
} else {
s
}
2017-10-27 23:09:10 +02:00
}
fn sidebar_assoc_items(cx: &Context<'_>, out: &mut Buffer, it: &clean::Item) {
2021-01-12 23:36:04 +01:00
if let Some(v) = cx.cache.impls.get(&it.def_id) {
let mut used_links = FxHashSet::default();
{
2019-09-13 14:25:56 -04:00
let used_links_bor = &mut used_links;
2019-12-22 17:42:04 -05:00
let mut ret = v
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
2021-01-12 23:36:04 +01:00
.flat_map(move |i| {
get_methods(i.inner_impl(), false, used_links_bor, false, &cx.cache)
})
2019-12-22 17:42:04 -05:00
.collect::<Vec<_>>();
if !ret.is_empty() {
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
out.push_str(
"<a class=\"sidebar-title\" href=\"#implementations\">Methods</a>\
<div class=\"sidebar-links\">",
);
for line in ret {
out.push_str(&line);
}
out.push_str("</div>");
}
}
if v.iter().any(|i| i.inner_impl().trait_.is_some()) {
2019-12-22 17:42:04 -05:00
if let Some(impl_) = v
.iter()
.filter(|i| i.inner_impl().trait_.is_some())
2021-01-15 15:36:15 +01:00
.find(|i| i.inner_impl().trait_.def_id_full(cx.cache()) == cx.cache.deref_trait_did)
2019-12-22 17:42:04 -05:00
{
sidebar_deref_methods(cx, out, impl_, v);
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
let format_impls = |impls: Vec<&Impl>| {
let mut links = FxHashSet::default();
2019-12-22 17:42:04 -05:00
let mut ret = impls
.iter()
.filter_map(|it| {
if let Some(ref i) = it.inner_impl().trait_ {
2021-01-12 23:36:04 +01:00
let i_display = format!("{:#}", i.print(cx.cache()));
2019-02-04 12:38:26 +01:00
let out = Escape(&i_display);
let encoded = small_url_encode(format!("{:#}", i.print(cx.cache())));
2019-12-22 17:42:04 -05:00
let generated = format!(
"<a href=\"#impl-{}\">{}{}</a>",
encoded,
if it.inner_impl().negative_polarity { "!" } else { "" },
2019-12-22 17:42:04 -05:00
out
);
if links.insert(generated.clone()) { Some(generated) } else { None }
2019-02-04 12:38:26 +01:00
} else {
None
}
})
.collect::<Vec<String>>();
ret.sort();
ret
};
let write_sidebar_links = |out: &mut Buffer, links: Vec<String>| {
out.push_str("<div class=\"sidebar-links\">");
for link in links {
out.push_str(&link);
}
out.push_str("</div>");
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
};
2019-12-22 17:42:04 -05:00
let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) =
v.iter().partition::<Vec<_>, _>(|i| i.inner_impl().synthetic);
let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) = concrete
.into_iter()
.partition::<Vec<_>, _>(|i| i.inner_impl().blanket_impl.is_some());
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
let concrete_format = format_impls(concrete);
let synthetic_format = format_impls(synthetic);
let blanket_format = format_impls(blanket_impl);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
if !concrete_format.is_empty() {
2019-12-22 17:42:04 -05:00
out.push_str(
"<a class=\"sidebar-title\" href=\"#trait-implementations\">\
Trait Implementations</a>",
2019-12-22 17:42:04 -05:00
);
write_sidebar_links(out, concrete_format);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
}
if !synthetic_format.is_empty() {
2019-12-22 17:42:04 -05:00
out.push_str(
"<a class=\"sidebar-title\" href=\"#synthetic-implementations\">\
Auto Trait Implementations</a>",
2019-12-22 17:42:04 -05:00
);
write_sidebar_links(out, synthetic_format);
}
if !blanket_format.is_empty() {
2019-12-22 17:42:04 -05:00
out.push_str(
"<a class=\"sidebar-title\" href=\"#blanket-implementations\">\
Blanket Implementations</a>",
2019-12-22 17:42:04 -05:00
);
write_sidebar_links(out, blanket_format);
}
}
}
}
fn sidebar_deref_methods(cx: &Context<'_>, out: &mut Buffer, impl_: &Impl, v: &Vec<Impl>) {
2021-01-12 23:36:04 +01:00
let c = cx.cache();
debug!("found Deref: {:?}", impl_);
if let Some((target, real_target)) =
impl_.inner_impl().items.iter().find_map(|item| match *item.kind {
clean::TypedefItem(ref t, true) => Some(match *t {
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
}),
_ => None,
})
{
debug!("found target, real_target: {:?} {:?}", target, real_target);
if let Some(did) = target.def_id_full(cx.cache()) {
if let Some(type_did) = impl_.inner_impl().for_.def_id_full(cx.cache()) {
// `impl Deref<Target = S> for S`
if did == type_did {
// Avoid infinite cycles
return;
}
}
}
let deref_mut = v
.iter()
.filter(|i| i.inner_impl().trait_.is_some())
2021-01-15 15:36:15 +01:00
.any(|i| i.inner_impl().trait_.def_id_full(cx.cache()) == c.deref_mut_trait_did);
let inner_impl = target
2021-01-15 15:36:15 +01:00
.def_id_full(cx.cache())
.or_else(|| {
target.primitive_type().and_then(|prim| c.primitive_locations.get(&prim).cloned())
})
.and_then(|did| c.impls.get(&did));
if let Some(impls) = inner_impl {
debug!("found inner_impl: {:?}", impls);
let mut used_links = FxHashSet::default();
let mut ret = impls
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
2021-01-12 23:36:04 +01:00
.flat_map(|i| get_methods(i.inner_impl(), true, &mut used_links, deref_mut, c))
.collect::<Vec<_>>();
if !ret.is_empty() {
let deref_id_map = cx.deref_id_map.borrow();
let id = deref_id_map
2021-01-15 15:36:15 +01:00
.get(&real_target.def_id_full(cx.cache()).unwrap())
.expect("Deref section without derived id");
write!(
out,
2021-01-03 17:32:48 +00:00
"<a class=\"sidebar-title\" href=\"#{}\">Methods from {}&lt;Target={}&gt;</a>",
id,
2021-01-12 23:36:04 +01:00
Escape(&format!("{:#}", impl_.inner_impl().trait_.as_ref().unwrap().print(c))),
Escape(&format!("{:#}", real_target.print(c))),
);
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
out.push_str("<div class=\"sidebar-links\">");
for link in ret {
out.push_str(&link);
}
out.push_str("</div>");
}
}
// Recurse into any further impls that might exist for `target`
2021-01-15 15:36:15 +01:00
if let Some(target_did) = target.def_id_full(cx.cache()) {
if let Some(target_impls) = c.impls.get(&target_did) {
if let Some(target_deref_impl) = target_impls
.iter()
.filter(|i| i.inner_impl().trait_.is_some())
2021-01-15 15:36:15 +01:00
.find(|i| i.inner_impl().trait_.def_id_full(cx.cache()) == c.deref_trait_did)
{
sidebar_deref_methods(cx, out, target_deref_impl, target_impls);
}
}
}
}
}
fn sidebar_struct(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, s: &clean::Struct) {
let mut sidebar = Buffer::new();
2017-11-04 20:45:12 +01:00
let fields = get_struct_fields_name(&s.fields);
2017-11-04 20:45:12 +01:00
if !fields.is_empty() {
if let CtorKind::Fictive = s.struct_type {
sidebar.push_str(
2019-12-22 17:42:04 -05:00
"<a class=\"sidebar-title\" href=\"#fields\">Fields</a>\
<div class=\"sidebar-links\">",
);
for field in fields {
sidebar.push_str(&field);
}
sidebar.push_str("</div>");
}
}
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<div class=\"block items\">{}</div>", sidebar.into_inner());
}
}
2021-01-12 23:36:04 +01:00
fn get_id_for_impl_on_foreign_type(
for_: &clean::Type,
trait_: &clean::Type,
cache: &Cache,
) -> String {
small_url_encode(format!("impl-{:#}-for-{:#}", trait_.print(cache), for_.print(cache)))
}
2021-01-12 23:36:04 +01:00
fn extract_for_impl_name(item: &clean::Item, cache: &Cache) -> Option<(String, String)> {
match *item.kind {
clean::ItemKind::ImplItem(ref i) => {
2017-11-04 20:45:12 +01:00
if let Some(ref trait_) = i.trait_ {
Some((
2021-01-12 23:36:04 +01:00
format!("{:#}", i.for_.print(cache)),
get_id_for_impl_on_foreign_type(&i.for_, trait_, cache),
))
2017-11-04 20:45:12 +01:00
} else {
None
}
2019-12-22 17:42:04 -05:00
}
2017-11-04 20:45:12 +01:00
_ => None,
}
}
fn sidebar_trait(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, t: &clean::Trait) {
buf.write_str("<div class=\"block items\">");
fn print_sidebar_section(
out: &mut Buffer,
items: &[clean::Item],
before: &str,
filter: impl Fn(&clean::Item) -> bool,
write: impl Fn(&mut Buffer, &Symbol),
after: &str,
) {
let mut items = items
.iter()
.filter_map(|m| match m.name {
Some(ref name) if filter(m) => Some(name),
_ => None,
})
.collect::<Vec<_>>();
if !items.is_empty() {
items.sort();
out.push_str(before);
for item in items.into_iter() {
write(out, item);
2019-12-22 17:42:04 -05:00
}
out.push_str(after);
}
}
print_sidebar_section(
buf,
&t.items,
"<a class=\"sidebar-title\" href=\"#associated-types\">\
Associated Types</a><div class=\"sidebar-links\">",
|m| m.is_associated_type(),
|out, sym| write!(out, "<a href=\"#associatedtype.{0}\">{0}</a>", sym),
"</div>",
);
print_sidebar_section(
buf,
&t.items,
"<a class=\"sidebar-title\" href=\"#associated-const\">\
Associated Constants</a><div class=\"sidebar-links\">",
|m| m.is_associated_const(),
|out, sym| write!(out, "<a href=\"#associatedconstant.{0}\">{0}</a>", sym),
"</div>",
);
print_sidebar_section(
buf,
&t.items,
"<a class=\"sidebar-title\" href=\"#required-methods\">\
Required Methods</a><div class=\"sidebar-links\">",
|m| m.is_ty_method(),
|out, sym| write!(out, "<a href=\"#tymethod.{0}\">{0}</a>", sym),
"</div>",
);
print_sidebar_section(
buf,
&t.items,
"<a class=\"sidebar-title\" href=\"#provided-methods\">\
Provided Methods</a><div class=\"sidebar-links\">",
|m| m.is_method(),
|out, sym| write!(out, "<a href=\"#method.{0}\">{0}</a>", sym),
"</div>",
);
2021-01-12 23:36:04 +01:00
if let Some(implementors) = cx.cache.implementors.get(&it.def_id) {
2019-12-22 17:42:04 -05:00
let mut res = implementors
.iter()
2021-01-12 23:36:04 +01:00
.filter(|i| {
i.inner_impl()
.for_
2021-01-15 15:36:15 +01:00
.def_id_full(cx.cache())
2021-01-12 23:36:04 +01:00
.map_or(false, |d| !cx.cache.paths.contains_key(&d))
})
.filter_map(|i| extract_for_impl_name(&i.impl_item, cx.cache()))
.collect::<Vec<_>>();
2017-11-04 20:45:12 +01:00
if !res.is_empty() {
2019-02-04 12:38:26 +01:00
res.sort();
buf.push_str(
2019-12-22 17:42:04 -05:00
"<a class=\"sidebar-title\" href=\"#foreign-impls\">\
2020-08-31 13:16:50 +02:00
Implementations on Foreign Types</a>\
<div class=\"sidebar-links\">",
);
for (name, id) in res.into_iter() {
write!(buf, "<a href=\"#{}\">{}</a>", id, Escape(&name));
}
buf.push_str("</div>");
2017-11-04 20:45:12 +01:00
}
}
sidebar_assoc_items(cx, buf, it);
buf.push_str("<a class=\"sidebar-title\" href=\"#implementors\">Implementors</a>");
if t.is_auto {
buf.push_str(
2019-12-22 17:42:04 -05:00
"<a class=\"sidebar-title\" \
href=\"#synthetic-implementors\">Auto Implementors</a>",
2019-12-22 17:42:04 -05:00
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
}
buf.push_str("</div>")
}
fn sidebar_primitive(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item) {
let mut sidebar = Buffer::new();
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<div class=\"block items\">{}</div>", sidebar.into_inner());
}
}
fn sidebar_typedef(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item) {
let mut sidebar = Buffer::new();
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<div class=\"block items\">{}</div>", sidebar.into_inner());
}
}
fn get_struct_fields_name(fields: &[clean::Item]) -> Vec<String> {
let mut fields = fields
2019-12-22 17:42:04 -05:00
.iter()
.filter(|f| matches!(*f.kind, clean::StructFieldItem(..)))
.filter_map(|f| {
f.name.map(|name| format!("<a href=\"#structfield.{name}\">{name}</a>", name = name))
2019-12-22 17:42:04 -05:00
})
.collect::<Vec<_>>();
fields.sort();
fields
2017-11-04 20:45:12 +01:00
}
fn sidebar_union(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, u: &clean::Union) {
let mut sidebar = Buffer::new();
2017-11-04 20:45:12 +01:00
let fields = get_struct_fields_name(&u.fields);
2017-11-04 20:45:12 +01:00
if !fields.is_empty() {
sidebar.push_str(
2019-12-22 17:42:04 -05:00
"<a class=\"sidebar-title\" href=\"#fields\">Fields</a>\
<div class=\"sidebar-links\">",
);
for field in fields {
sidebar.push_str(&field);
}
sidebar.push_str("</div>");
}
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<div class=\"block items\">{}</div>", sidebar.into_inner());
}
}
fn sidebar_enum(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, e: &clean::Enum) {
let mut sidebar = Buffer::new();
let mut variants = e
2019-12-22 17:42:04 -05:00
.variants
.iter()
.filter_map(|v| match v.name {
Some(ref name) => Some(format!("<a href=\"#variant.{name}\">{name}</a>", name = name)),
2019-12-22 17:42:04 -05:00
_ => None,
})
.collect::<Vec<_>>();
2017-11-04 20:45:12 +01:00
if !variants.is_empty() {
variants.sort_unstable();
2019-12-22 17:42:04 -05:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#variants\">Variants</a>\
<div class=\"sidebar-links\">{}</div>",
variants.join(""),
2019-12-22 17:42:04 -05:00
));
}
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<div class=\"block items\">{}</div>", sidebar.into_inner());
}
}
2018-05-28 21:30:01 +02:00
fn item_ty_to_strs(ty: &ItemType) -> (&'static str, &'static str) {
match *ty {
2019-12-22 17:42:04 -05:00
ItemType::ExternCrate | ItemType::Import => ("reexports", "Re-exports"),
ItemType::Module => ("modules", "Modules"),
ItemType::Struct => ("structs", "Structs"),
ItemType::Union => ("unions", "Unions"),
ItemType::Enum => ("enums", "Enums"),
ItemType::Function => ("functions", "Functions"),
ItemType::Typedef => ("types", "Type Definitions"),
ItemType::Static => ("statics", "Statics"),
ItemType::Constant => ("constants", "Constants"),
ItemType::Trait => ("traits", "Traits"),
ItemType::Impl => ("impls", "Implementations"),
ItemType::TyMethod => ("tymethods", "Type Methods"),
ItemType::Method => ("methods", "Methods"),
ItemType::StructField => ("fields", "Struct Fields"),
ItemType::Variant => ("variants", "Variants"),
ItemType::Macro => ("macros", "Macros"),
ItemType::Primitive => ("primitives", "Primitive Types"),
ItemType::AssocType => ("associated-types", "Associated Types"),
ItemType::AssocConst => ("associated-consts", "Associated Constants"),
ItemType::ForeignType => ("foreign-types", "Foreign Types"),
ItemType::Keyword => ("keywords", "Keywords"),
ItemType::OpaqueTy => ("opaque-types", "Opaque Types"),
ItemType::ProcAttribute => ("attributes", "Attribute Macros"),
ItemType::ProcDerive => ("derives", "Derive Macros"),
ItemType::TraitAlias => ("trait-aliases", "Trait aliases"),
2018-05-28 21:30:01 +02:00
}
}
2019-09-13 15:22:00 -04:00
fn sidebar_module(buf: &mut Buffer, items: &[clean::Item]) {
let mut sidebar = String::new();
if items.iter().any(|it| {
it.type_() == ItemType::ExternCrate || (it.type_() == ItemType::Import && !it.is_stripped())
}) {
sidebar.push_str("<li><a href=\"#reexports\">Re-exports</a></li>");
}
// ordering taken from item_module, reorder, where it prioritized elements in a certain order
// to print its headings
2019-12-22 17:42:04 -05:00
for &myty in &[
ItemType::Primitive,
ItemType::Module,
ItemType::Macro,
ItemType::Struct,
ItemType::Enum,
ItemType::Constant,
ItemType::Static,
ItemType::Trait,
ItemType::Function,
ItemType::Typedef,
ItemType::Union,
ItemType::Impl,
ItemType::TyMethod,
ItemType::Method,
ItemType::StructField,
ItemType::Variant,
ItemType::AssocType,
ItemType::AssocConst,
ItemType::ForeignType,
ItemType::Keyword,
] {
if items.iter().any(|it| !it.is_stripped() && it.type_() == myty) {
2018-05-28 21:30:01 +02:00
let (short, name) = item_ty_to_strs(&myty);
2019-12-22 17:42:04 -05:00
sidebar.push_str(&format!(
"<li><a href=\"#{id}\">{name}</a></li>",
id = short,
name = name
));
}
}
if !sidebar.is_empty() {
2019-08-31 09:07:29 -04:00
write!(buf, "<div class=\"block items\"><ul>{}</ul></div>", sidebar);
}
}
fn sidebar_foreign_type(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item) {
let mut sidebar = Buffer::new();
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<div class=\"block items\">{}</div>", sidebar.into_inner());
}
}
crate const BASIC_KEYWORDS: &str = "rust, rustlang, rust-lang";
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
/// Returns a list of all paths used in the type.
/// This is used to help deduplicate imported impls
/// for reexported types. If any of the contained
/// types are re-exported, we don't use the corresponding
/// entry from the js file, as inlining will have already
/// picked up the impl
2021-01-12 23:36:04 +01:00
fn collect_paths_for_type(first_ty: clean::Type, cache: &Cache) -> Vec<String> {
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
let mut out = Vec::new();
let mut visited = FxHashSet::default();
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
let mut work = VecDeque::new();
work.push_back(first_ty);
while let Some(ty) = work.pop_front() {
if !visited.insert(ty.clone()) {
continue;
}
match ty {
clean::Type::ResolvedPath { did, .. } => {
let get_extern = || cache.external_paths.get(&did).map(|s| s.0.clone());
let fqp = cache.exact_paths.get(&did).cloned().or_else(get_extern);
if let Some(path) = fqp {
out.push(path.join("::"));
}
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
clean::Type::Tuple(tys) => {
work.extend(tys.into_iter());
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
clean::Type::Slice(ty) => {
work.push_back(*ty);
}
clean::Type::Array(ty, _) => {
work.push_back(*ty);
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
clean::Type::RawPointer(_, ty) => {
work.push_back(*ty);
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
clean::Type::BorrowedRef { type_, .. } => {
work.push_back(*type_);
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
clean::Type::QPath { self_type, trait_, .. } => {
work.push_back(*self_type);
work.push_back(*trait_);
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
_ => {}
}
2019-12-22 17:42:04 -05:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
out
}