rust/compiler/rustc_middle/src/hir/map.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1387 lines
53 KiB
Rust
Raw Normal View History

use rustc_abi::ExternAbi;
2024-02-24 15:22:42 -05:00
use rustc_ast::visit::{VisitorResult, walk_list};
2021-02-28 18:58:50 +01:00
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
2018-08-03 12:22:22 -06:00
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::{DynSend, DynSync, par_for_each_in, try_par_for_each_in};
use rustc_hir::def::{DefKind, Res};
2023-04-26 20:53:51 +02:00
use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId, LocalModDefId};
use rustc_hir::definitions::{DefKey, DefPath, DefPathHash};
use rustc_hir::intravisit::Visitor;
use rustc_hir::*;
2024-10-17 01:14:01 +02:00
use rustc_hir_pretty as pprust_hir;
use rustc_span::def_id::StableCrateId;
use rustc_span::{ErrorGuaranteed, Ident, Span, Symbol, kw, sym, with_metavar_spans};
use crate::hir::{ModuleItems, nested_filter};
use crate::middle::debugger_visualizer::DebuggerVisualizerFile;
2023-03-13 22:22:59 +00:00
use crate::query::LocalCrate;
use crate::ty::TyCtxt;
2015-07-31 00:04:06 -07:00
// FIXME: the structure was necessary in the past but now it
// only serves as "namespace" for HIR-related methods, and can be
// removed if all the methods are reasonably renamed and moved to tcx
// (https://github.com/rust-lang/rust/pull/118256#issuecomment-1826442834).
2020-02-09 15:32:00 +01:00
#[derive(Copy, Clone)]
2017-01-26 03:21:50 +02:00
pub struct Map<'hir> {
2020-02-07 13:13:35 +01:00
pub(super) tcx: TyCtxt<'hir>,
}
/// An iterator that walks up the ancestor tree of a given `HirId`.
/// Constructed using `tcx.hir_parent_iter(hir_id)`.
struct ParentHirIterator<'tcx> {
current_id: HirId,
tcx: TyCtxt<'tcx>,
// Cache the current value of `hir_owner_nodes` to avoid repeatedly calling the same query for
// the same owner, which will uselessly record many times the same query dependency.
current_owner_nodes: Option<&'tcx OwnerNodes<'tcx>>,
}
impl<'tcx> ParentHirIterator<'tcx> {
fn new(tcx: TyCtxt<'tcx>, current_id: HirId) -> ParentHirIterator<'tcx> {
ParentHirIterator { current_id, tcx, current_owner_nodes: None }
}
}
impl<'tcx> Iterator for ParentHirIterator<'tcx> {
type Item = HirId;
fn next(&mut self) -> Option<Self::Item> {
if self.current_id == CRATE_HIR_ID {
return None;
}
let HirId { owner, local_id } = self.current_id;
let parent_id = if local_id == ItemLocalId::ZERO {
// We go from an owner to its parent, so clear the cache.
self.current_owner_nodes = None;
self.tcx.hir_owner_parent(owner)
} else {
let owner_nodes =
self.current_owner_nodes.get_or_insert_with(|| self.tcx.hir_owner_nodes(owner));
let parent_local_id = owner_nodes.nodes[local_id].parent;
// HIR indexing should have checked that.
debug_assert_ne!(parent_local_id, local_id);
HirId { owner, local_id: parent_local_id }
};
debug_assert_ne!(parent_id, self.current_id);
2023-04-09 22:35:49 +02:00
self.current_id = parent_id;
Some(parent_id)
}
}
/// An iterator that walks up the ancestor tree of a given `HirId`.
/// Constructed using `tcx.hir_parent_owner_iter(hir_id)`.
pub struct ParentOwnerIterator<'tcx> {
current_id: HirId,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> Iterator for ParentOwnerIterator<'tcx> {
type Item = (OwnerId, OwnerNode<'tcx>);
fn next(&mut self) -> Option<Self::Item> {
if self.current_id.local_id.index() != 0 {
self.current_id.local_id = ItemLocalId::ZERO;
let node = self.tcx.hir_owner_node(self.current_id.owner);
return Some((self.current_id.owner, node));
}
if self.current_id == CRATE_HIR_ID {
return None;
}
let parent_id = self.tcx.hir_def_key(self.current_id.owner.def_id).parent;
let parent_id = parent_id.map_or(CRATE_OWNER_ID, |local_def_index| {
let def_id = LocalDefId { local_def_index };
self.tcx.local_def_id_to_hir_id(def_id).owner
});
self.current_id = HirId::make_owner(parent_id.def_id);
let node = self.tcx.hir_owner_node(self.current_id.owner);
Some((self.current_id.owner, node))
}
}
impl<'tcx> TyCtxt<'tcx> {
2024-01-15 22:31:02 +00:00
#[inline]
fn expect_hir_owner_nodes(self, def_id: LocalDefId) -> &'tcx OwnerNodes<'tcx> {
self.opt_hir_owner_nodes(def_id)
.unwrap_or_else(|| span_bug!(self.def_span(def_id), "{def_id:?} is not an owner"))
}
#[inline]
pub fn hir_owner_nodes(self, owner_id: OwnerId) -> &'tcx OwnerNodes<'tcx> {
self.expect_hir_owner_nodes(owner_id.def_id)
}
#[inline]
fn opt_hir_owner_node(self, def_id: LocalDefId) -> Option<OwnerNode<'tcx>> {
self.opt_hir_owner_nodes(def_id).map(|nodes| nodes.node())
}
#[inline]
pub fn expect_hir_owner_node(self, def_id: LocalDefId) -> OwnerNode<'tcx> {
self.expect_hir_owner_nodes(def_id).node()
}
#[inline]
pub fn hir_owner_node(self, owner_id: OwnerId) -> OwnerNode<'tcx> {
self.hir_owner_nodes(owner_id).node()
2024-01-15 22:31:02 +00:00
}
/// Retrieves the `hir::Node` corresponding to `id`.
pub fn hir_node(self, id: HirId) -> Node<'tcx> {
self.hir_owner_nodes(id.owner).nodes[id.local_id].node
}
/// Retrieves the `hir::Node` corresponding to `id`.
#[inline]
pub fn hir_node_by_def_id(self, id: LocalDefId) -> Node<'tcx> {
self.hir_node(self.local_def_id_to_hir_id(id))
}
/// Returns `HirId` of the parent HIR node of node with this `hir_id`.
/// Returns the same `hir_id` if and only if `hir_id == CRATE_HIR_ID`.
///
/// If calling repeatedly and iterating over parents, prefer [`TyCtxt::hir_parent_iter`].
pub fn parent_hir_id(self, hir_id: HirId) -> HirId {
let HirId { owner, local_id } = hir_id;
if local_id == ItemLocalId::ZERO {
self.hir_owner_parent(owner)
} else {
let parent_local_id = self.hir_owner_nodes(owner).nodes[local_id].parent;
// HIR indexing should have checked that.
debug_assert_ne!(parent_local_id, local_id);
HirId { owner, local_id: parent_local_id }
}
}
/// Returns parent HIR node of node with this `hir_id`.
/// Returns HIR node of the same `hir_id` if and only if `hir_id == CRATE_HIR_ID`.
pub fn parent_hir_node(self, hir_id: HirId) -> Node<'tcx> {
self.hir_node(self.parent_hir_id(hir_id))
}
2022-07-30 22:44:49 +02:00
#[inline]
pub fn hir_root_module(self) -> &'tcx Mod<'tcx> {
match self.hir_owner_node(CRATE_OWNER_ID) {
OwnerNode::Crate(item) => item,
_ => bug!(),
}
}
2022-07-30 22:44:49 +02:00
#[inline]
pub fn hir_free_items(self) -> impl Iterator<Item = ItemId> {
self.hir_crate_items(()).free_items.iter().copied()
}
2022-07-30 22:44:49 +02:00
#[inline]
pub fn hir_module_free_items(self, module: LocalModDefId) -> impl Iterator<Item = ItemId> {
self.hir_module_items(module).free_items()
}
pub fn hir_def_key(self, def_id: LocalDefId) -> DefKey {
// Accessing the DefKey is ok, since it is part of DefPathHash.
self.definitions_untracked().def_key(def_id)
}
pub fn hir_def_path(self, def_id: LocalDefId) -> DefPath {
// Accessing the DefPath is ok, since it is part of DefPathHash.
self.definitions_untracked().def_path(def_id)
}
#[inline]
pub fn hir_def_path_hash(self, def_id: LocalDefId) -> DefPathHash {
// Accessing the DefPathHash is ok, it is incr. comp. stable.
self.definitions_untracked().def_path_hash(def_id)
}
pub fn hir_get_if_local(self, id: DefId) -> Option<Node<'tcx>> {
id.as_local().map(|id| self.hir_node_by_def_id(id))
}
pub fn hir_get_generics(self, id: LocalDefId) -> Option<&'tcx Generics<'tcx>> {
self.opt_hir_owner_node(id)?.generics()
2020-03-16 19:17:40 +01:00
}
pub fn hir_item(self, id: ItemId) -> &'tcx Item<'tcx> {
self.hir_owner_node(id.owner_id).expect_item()
2020-01-07 15:51:38 +01:00
}
pub fn hir_trait_item(self, id: TraitItemId) -> &'tcx TraitItem<'tcx> {
self.hir_owner_node(id.owner_id).expect_trait_item()
}
pub fn hir_impl_item(self, id: ImplItemId) -> &'tcx ImplItem<'tcx> {
self.hir_owner_node(id.owner_id).expect_impl_item()
}
pub fn hir_foreign_item(self, id: ForeignItemId) -> &'tcx ForeignItem<'tcx> {
self.hir_owner_node(id.owner_id).expect_foreign_item()
2020-11-11 21:57:54 +01:00
}
pub fn hir_body(self, id: BodyId) -> &'tcx Body<'tcx> {
self.hir_owner_nodes(id.hir_id.owner).bodies[&id.hir_id.local_id]
}
2022-10-12 14:16:31 +00:00
#[track_caller]
pub fn hir_fn_decl_by_hir_id(self, hir_id: HirId) -> Option<&'tcx FnDecl<'tcx>> {
self.hir_node(hir_id).fn_decl()
2019-02-04 11:09:32 +01:00
}
2022-10-12 14:16:31 +00:00
#[track_caller]
pub fn hir_fn_sig_by_hir_id(self, hir_id: HirId) -> Option<&'tcx FnSig<'tcx>> {
self.hir_node(hir_id).fn_sig()
2019-11-06 11:43:33 -08:00
}
2022-10-12 14:16:31 +00:00
#[track_caller]
pub fn hir_enclosing_body_owner(self, hir_id: HirId) -> LocalDefId {
for (_, node) in self.hir_parent_iter(hir_id) {
if let Some((def_id, _)) = node.associated_body() {
return def_id;
2020-05-20 14:57:16 +02:00
}
}
bug!("no `hir_enclosing_body_owner` for hir_id `{}`", hir_id);
2020-05-20 14:57:16 +02:00
}
/// Returns the `HirId` that corresponds to the definition of
/// which this is the body of, i.e., a `fn`, `const` or `static`
/// item (possibly associated), a closure, or a `hir::AnonConst`.
pub fn hir_body_owner(self, BodyId { hir_id }: BodyId) -> HirId {
let parent = self.parent_hir_id(hir_id);
assert_eq!(self.hir_node(parent).body_id().unwrap().hir_id, hir_id, "{hir_id:?}");
2019-06-14 12:28:47 +02:00
parent
}
pub fn hir_body_owner_def_id(self, BodyId { hir_id }: BodyId) -> LocalDefId {
self.parent_hir_node(hir_id).associated_body().unwrap().0
}
/// Given a `LocalDefId`, returns the `BodyId` associated with it,
/// if the node is a body owner, otherwise returns `None`.
pub fn hir_maybe_body_owned_by(self, id: LocalDefId) -> Option<&'tcx Body<'tcx>> {
Some(self.hir_body(self.hir_node_by_def_id(id).body_id()?))
2017-04-04 12:06:35 -04:00
}
/// Given a body owner's id, returns the `BodyId` associated with it.
2022-10-12 14:16:31 +00:00
#[track_caller]
pub fn hir_body_owned_by(self, id: LocalDefId) -> &'tcx Body<'tcx> {
self.hir_maybe_body_owned_by(id).unwrap_or_else(|| {
let hir_id = self.local_def_id_to_hir_id(id);
span_bug!(
self.hir().span(hir_id),
"body_owned_by: {} has no associated body",
self.hir_id_to_string(hir_id)
);
})
}
pub fn hir_body_param_names(self, id: BodyId) -> impl Iterator<Item = Ident> {
self.hir_body(id).params.iter().map(|arg| match arg.pat.kind {
PatKind::Binding(_, _, ident, _) => ident,
_ => Ident::empty(),
})
}
2020-05-07 10:22:35 -07:00
/// Returns the `BodyOwnerKind` of this `LocalDefId`.
///
/// Panics if `LocalDefId` does not have an associated body.
pub fn hir_body_owner_kind(self, def_id: impl Into<DefId>) -> BodyOwnerKind {
2023-12-10 13:06:18 +00:00
let def_id = def_id.into();
match self.def_kind(def_id) {
DefKind::Const | DefKind::AssocConst | DefKind::AnonConst => {
BodyOwnerKind::Const { inline: false }
}
DefKind::InlineConst => BodyOwnerKind::Const { inline: true },
DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn => BodyOwnerKind::Fn,
DefKind::Closure | DefKind::SyntheticCoroutineBody => BodyOwnerKind::Closure,
DefKind::Static { safety: _, mutability, nested: false } => {
BodyOwnerKind::Static(mutability)
}
DefKind::GlobalAsm => BodyOwnerKind::GlobalAsm,
dk => bug!("{:?} is not a body node: {:?}", def_id, dk),
}
}
2020-05-07 10:22:35 -07:00
/// Returns the `ConstContext` of the body associated with this `LocalDefId`.
///
/// Panics if `LocalDefId` does not have an associated body.
///
/// This should only be used for determining the context of a body, a return
/// value of `Some` does not always suggest that the owner of the body is `const`,
/// just that it has to be checked as if it were.
pub fn hir_body_const_context(self, def_id: impl Into<DefId>) -> Option<ConstContext> {
2023-12-10 13:06:18 +00:00
let def_id = def_id.into();
let ccx = match self.hir_body_owner_kind(def_id) {
BodyOwnerKind::Const { inline } => ConstContext::Const { inline },
2024-03-11 17:33:57 +00:00
BodyOwnerKind::Static(mutability) => ConstContext::Static(mutability),
2020-05-07 10:22:35 -07:00
BodyOwnerKind::Fn if self.is_constructor(def_id) => return None,
BodyOwnerKind::Fn | BodyOwnerKind::Closure if self.is_const_fn(def_id) => {
ConstContext::ConstFn
}
BodyOwnerKind::Fn if self.is_const_default_method(def_id) => ConstContext::ConstFn,
BodyOwnerKind::Fn | BodyOwnerKind::Closure | BodyOwnerKind::GlobalAsm => return None,
2020-05-07 10:22:35 -07:00
};
Some(ccx)
}
2021-09-12 11:33:16 +02:00
/// Returns an iterator of the `DefId`s for all body-owners in this
/// crate. If you would prefer to iterate over the bodies
/// themselves, you can do `self.hir().krate().body_ids.iter()`.
2022-07-30 22:44:49 +02:00
#[inline]
pub fn hir_body_owners(self) -> impl Iterator<Item = LocalDefId> {
self.hir_crate_items(()).body_owners.iter().copied()
2021-09-12 11:33:16 +02:00
}
2022-07-30 22:44:49 +02:00
#[inline]
pub fn par_hir_body_owners(self, f: impl Fn(LocalDefId) + DynSend + DynSync) {
par_for_each_in(&self.hir_crate_items(()).body_owners[..], |&def_id| f(def_id));
2021-09-12 11:33:16 +02:00
}
pub fn hir_ty_param_owner(self, def_id: LocalDefId) -> LocalDefId {
let def_kind = self.def_kind(def_id);
match def_kind {
DefKind::Trait | DefKind::TraitAlias => def_id,
DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => {
self.local_parent(def_id)
}
_ => bug!("ty_param_owner: {:?} is a {:?} not a type parameter", def_id, def_kind),
}
}
pub fn hir_ty_param_name(self, def_id: LocalDefId) -> Symbol {
let def_kind = self.def_kind(def_id);
match def_kind {
DefKind::Trait | DefKind::TraitAlias => kw::SelfUpper,
DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => {
self.item_name(def_id.to_def_id())
}
_ => bug!("ty_param_name: {:?} is a {:?} not a type parameter", def_id, def_kind),
}
}
pub fn hir_trait_impls(self, trait_did: DefId) -> &'tcx [LocalDefId] {
self.all_local_trait_impls(()).get(&trait_did).map_or(&[], |xs| &xs[..])
}
2019-02-08 14:53:55 +01:00
/// Gets the attributes on the crate. This is preferable to
/// invoking `krate.attrs` because it registers a tighter
/// dep-graph access.
pub fn hir_krate_attrs(self) -> &'tcx [Attribute] {
self.hir_attrs(CRATE_HIR_ID)
}
pub fn hir_rustc_coherence_is_core(self) -> bool {
self.hir_krate_attrs().iter().any(|attr| attr.has_name(sym::rustc_coherence_is_core))
}
pub fn hir_get_module(self, module: LocalModDefId) -> (&'tcx Mod<'tcx>, Span, HirId) {
2023-04-26 20:53:51 +02:00
let hir_id = HirId::make_owner(module.to_local_def_id());
match self.hir_owner_node(hir_id.owner) {
OwnerNode::Item(&Item { span, kind: ItemKind::Mod(m), .. }) => (m, span, hir_id),
OwnerNode::Crate(item) => (item, item.spans.inner_span, hir_id),
node => panic!("not a module: {node:?}"),
}
}
/// Walks the contents of the local crate. See also `visit_all_item_likes_in_crate`.
pub fn hir_walk_toplevel_module<V>(self, visitor: &mut V) -> V::Result
where
V: Visitor<'tcx>,
{
let (top_mod, span, hir_id) = self.hir_get_module(LocalModDefId::CRATE_DEF_ID);
visitor.visit_mod(top_mod, span, hir_id)
2021-08-26 18:42:08 +02:00
}
/// Walks the attributes in a crate.
pub fn hir_walk_attributes<V>(self, visitor: &mut V) -> V::Result
where
V: Visitor<'tcx>,
{
let krate = self.hir_crate(());
for info in krate.owners.iter() {
if let MaybeOwner::Owner(info) = info {
for attrs in info.attrs.map.values() {
walk_list!(visitor, visit_attribute, *attrs);
2021-07-16 14:42:26 +02:00
}
2021-08-26 18:42:08 +02:00
}
}
V::Result::output()
2021-08-26 18:42:08 +02:00
}
/// Visits all item-likes in the crate in some deterministic (but unspecified) order. If you
/// need to process every item-like, and don't care about visiting nested items in a particular
/// order then this method is the best choice. If you do care about this nesting, you should
/// use the `tcx.hir_walk_toplevel_module`.
///
/// Note that this function will access HIR for all the item-likes in the crate. If you only
/// need to access some of them, it is usually better to manually loop on the iterators
/// provided by `tcx.hir_crate_items(())`.
///
/// Please see the notes in `intravisit.rs` for more information.
pub fn hir_visit_all_item_likes_in_crate<V>(self, visitor: &mut V) -> V::Result
where
V: Visitor<'tcx>,
{
let krate = self.hir_crate_items(());
walk_list!(visitor, visit_item, krate.free_items().map(|id| self.hir_item(id)));
walk_list!(
visitor,
visit_trait_item,
krate.trait_items().map(|id| self.hir_trait_item(id))
);
walk_list!(visitor, visit_impl_item, krate.impl_items().map(|id| self.hir_impl_item(id)));
walk_list!(
visitor,
visit_foreign_item,
krate.foreign_items().map(|id| self.hir_foreign_item(id))
);
V::Result::output()
}
/// This method is the equivalent of `visit_all_item_likes_in_crate` but restricted to
/// item-likes in a single module.
pub fn hir_visit_item_likes_in_module<V>(
self,
module: LocalModDefId,
visitor: &mut V,
) -> V::Result
2018-06-06 22:13:52 +02:00
where
V: Visitor<'tcx>,
2018-06-06 22:13:52 +02:00
{
let module = self.hir_module_items(module);
walk_list!(visitor, visit_item, module.free_items().map(|id| self.hir_item(id)));
walk_list!(
visitor,
visit_trait_item,
module.trait_items().map(|id| self.hir_trait_item(id))
);
walk_list!(visitor, visit_impl_item, module.impl_items().map(|id| self.hir_impl_item(id)));
walk_list!(
visitor,
visit_foreign_item,
module.foreign_items().map(|id| self.hir_foreign_item(id))
);
V::Result::output()
2018-06-06 22:13:52 +02:00
}
pub fn hir_for_each_module(self, mut f: impl FnMut(LocalModDefId)) {
let crate_items = self.hir_crate_items(());
for module in crate_items.submodules.iter() {
2023-04-26 20:53:51 +02:00
f(LocalModDefId::new_unchecked(module.def_id))
2021-07-18 18:12:17 +02:00
}
}
#[inline]
pub fn par_hir_for_each_module(self, f: impl Fn(LocalModDefId) + DynSend + DynSync) {
let crate_items = self.hir_crate_items(());
2023-04-26 20:53:51 +02:00
par_for_each_in(&crate_items.submodules[..], |module| {
f(LocalModDefId::new_unchecked(module.def_id))
})
2021-07-18 18:12:17 +02:00
}
#[inline]
pub fn try_par_hir_for_each_module(
self,
f: impl Fn(LocalModDefId) -> Result<(), ErrorGuaranteed> + DynSend + DynSync,
) -> Result<(), ErrorGuaranteed> {
let crate_items = self.hir_crate_items(());
try_par_for_each_in(&crate_items.submodules[..], |module| {
f(LocalModDefId::new_unchecked(module.def_id))
})
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
2023-01-03 07:31:04 +00:00
/// until the crate root is reached. Prefer this over your own loop using `parent_id`.
2022-07-30 22:44:49 +02:00
#[inline]
pub fn hir_parent_id_iter(self, current_id: HirId) -> impl Iterator<Item = HirId> {
ParentHirIterator::new(self, current_id)
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
2023-01-03 07:31:04 +00:00
/// until the crate root is reached. Prefer this over your own loop using `parent_id`.
#[inline]
pub fn hir_parent_iter(self, current_id: HirId) -> impl Iterator<Item = (HirId, Node<'tcx>)> {
self.hir_parent_id_iter(current_id).map(move |id| (id, self.hir_node(id)))
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
2023-01-03 07:31:04 +00:00
/// until the crate root is reached. Prefer this over your own loop using `parent_id`.
2022-07-30 22:44:49 +02:00
#[inline]
pub fn hir_parent_owner_iter(self, current_id: HirId) -> ParentOwnerIterator<'tcx> {
ParentOwnerIterator { current_id, tcx: self }
}
/// Checks if the node is left-hand side of an assignment.
pub fn hir_is_lhs(self, id: HirId) -> bool {
match self.parent_hir_node(id) {
Node::Expr(expr) => match expr.kind {
ExprKind::Assign(lhs, _rhs, _span) => lhs.hir_id == id,
_ => false,
},
_ => false,
}
}
2019-08-13 11:24:08 -07:00
/// Whether the expression pointed at by `hir_id` belongs to a `const` evaluation context.
/// Used exclusively for diagnostics, to avoid suggestion function calls.
pub fn hir_is_inside_const_context(self, hir_id: HirId) -> bool {
self.hir_body_const_context(self.hir_enclosing_body_owner(hir_id)).is_some()
}
2024-04-11 13:14:08 -04:00
/// Retrieves the `HirId` for `id`'s enclosing function *if* the `id` block or return is
/// in the "tail" position of the function, in other words if it's likely to correspond
/// to the return type of the function.
///
/// ```
/// fn foo(x: usize) -> bool {
/// if x == 1 {
2024-04-11 13:14:08 -04:00
/// true // If `get_fn_id_for_return_block` gets passed the `id` corresponding
/// } else { // to this, it will return `foo`'s `HirId`.
/// false
/// }
/// }
/// ```
///
2022-04-15 15:04:34 -07:00
/// ```compile_fail,E0308
/// fn foo(x: usize) -> bool {
/// loop {
2024-04-11 13:14:08 -04:00
/// true // If `get_fn_id_for_return_block` gets passed the `id` corresponding
/// } // to this, it will return `None`.
/// false
/// }
/// ```
pub fn hir_get_fn_id_for_return_block(self, id: HirId) -> Option<HirId> {
let enclosing_body_owner = self.local_def_id_to_hir_id(self.hir_enclosing_body_owner(id));
2024-08-16 20:53:02 +01:00
// Return `None` if the `id` expression is not the returned value of the enclosing body
let mut iter = [id].into_iter().chain(self.hir_parent_id_iter(id)).peekable();
2024-08-16 20:53:02 +01:00
while let Some(cur_id) = iter.next() {
if enclosing_body_owner == cur_id {
break;
}
2024-08-16 20:53:02 +01:00
// A return statement is always the value returned from the enclosing body regardless of
// what the parent expressions are.
if let Node::Expr(Expr { kind: ExprKind::Ret(_), .. }) = self.hir_node(cur_id) {
2024-08-16 20:53:02 +01:00
break;
}
// If the current expression's value doesnt get used as the parent expressions value
// then return `None`
2024-08-16 20:53:02 +01:00
if let Some(&parent_id) = iter.peek() {
match self.hir_node(parent_id) {
// The current node is not the tail expression of the block expression parent
// expr.
2024-08-16 20:53:02 +01:00
Node::Block(Block { expr: Some(e), .. }) if cur_id != e.hir_id => return None,
Node::Block(Block { expr: Some(e), .. })
if matches!(e.kind, ExprKind::If(_, _, None)) =>
{
return None;
}
2024-08-16 20:53:02 +01:00
// The current expression's value does not pass up through these parent
// expressions.
2024-08-16 20:53:02 +01:00
Node::Block(Block { expr: None, .. })
| Node::Expr(Expr { kind: ExprKind::Loop(..), .. })
| Node::LetStmt(..) => return None,
_ => {}
}
}
}
2024-08-16 20:53:02 +01:00
Some(enclosing_body_owner)
}
/// Retrieves the `OwnerId` for `id`'s parent item, or `id` itself if no
2015-07-01 08:58:48 +12:00
/// parent item is in this map. The "parent item" is the closest parent node
2018-06-13 09:11:23 +02:00
/// in the HIR which is recorded by the map and is an item, either an item
2015-07-01 08:58:48 +12:00
/// in a module, trait, or impl.
pub fn hir_get_parent_item(self, hir_id: HirId) -> OwnerId {
if hir_id.local_id != ItemLocalId::ZERO {
// If this is a child of a HIR owner, return the owner.
hir_id.owner
} else if let Some((def_id, _node)) = self.hir_parent_owner_iter(hir_id).next() {
def_id
2021-03-27 13:56:22 +01:00
} else {
CRATE_OWNER_ID
2015-07-01 08:58:48 +12:00
}
2015-06-16 21:56:33 +12:00
}
2021-01-01 15:38:11 -03:00
/// When on an if expression, a match arm tail expression or a match arm, give back
/// the enclosing `if` or `match` expression.
2019-09-27 18:35:34 -07:00
///
2021-01-01 15:38:11 -03:00
/// Used by error reporting when there's a type error in an if or match arm caused by the
2019-09-27 18:35:34 -07:00
/// expression needing to be unit.
pub fn hir_get_if_cause(self, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
for (_, node) in self.hir_parent_iter(hir_id) {
match node {
2020-03-24 06:17:44 +01:00
Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::ImplItem(_)
| Node::Stmt(Stmt { kind: StmtKind::Let(_), .. }) => break,
2021-01-01 15:38:11 -03:00
Node::Expr(expr @ Expr { kind: ExprKind::If(..) | ExprKind::Match(..), .. }) => {
return Some(expr);
}
_ => {}
}
}
None
}
/// Returns the nearest enclosing scope. A scope is roughly an item or block.
pub fn hir_get_enclosing_scope(self, hir_id: HirId) -> Option<HirId> {
for (hir_id, node) in self.hir_parent_iter(hir_id) {
2020-03-24 06:17:44 +01:00
if let Node::Item(Item {
kind:
ItemKind::Fn { .. }
2020-05-10 11:57:58 +01:00
| ItemKind::Const(..)
| ItemKind::Static(..)
| ItemKind::Mod(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Union(..)
| ItemKind::Trait(..)
2020-03-24 06:17:44 +01:00
| ItemKind::Impl { .. },
..
})
| Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(..), .. })
| Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(..), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(..), .. })
| Node::Block(_) = node
{
return Some(hir_id);
}
}
None
}
2019-08-01 00:41:54 +01:00
/// Returns the defining scope for an opaque type definition.
pub fn hir_get_defining_scope(self, id: HirId) -> HirId {
let mut scope = id;
loop {
scope = self.hir_get_enclosing_scope(scope).unwrap_or(CRATE_HIR_ID);
if scope == CRATE_HIR_ID || !matches!(self.hir_node(scope), Node::Block(_)) {
2021-01-10 14:38:14 +01:00
return scope;
}
}
}
/// Get a representation of this `id` for debugging purposes.
/// NOTE: Do NOT use this in diagnostics!
pub fn hir_id_to_string(self, id: HirId) -> String {
let path_str = |def_id: LocalDefId| self.def_path_str(def_id);
let span_str = || {
self.sess.source_map().span_to_snippet(Map { tcx: self }.span(id)).unwrap_or_default()
};
let node_str = |prefix| format!("{id} ({prefix} `{}`)", span_str());
match self.hir_node(id) {
Node::Item(item) => {
let item_str = match item.kind {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static",
ItemKind::Const(..) => "const",
ItemKind::Fn { .. } => "fn",
ItemKind::Macro(..) => "macro",
ItemKind::Mod(..) => "mod",
ItemKind::ForeignMod { .. } => "foreign mod",
ItemKind::GlobalAsm { .. } => "global asm",
ItemKind::TyAlias(..) => "ty",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl { .. } => "impl",
};
format!("{id} ({item_str} {})", path_str(item.owner_id.def_id))
}
Node::ForeignItem(item) => {
format!("{id} (foreign item {})", path_str(item.owner_id.def_id))
}
Node::ImplItem(ii) => {
let kind = match ii.kind {
ImplItemKind::Const(..) => "associated constant",
ImplItemKind::Fn(fn_sig, _) => match fn_sig.decl.implicit_self {
ImplicitSelfKind::None => "associated function",
_ => "method",
},
ImplItemKind::Type(_) => "associated type",
};
format!("{id} ({kind} `{}` in {})", ii.ident, path_str(ii.owner_id.def_id))
}
Node::TraitItem(ti) => {
let kind = match ti.kind {
TraitItemKind::Const(..) => "associated constant",
TraitItemKind::Fn(fn_sig, _) => match fn_sig.decl.implicit_self {
ImplicitSelfKind::None => "associated function",
_ => "trait method",
},
TraitItemKind::Type(..) => "associated type",
};
format!("{id} ({kind} `{}` in {})", ti.ident, path_str(ti.owner_id.def_id))
}
Node::Variant(variant) => {
format!("{id} (variant `{}` in {})", variant.ident, path_str(variant.def_id))
}
Node::Field(field) => {
format!("{id} (field `{}` in {})", field.ident, path_str(field.def_id))
}
Node::AnonConst(_) => node_str("const"),
Node::ConstBlock(_) => node_str("const"),
Node::ConstArg(_) => node_str("const"),
Node::Expr(_) => node_str("expr"),
Node::ExprField(_) => node_str("expr field"),
Node::Stmt(_) => node_str("stmt"),
Node::PathSegment(_) => node_str("path segment"),
Node::Ty(_) => node_str("type"),
Node::AssocItemConstraint(_) => node_str("assoc item constraint"),
Node::TraitRef(_) => node_str("trait ref"),
Node::OpaqueTy(_) => node_str("opaque type"),
Node::Pat(_) => node_str("pat"),
Node::TyPat(_) => node_str("pat ty"),
Node::PatField(_) => node_str("pattern field"),
Node::PatExpr(_) => node_str("pattern literal"),
Node::Param(_) => node_str("param"),
Node::Arm(_) => node_str("arm"),
Node::Block(_) => node_str("block"),
Node::Infer(_) => node_str("infer"),
Node::LetStmt(_) => node_str("local"),
Node::Ctor(ctor) => format!(
"{id} (ctor {})",
ctor.ctor_def_id().map_or("<missing path>".into(), |def_id| path_str(def_id)),
),
Node::Lifetime(_) => node_str("lifetime"),
Node::GenericParam(param) => {
format!("{id} (generic_param {})", path_str(param.def_id))
}
Node::Crate(..) => String::from("(root_crate)"),
Node::WherePredicate(_) => node_str("where predicate"),
Node::Synthetic => unreachable!(),
Node::Err(_) => node_str("error"),
Node::PreciseCapturingNonLifetimeArg(_param) => node_str("parameter"),
}
}
pub fn hir_get_foreign_abi(self, hir_id: HirId) -> ExternAbi {
let parent = self.hir_get_parent_item(hir_id);
if let OwnerNode::Item(Item { kind: ItemKind::ForeignMod { abi, .. }, .. }) =
self.hir_owner_node(parent)
2024-01-15 22:31:02 +00:00
{
return *abi;
}
bug!(
"expected foreign mod or inlined parent, found {}",
self.hir_id_to_string(HirId::make_owner(parent.def_id))
)
2019-02-04 11:09:32 +01:00
}
pub fn hir_expect_item(self, id: LocalDefId) -> &'tcx Item<'tcx> {
match self.expect_hir_owner_node(id) {
OwnerNode::Item(item) => item,
_ => bug!("expected item, found {}", self.hir_id_to_string(HirId::make_owner(id))),
}
2019-02-03 09:14:31 +01:00
}
pub fn hir_expect_impl_item(self, id: LocalDefId) -> &'tcx ImplItem<'tcx> {
match self.expect_hir_owner_node(id) {
OwnerNode::ImplItem(item) => item,
_ => bug!("expected impl item, found {}", self.hir_id_to_string(HirId::make_owner(id))),
}
}
pub fn hir_expect_trait_item(self, id: LocalDefId) -> &'tcx TraitItem<'tcx> {
match self.expect_hir_owner_node(id) {
OwnerNode::TraitItem(item) => item,
2021-10-20 22:38:10 +02:00
_ => {
bug!("expected trait item, found {}", self.hir_id_to_string(HirId::make_owner(id)))
2021-10-20 22:38:10 +02:00
}
}
}
pub fn hir_get_fn_output(self, def_id: LocalDefId) -> Option<&'tcx FnRetTy<'tcx>> {
Some(&self.opt_hir_owner_node(def_id)?.fn_decl()?.output)
}
#[track_caller]
pub fn hir_expect_opaque_ty(self, id: LocalDefId) -> &'tcx OpaqueTy<'tcx> {
match self.hir_node_by_def_id(id) {
Node::OpaqueTy(opaq) => opaq,
_ => {
bug!(
"expected opaque type definition, found {}",
self.hir_id_to_string(self.local_def_id_to_hir_id(id))
)
}
}
}
pub fn hir_expect_expr(self, id: HirId) -> &'tcx Expr<'tcx> {
match self.hir_node(id) {
Node::Expr(expr) => expr,
_ => bug!("expected expr, found {}", self.hir_id_to_string(id)),
}
2019-02-04 11:09:32 +01:00
}
pub fn hir_opt_delegation_sig_id(self, def_id: LocalDefId) -> Option<DefId> {
self.opt_hir_owner_node(def_id)?.fn_decl()?.opt_delegation_sig_id()
}
2022-04-19 21:25:26 +02:00
#[inline]
fn hir_opt_ident(self, id: HirId) -> Option<Ident> {
match self.hir_node(id) {
2022-06-28 13:15:30 -05:00
Node::Pat(&Pat { kind: PatKind::Binding(_, _, ident, _), .. }) => Some(ident),
// A `Ctor` doesn't have an identifier itself, but its parent
// struct/variant does. Compare with `hir::Map::span`.
Node::Ctor(..) => match self.parent_hir_node(id) {
Node::Item(item) => Some(item.ident),
Node::Variant(variant) => Some(variant.ident),
_ => unreachable!(),
},
node => node.ident(),
2022-04-19 21:25:26 +02:00
}
}
2022-04-19 21:25:26 +02:00
#[inline]
pub(super) fn hir_opt_ident_span(self, id: HirId) -> Option<Span> {
self.hir_opt_ident(id).map(|ident| ident.span)
2022-04-19 21:25:26 +02:00
}
2022-10-25 17:59:18 +00:00
#[inline]
pub fn hir_ident(self, id: HirId) -> Ident {
self.hir_opt_ident(id).unwrap()
2022-10-25 17:59:18 +00:00
}
2022-04-19 21:25:26 +02:00
#[inline]
pub fn hir_opt_name(self, id: HirId) -> Option<Symbol> {
self.hir_opt_ident(id).map(|ident| ident.name)
2019-12-13 15:27:55 -08:00
}
pub fn hir_name(self, id: HirId) -> Symbol {
self.hir_opt_name(id).unwrap_or_else(|| bug!("no name for {}", self.hir_id_to_string(id)))
}
/// Given a node ID, gets a list of attributes associated with the AST
/// corresponding to the node-ID.
pub fn hir_attrs(self, id: HirId) -> &'tcx [Attribute] {
self.hir_attr_map(id.owner).get(id.local_id)
}
}
impl<'hir> Map<'hir> {
Use smaller def span for functions Currently, the def span of a funtion encompasses the entire function signature and body. However, this is usually unnecessarily verbose - when we are pointing at an entire function in a diagnostic, we almost always want to point at the signature. The actual contents of the body tends to be irrelevant to the diagnostic we are emitting, and just takes up additional screen space. This commit changes the `def_span` of all function items (freestanding functions, `impl`-block methods, and `trait`-block methods) to be the span of the signature. For example, the function ```rust pub fn foo<T>(val: T) -> T { val } ``` now has a `def_span` corresponding to `pub fn foo<T>(val: T) -> T` (everything before the opening curly brace). Trait methods without a body have a `def_span` which includes the trailing semicolon. For example: ```rust trait Foo { fn bar(); }``` the function definition `Foo::bar` has a `def_span` of `fn bar();` This makes our diagnostic output much shorter, and emphasizes information that is relevant to whatever diagnostic we are reporting. We continue to use the full span (including the body) in a few of places: * MIR building uses the full span when building source scopes. * 'Outlives suggestions' use the full span to sort the diagnostics being emitted. * The `#[rustc_on_unimplemented(enclosing_scope="in this scope")]` attribute points the entire scope body. * The 'unconditional recursion' lint uses the full span to show additional context for the recursive call. All of these cases work only with local items, so we don't need to add anything extra to crate metadata.
2020-08-12 17:02:14 -04:00
/// Gets the span of the definition of the specified HIR node.
2022-02-13 16:27:59 +01:00
/// This is used by `tcx.def_span`.
pub fn span(self, hir_id: HirId) -> Span {
2022-02-13 16:27:59 +01:00
fn until_within(outer: Span, end: Span) -> Span {
if let Some(end) = end.find_ancestor_inside(outer) {
outer.with_hi(end.hi())
} else {
outer
}
}
fn named_span(item_span: Span, ident: Ident, generics: Option<&Generics<'_>>) -> Span {
if ident.name != kw::Empty {
let mut span = until_within(item_span, ident.span);
if let Some(g) = generics
&& !g.span.is_dummy()
&& let Some(g_span) = g.span.find_ancestor_inside(item_span)
{
span = span.to(g_span);
}
span
} else {
item_span
}
}
let span = match self.tcx.hir_node(hir_id) {
2022-02-13 16:27:59 +01:00
// Function-like.
Node::Item(Item { kind: ItemKind::Fn { sig, .. }, span: outer_span, .. })
| Node::TraitItem(TraitItem {
kind: TraitItemKind::Fn(sig, ..),
span: outer_span,
..
})
| Node::ImplItem(ImplItem {
kind: ImplItemKind::Fn(sig, ..), span: outer_span, ..
})
| Node::ForeignItem(ForeignItem {
kind: ForeignItemKind::Fn(sig, ..),
span: outer_span,
..
}) => {
// Ensure that the returned span has the item's SyntaxContext, and not the
// SyntaxContext of the visibility.
sig.span.find_ancestor_in_same_ctxt(*outer_span).unwrap_or(*outer_span)
}
// Impls, including their where clauses.
Node::Item(Item {
kind: ItemKind::Impl(Impl { generics, .. }),
span: outer_span,
..
}) => until_within(*outer_span, generics.where_clause_span),
2022-02-13 16:27:59 +01:00
// Constants and Statics.
Node::Item(Item {
kind: ItemKind::Const(ty, ..) | ItemKind::Static(ty, ..),
2022-02-13 16:27:59 +01:00
span: outer_span,
..
})
| Node::TraitItem(TraitItem {
kind: TraitItemKind::Const(ty, ..),
span: outer_span,
..
})
| Node::ImplItem(ImplItem {
kind: ImplItemKind::Const(ty, ..),
span: outer_span,
..
})
| Node::ForeignItem(ForeignItem {
kind: ForeignItemKind::Static(ty, ..),
span: outer_span,
..
}) => until_within(*outer_span, ty.span),
// With generics and bounds.
Node::Item(Item {
kind: ItemKind::Trait(_, _, generics, bounds, _),
span: outer_span,
..
})
| Node::TraitItem(TraitItem {
kind: TraitItemKind::Type(bounds, _),
generics,
span: outer_span,
..
}) => {
let end = if let Some(b) = bounds.last() { b.span() } else { generics.span };
until_within(*outer_span, end)
}
// Other cases.
2020-12-23 10:32:00 +01:00
Node::Item(item) => match &item.kind {
ItemKind::Use(path, _) => {
// Ensure that the returned span has the item's SyntaxContext, and not the
// SyntaxContext of the path.
path.span.find_ancestor_in_same_ctxt(item.span).unwrap_or(item.span)
}
2022-02-13 16:27:59 +01:00
_ => named_span(item.span, item.ident, item.kind.generics()),
Use smaller def span for functions Currently, the def span of a funtion encompasses the entire function signature and body. However, this is usually unnecessarily verbose - when we are pointing at an entire function in a diagnostic, we almost always want to point at the signature. The actual contents of the body tends to be irrelevant to the diagnostic we are emitting, and just takes up additional screen space. This commit changes the `def_span` of all function items (freestanding functions, `impl`-block methods, and `trait`-block methods) to be the span of the signature. For example, the function ```rust pub fn foo<T>(val: T) -> T { val } ``` now has a `def_span` corresponding to `pub fn foo<T>(val: T) -> T` (everything before the opening curly brace). Trait methods without a body have a `def_span` which includes the trailing semicolon. For example: ```rust trait Foo { fn bar(); }``` the function definition `Foo::bar` has a `def_span` of `fn bar();` This makes our diagnostic output much shorter, and emphasizes information that is relevant to whatever diagnostic we are reporting. We continue to use the full span (including the body) in a few of places: * MIR building uses the full span when building source scopes. * 'Outlives suggestions' use the full span to sort the diagnostics being emitted. * The `#[rustc_on_unimplemented(enclosing_scope="in this scope")]` attribute points the entire scope body. * The 'unconditional recursion' lint uses the full span to show additional context for the recursive call. All of these cases work only with local items, so we don't need to add anything extra to crate metadata.
2020-08-12 17:02:14 -04:00
},
Node::Variant(variant) => named_span(variant.span, variant.ident, None),
2022-02-13 16:27:59 +01:00
Node::ImplItem(item) => named_span(item.span, item.ident, Some(item.generics)),
Node::ForeignItem(item) => named_span(item.span, item.ident, None),
Node::Ctor(_) => return self.span(self.tcx.parent_hir_id(hir_id)),
Node::Expr(Expr {
kind: ExprKind::Closure(Closure { fn_decl_span, .. }),
span,
..
}) => {
// Ensure that the returned span has the item's SyntaxContext.
fn_decl_span.find_ancestor_inside(*span).unwrap_or(*span)
}
2022-02-13 16:27:59 +01:00
_ => self.span_with_body(hir_id),
};
debug_assert_eq!(span.ctxt(), self.span_with_body(hir_id).ctxt());
span
2022-02-13 16:27:59 +01:00
}
/// Like `hir.span()`, but includes the body of items
/// (instead of just the item header)
pub fn span_with_body(self, hir_id: HirId) -> Span {
match self.tcx.hir_node(hir_id) {
2022-02-13 16:27:59 +01:00
Node::Param(param) => param.span,
Node::Item(item) => item.span,
Node::ForeignItem(foreign_item) => foreign_item.span,
Node::TraitItem(trait_item) => trait_item.span,
Node::ImplItem(impl_item) => impl_item.span,
2020-12-23 10:32:00 +01:00
Node::Variant(variant) => variant.span,
Node::Field(field) => field.span,
2024-04-29 09:48:19 +00:00
Node::AnonConst(constant) => constant.span,
Node::ConstBlock(constant) => self.tcx.hir_body(constant.body).value.span,
Add `ConstArgKind::Path` and make `ConstArg` its own HIR node This is a very large commit since a lot needs to be changed in order to make the tests pass. The salient changes are: - `ConstArgKind` gets a new `Path` variant, and all const params are now represented using it. Non-param paths still use `ConstArgKind::Anon` to prevent this change from getting too large, but they will soon use the `Path` variant too. - `ConstArg` gets a distinct `hir_id` field and its own variant in `hir::Node`. This affected many parts of the compiler that expected the parent of an `AnonConst` to be the containing context (e.g., an array repeat expression). They have been changed to check the "grandparent" where necessary. - Some `ast::AnonConst`s now have their `DefId`s created in rustc_ast_lowering rather than `DefCollector`. This is because in some cases they will end up becoming a `ConstArgKind::Path` instead, which has no `DefId`. We have to solve this in a hacky way where we guess whether the `AnonConst` could end up as a path const since we can't know for sure until after name resolution (`N` could refer to a free const or a nullary struct). If it has no chance as being a const param, then we create a `DefId` in `DefCollector` -- otherwise we decide during ast_lowering. This will have to be updated once all path consts use `ConstArgKind::Path`. - We explicitly use `ConstArgHasType` for array lengths, rather than implicitly relying on anon const type feeding -- this is due to the addition of `ConstArgKind::Path`. - Some tests have their outputs changed, but the changes are for the most part minor (including removing duplicate or almost-duplicate errors). One test now ICEs, but it is for an incomplete, unstable feature and is now tracked at #127009.
2024-07-16 19:07:36 -07:00
Node::ConstArg(const_arg) => const_arg.span(),
2020-12-23 10:32:00 +01:00
Node::Expr(expr) => expr.span,
Node::ExprField(field) => field.span,
2020-12-23 10:32:00 +01:00
Node::Stmt(stmt) => stmt.span,
2022-02-14 13:25:26 +01:00
Node::PathSegment(seg) => {
let ident_span = seg.ident.span;
ident_span
.with_hi(seg.args.map_or_else(|| ident_span.hi(), |args| args.span_ext.hi()))
}
2020-12-23 10:32:00 +01:00
Node::Ty(ty) => ty.span,
Node::AssocItemConstraint(constraint) => constraint.span,
2020-12-23 10:32:00 +01:00
Node::TraitRef(tr) => tr.path.span,
Node::OpaqueTy(op) => op.span,
2020-12-23 10:32:00 +01:00
Node::Pat(pat) => pat.span,
Node::TyPat(pat) => pat.span,
Node::PatField(field) => field.span,
Node::PatExpr(lit) => lit.span,
2020-12-23 10:32:00 +01:00
Node::Arm(arm) => arm.span,
Node::Block(block) => block.span,
Node::Ctor(..) => self.span_with_body(self.tcx.parent_hir_id(hir_id)),
Node::Lifetime(lifetime) => lifetime.ident.span,
2020-12-23 10:32:00 +01:00
Node::GenericParam(param) => param.span,
2021-04-24 21:41:57 +00:00
Node::Infer(i) => i.span,
Node::LetStmt(local) => local.span,
Node::Crate(item) => item.spans.inner_span,
Node::WherePredicate(pred) => pred.span,
Node::PreciseCapturingNonLifetimeArg(param) => param.ident.span,
Node::Synthetic => unreachable!(),
Node::Err(span) => span,
Use smaller def span for functions Currently, the def span of a funtion encompasses the entire function signature and body. However, this is usually unnecessarily verbose - when we are pointing at an entire function in a diagnostic, we almost always want to point at the signature. The actual contents of the body tends to be irrelevant to the diagnostic we are emitting, and just takes up additional screen space. This commit changes the `def_span` of all function items (freestanding functions, `impl`-block methods, and `trait`-block methods) to be the span of the signature. For example, the function ```rust pub fn foo<T>(val: T) -> T { val } ``` now has a `def_span` corresponding to `pub fn foo<T>(val: T) -> T` (everything before the opening curly brace). Trait methods without a body have a `def_span` which includes the trailing semicolon. For example: ```rust trait Foo { fn bar(); }``` the function definition `Foo::bar` has a `def_span` of `fn bar();` This makes our diagnostic output much shorter, and emphasizes information that is relevant to whatever diagnostic we are reporting. We continue to use the full span (including the body) in a few of places: * MIR building uses the full span when building source scopes. * 'Outlives suggestions' use the full span to sort the diagnostics being emitted. * The `#[rustc_on_unimplemented(enclosing_scope="in this scope")]` attribute points the entire scope body. * The 'unconditional recursion' lint uses the full span to show additional context for the recursive call. All of these cases work only with local items, so we don't need to add anything extra to crate metadata.
2020-08-12 17:02:14 -04:00
}
}
pub fn span_if_local(self, id: DefId) -> Option<Span> {
id.is_local().then(|| self.tcx.def_span(id))
}
pub fn res_span(self, res: Res) -> Option<Span> {
match res {
Res::Err => None,
Res::Local(id) => Some(self.span(id)),
res => self.span_if_local(res.opt_def_id()?),
}
}
/// Returns the HirId of `N` in `struct Foo<const N: usize = { ... }>` when
/// called with the HirId for the `{ ... }` anon const
pub fn opt_const_param_default_param_def_id(self, anon_const: HirId) -> Option<LocalDefId> {
Add `ConstArgKind::Path` and make `ConstArg` its own HIR node This is a very large commit since a lot needs to be changed in order to make the tests pass. The salient changes are: - `ConstArgKind` gets a new `Path` variant, and all const params are now represented using it. Non-param paths still use `ConstArgKind::Anon` to prevent this change from getting too large, but they will soon use the `Path` variant too. - `ConstArg` gets a distinct `hir_id` field and its own variant in `hir::Node`. This affected many parts of the compiler that expected the parent of an `AnonConst` to be the containing context (e.g., an array repeat expression). They have been changed to check the "grandparent" where necessary. - Some `ast::AnonConst`s now have their `DefId`s created in rustc_ast_lowering rather than `DefCollector`. This is because in some cases they will end up becoming a `ConstArgKind::Path` instead, which has no `DefId`. We have to solve this in a hacky way where we guess whether the `AnonConst` could end up as a path const since we can't know for sure until after name resolution (`N` could refer to a free const or a nullary struct). If it has no chance as being a const param, then we create a `DefId` in `DefCollector` -- otherwise we decide during ast_lowering. This will have to be updated once all path consts use `ConstArgKind::Path`. - We explicitly use `ConstArgHasType` for array lengths, rather than implicitly relying on anon const type feeding -- this is due to the addition of `ConstArgKind::Path`. - Some tests have their outputs changed, but the changes are for the most part minor (including removing duplicate or almost-duplicate errors). One test now ICEs, but it is for an incomplete, unstable feature and is now tracked at #127009.
2024-07-16 19:07:36 -07:00
let const_arg = self.tcx.parent_hir_id(anon_const);
match self.tcx.parent_hir_node(const_arg) {
Node::GenericParam(GenericParam {
def_id: param_id,
kind: GenericParamKind::Const { .. },
..
}) => Some(*param_id),
_ => None,
}
}
pub fn maybe_get_struct_pattern_shorthand_field(&self, expr: &Expr<'_>) -> Option<Symbol> {
let local = match expr {
Expr {
kind:
ExprKind::Path(QPath::Resolved(
None,
Path {
res: def::Res::Local(_), segments: [PathSegment { ident, .. }], ..
},
)),
..
} => Some(ident),
_ => None,
}?;
match self.tcx.parent_hir_node(expr.hir_id) {
Node::ExprField(field) => {
if field.ident.name == local.name && field.is_shorthand {
return Some(local.name);
}
}
_ => {}
}
None
}
}
impl<'tcx> intravisit::HirTyCtxt<'tcx> for TyCtxt<'tcx> {
fn hir_node(&self, hir_id: HirId) -> Node<'tcx> {
(*self).hir_node(hir_id)
}
fn hir_body(&self, id: BodyId) -> &'tcx Body<'tcx> {
(*self).hir_body(id)
2020-01-07 17:25:33 +01:00
}
fn hir_item(&self, id: ItemId) -> &'tcx Item<'tcx> {
(*self).hir_item(id)
2020-01-07 17:25:33 +01:00
}
fn hir_trait_item(&self, id: TraitItemId) -> &'tcx TraitItem<'tcx> {
(*self).hir_trait_item(id)
2020-01-07 17:25:33 +01:00
}
fn hir_impl_item(&self, id: ImplItemId) -> &'tcx ImplItem<'tcx> {
(*self).hir_impl_item(id)
2020-01-07 17:25:33 +01:00
}
2020-11-11 21:57:54 +01:00
fn hir_foreign_item(&self, id: ForeignItemId) -> &'tcx ForeignItem<'tcx> {
(*self).hir_foreign_item(id)
2020-11-11 21:57:54 +01:00
}
2020-01-07 17:25:33 +01:00
}
impl<'tcx> pprust_hir::PpAnn for TyCtxt<'tcx> {
fn nested(&self, state: &mut pprust_hir::State<'_>, nested: pprust_hir::Nested) {
pprust_hir::PpAnn::nested(&(self as &dyn intravisit::HirTyCtxt<'_>), state, nested)
}
}
2023-03-13 22:22:59 +00:00
pub(super) fn crate_hash(tcx: TyCtxt<'_>, _: LocalCrate) -> Svh {
2021-09-19 22:07:12 +02:00
let krate = tcx.hir_crate(());
let hir_body_hash = krate.opt_hir_hash.expect("HIR hash missing while computing crate hash");
2021-02-28 18:58:50 +01:00
let upstream_crates = upstream_crates(tcx);
2021-02-28 18:58:50 +01:00
let resolutions = tcx.resolutions(());
2021-02-28 18:58:50 +01:00
// We hash the final, remapped names of all local source files so we
// don't have to include the path prefix remapping commandline args.
// If we included the full mapping in the SVH, we could only have
// reproducible builds by compiling from the same directory. So we just
// hash the result of the mapping instead of the mapping itself.
let mut source_file_names: Vec<_> = tcx
.sess
.source_map()
.files()
.iter()
.filter(|source_file| source_file.cnum == LOCAL_CRATE)
.map(|source_file| source_file.stable_id)
2021-02-28 18:58:50 +01:00
.collect();
source_file_names.sort_unstable();
// We have to take care of debugger visualizers explicitly. The HIR (and
// thus `hir_body_hash`) contains the #[debugger_visualizer] attributes but
// these attributes only store the file path to the visualizer file, not
// their content. Yet that content is exported into crate metadata, so any
// changes to it need to be reflected in the crate hash.
let debugger_visualizers: Vec<_> = tcx
.debugger_visualizers(LOCAL_CRATE)
.iter()
// We ignore the path to the visualizer file since it's not going to be
// encoded in crate metadata and we already hash the full contents of
// the file.
.map(DebuggerVisualizerFile::path_erased)
.collect();
let crate_hash: Fingerprint = tcx.with_stable_hashing_context(|mut hcx| {
let mut stable_hasher = StableHasher::new();
hir_body_hash.hash_stable(&mut hcx, &mut stable_hasher);
upstream_crates.hash_stable(&mut hcx, &mut stable_hasher);
source_file_names.hash_stable(&mut hcx, &mut stable_hasher);
debugger_visualizers.hash_stable(&mut hcx, &mut stable_hasher);
if tcx.sess.opts.incremental.is_some() {
let definitions = tcx.untracked().definitions.freeze();
let mut owner_spans: Vec<_> = krate
.owners
.iter_enumerated()
.filter_map(|(def_id, info)| {
let _ = info.as_owner()?;
let def_path_hash = definitions.def_path_hash(def_id);
let span = tcx.source_span(def_id);
debug_assert_eq!(span.parent(), None);
Some((def_path_hash, span))
})
.collect();
owner_spans.sort_unstable_by_key(|bn| bn.0);
owner_spans.hash_stable(&mut hcx, &mut stable_hasher);
}
tcx.sess.opts.dep_tracking_hash(true).hash_stable(&mut hcx, &mut stable_hasher);
tcx.stable_crate_id(LOCAL_CRATE).hash_stable(&mut hcx, &mut stable_hasher);
// Hash visibility information since it does not appear in HIR.
// FIXME: Figure out how to remove `visibilities_for_hashing` by hashing visibilities on
// the fly in the resolver, storing only their accumulated hash in `ResolverGlobalCtxt`,
// and combining it with other hashes here.
resolutions.visibilities_for_hashing.hash_stable(&mut hcx, &mut stable_hasher);
with_metavar_spans(|mspans| {
mspans.freeze_and_get_read_spans().hash_stable(&mut hcx, &mut stable_hasher);
});
stable_hasher.finish()
});
2021-02-28 18:58:50 +01:00
Svh::new(crate_hash)
2021-02-28 18:58:50 +01:00
}
fn upstream_crates(tcx: TyCtxt<'_>) -> Vec<(StableCrateId, Svh)> {
let mut upstream_crates: Vec<_> = tcx
.crates(())
2021-02-28 18:58:50 +01:00
.iter()
.map(|&cnum| {
let stable_crate_id = tcx.stable_crate_id(cnum);
let hash = tcx.crate_hash(cnum);
(stable_crate_id, hash)
2021-02-28 18:58:50 +01:00
})
.collect();
upstream_crates.sort_unstable_by_key(|&(stable_crate_id, _)| stable_crate_id);
2021-02-28 18:58:50 +01:00
upstream_crates
}
2023-04-26 20:53:51 +02:00
pub(super) fn hir_module_items(tcx: TyCtxt<'_>, module_id: LocalModDefId) -> ModuleItems {
let mut collector = ItemCollector::new(tcx, false);
2021-07-18 18:12:17 +02:00
let (hir_mod, span, hir_id) = tcx.hir_get_module(module_id);
2021-07-18 18:12:17 +02:00
collector.visit_mod(hir_mod, span, hir_id);
let ItemCollector {
submodules,
items,
trait_items,
impl_items,
foreign_items,
body_owners,
opaques,
nested_bodies,
..
} = collector;
ModuleItems {
2021-09-07 20:07:33 +02:00
submodules: submodules.into_boxed_slice(),
2024-03-20 23:52:26 +01:00
free_items: items.into_boxed_slice(),
2021-09-07 20:07:33 +02:00
trait_items: trait_items.into_boxed_slice(),
impl_items: impl_items.into_boxed_slice(),
foreign_items: foreign_items.into_boxed_slice(),
body_owners: body_owners.into_boxed_slice(),
opaques: opaques.into_boxed_slice(),
nested_bodies: nested_bodies.into_boxed_slice(),
}
2021-07-18 18:12:17 +02:00
}
pub(crate) fn hir_crate_items(tcx: TyCtxt<'_>, _: ()) -> ModuleItems {
let mut collector = ItemCollector::new(tcx, true);
// A "crate collector" and "module collector" start at a
// module item (the former starts at the crate root) but only
// the former needs to collect it. ItemCollector does not do this for us.
collector.submodules.push(CRATE_OWNER_ID);
tcx.hir_walk_toplevel_module(&mut collector);
let ItemCollector {
submodules,
items,
trait_items,
impl_items,
foreign_items,
body_owners,
opaques,
nested_bodies,
..
} = collector;
ModuleItems {
submodules: submodules.into_boxed_slice(),
2024-03-20 23:52:26 +01:00
free_items: items.into_boxed_slice(),
trait_items: trait_items.into_boxed_slice(),
impl_items: impl_items.into_boxed_slice(),
foreign_items: foreign_items.into_boxed_slice(),
body_owners: body_owners.into_boxed_slice(),
opaques: opaques.into_boxed_slice(),
nested_bodies: nested_bodies.into_boxed_slice(),
}
}
struct ItemCollector<'tcx> {
// When true, it collects all items in the create,
// otherwise it collects items in some module.
crate_collector: bool,
tcx: TyCtxt<'tcx>,
submodules: Vec<OwnerId>,
items: Vec<ItemId>,
trait_items: Vec<TraitItemId>,
impl_items: Vec<ImplItemId>,
foreign_items: Vec<ForeignItemId>,
body_owners: Vec<LocalDefId>,
opaques: Vec<LocalDefId>,
nested_bodies: Vec<LocalDefId>,
}
impl<'tcx> ItemCollector<'tcx> {
fn new(tcx: TyCtxt<'tcx>, crate_collector: bool) -> ItemCollector<'tcx> {
ItemCollector {
crate_collector,
tcx,
submodules: Vec::default(),
items: Vec::default(),
trait_items: Vec::default(),
impl_items: Vec::default(),
foreign_items: Vec::default(),
body_owners: Vec::default(),
opaques: Vec::default(),
nested_bodies: Vec::default(),
}
}
}
impl<'hir> Visitor<'hir> for ItemCollector<'hir> {
type NestedFilter = nested_filter::All;
fn maybe_tcx(&mut self) -> Self::MaybeTyCtxt {
self.tcx
}
fn visit_item(&mut self, item: &'hir Item<'hir>) {
if Node::Item(item).associated_body().is_some() {
self.body_owners.push(item.owner_id.def_id);
}
self.items.push(item.item_id());
// Items that are modules are handled here instead of in visit_mod.
if let ItemKind::Mod(module) = &item.kind {
self.submodules.push(item.owner_id);
// A module collector does not recurse inside nested modules.
if self.crate_collector {
intravisit::walk_mod(self, module);
}
} else {
intravisit::walk_item(self, item)
}
}
fn visit_foreign_item(&mut self, item: &'hir ForeignItem<'hir>) {
self.foreign_items.push(item.foreign_item_id());
intravisit::walk_foreign_item(self, item)
}
fn visit_anon_const(&mut self, c: &'hir AnonConst) {
2022-11-06 19:17:57 +00:00
self.body_owners.push(c.def_id);
intravisit::walk_anon_const(self, c)
}
fn visit_inline_const(&mut self, c: &'hir ConstBlock) {
self.body_owners.push(c.def_id);
self.nested_bodies.push(c.def_id);
intravisit::walk_inline_const(self, c)
}
fn visit_opaque_ty(&mut self, o: &'hir OpaqueTy<'hir>) {
self.opaques.push(o.def_id);
intravisit::walk_opaque_ty(self, o)
}
fn visit_expr(&mut self, ex: &'hir Expr<'hir>) {
2022-11-06 13:29:21 +00:00
if let ExprKind::Closure(closure) = ex.kind {
self.body_owners.push(closure.def_id);
self.nested_bodies.push(closure.def_id);
}
intravisit::walk_expr(self, ex)
}
fn visit_trait_item(&mut self, item: &'hir TraitItem<'hir>) {
if Node::TraitItem(item).associated_body().is_some() {
self.body_owners.push(item.owner_id.def_id);
}
self.trait_items.push(item.trait_item_id());
intravisit::walk_trait_item(self, item)
}
fn visit_impl_item(&mut self, item: &'hir ImplItem<'hir>) {
if Node::ImplItem(item).associated_body().is_some() {
self.body_owners.push(item.owner_id.def_id);
}
self.impl_items.push(item.impl_item_id());
intravisit::walk_impl_item(self, item)
}
}