rust/compiler/rustc_hir_analysis/src/check/check.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1754 lines
68 KiB
Rust
Raw Normal View History

use crate::check::intrinsicck::InlineAsmCtxt;
use super::coercion::CoerceMany;
use super::compare_method::check_type_bounds;
use super::compare_method::{compare_const_impl, compare_impl_method, compare_ty_impl};
use super::*;
use rustc_attr as attr;
use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
2021-02-12 16:50:45 +08:00
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ItemKind, Node, PathSegment};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
2022-07-02 16:37:49 +03:00
use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt};
use rustc_infer::traits::Obligation;
use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::util::{Discr, IntTypeExt};
2022-06-17 13:15:00 +01:00
use rustc_middle::ty::{
self, ParamEnv, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
};
use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
use rustc_span::symbol::sym;
use rustc_span::{self, Span};
use rustc_target::spec::abi::Abi;
2020-09-07 10:01:45 +01:00
use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
2022-07-07 15:12:32 +02:00
use rustc_trait_selection::traits::{self, ObligationCtxt};
use rustc_ty_utils::representability::{self, Representability};
use std::ops::ControlFlow;
pub(super) fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
match tcx.sess.target.is_abi_supported(abi) {
Some(true) => (),
Some(false) => {
struct_span_err!(
tcx.sess,
span,
E0570,
"`{abi}` is not a supported ABI for the current target",
)
.emit();
}
None => {
tcx.struct_span_lint_hir(UNSUPPORTED_CALLING_CONVENTIONS, hir_id, span, |lint| {
lint.build("use of calling convention not supported on this target").emit();
});
}
}
// This ABI is only allowed on function pointers
if abi == Abi::CCmseNonSecureCall {
struct_span_err!(
tcx.sess,
span,
E0781,
"the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers"
)
.emit();
}
}
/// Helper used for fns and closures. Does the grungy work of checking a function
/// body and returns the function context used for that purpose, since in the case of a fn item
/// there is still a bit more to do.
///
/// * ...
/// * inherited: other fields inherited from the enclosing fn (if any)
2021-08-20 13:36:04 +00:00
#[instrument(skip(inherited, body), level = "debug")]
pub(super) fn check_fn<'a, 'tcx>(
inherited: &'a Inherited<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
fn_sig: ty::FnSig<'tcx>,
decl: &'tcx hir::FnDecl<'tcx>,
fn_id: hir::HirId,
body: &'tcx hir::Body<'tcx>,
can_be_generator: Option<hir::Movability>,
return_type_pre_known: bool,
) -> (FnCtxt<'a, 'tcx>, Option<GeneratorTypes<'tcx>>) {
// Create the function context. This is either derived from scratch or,
// in the case of closures, based on the outer context.
let mut fcx = FnCtxt::new(inherited, param_env, body.value.hir_id);
2021-01-23 11:47:38 +01:00
fcx.ps.set(UnsafetyState::function(fn_sig.unsafety, fn_id));
fcx.return_type_pre_known = return_type_pre_known;
let tcx = fcx.tcx;
let hir = tcx.hir();
let declared_ret_ty = fn_sig.output();
let ret_ty =
fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
declared_ret_ty,
body.value.hir_id,
decl.output.span(),
param_env,
));
// If we replaced declared_ret_ty with infer vars, then we must be inferring
// an opaque type, so set a flag so we can improve diagnostics.
fcx.return_type_has_opaque = ret_ty != declared_ret_ty;
fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
let span = body.value.span;
fn_maybe_err(tcx, span, fn_sig.abi);
2020-11-17 15:49:40 -05:00
if fn_sig.abi == Abi::RustCall {
let expected_args = if let ImplicitSelfKind::None = decl.implicit_self { 1 } else { 2 };
let err = || {
let item = match tcx.hir().get(fn_id) {
Node::Item(hir::Item { kind: ItemKind::Fn(header, ..), .. }) => Some(header),
Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(header, ..), ..
}) => Some(header),
2020-12-03 15:49:20 -05:00
Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(header, ..),
..
2020-12-03 15:49:20 -05:00
}) => Some(header),
// Closures are RustCall, but they tuple their arguments, so shouldn't be checked
Node::Expr(hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => None,
node => bug!("Item being checked wasn't a function/closure: {:?}", node),
};
if let Some(header) = item {
tcx.sess.span_err(header.span, "functions with the \"rust-call\" ABI must take a single non-self argument that is a tuple");
}
};
if fn_sig.inputs().len() != expected_args {
err()
} else {
// FIXME(CraftSpider) Add a check on parameter expansion, so we don't just make the ICE happen later on
// This will probably require wide-scale changes to support a TupleKind obligation
// We can't resolve this without knowing the type of the param
if !matches!(fn_sig.inputs()[expected_args - 1].kind(), ty::Tuple(_) | ty::Param(_)) {
err()
}
}
}
if body.generator_kind.is_some() && can_be_generator.is_some() {
let yield_ty = fcx
.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);
// Resume type defaults to `()` if the generator has no argument.
let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());
fcx.resume_yield_tys = Some((resume_ty, yield_ty));
}
GatherLocalsVisitor::new(&fcx).visit_body(body);
// C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
// (as it's created inside the body itself, not passed in from outside).
let maybe_va_list = if fn_sig.c_variadic {
let span = body.params.last().unwrap().span;
let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));
2022-05-08 15:12:56 -04:00
Some(tcx.bound_type_of(va_list_did).subst(tcx, &[region.into()]))
} else {
None
};
// Add formal parameters.
let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
let inputs_fn = fn_sig.inputs().iter().copied();
for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
// Check the pattern.
let ty_span = try { inputs_hir?.get(idx)?.span };
fcx.check_pat_top(&param.pat, param_ty, ty_span, false);
// Check that argument is Sized.
// The check for a non-trivial pattern is a hack to avoid duplicate warnings
// for simple cases like `fn foo(x: Trait)`,
// where we would error once on the parameter as a whole, and once on the binding `x`.
2020-10-16 17:46:59 -03:00
if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
}
fcx.write_ty(param.hir_id, param_ty);
}
inherited.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);
fcx.in_tail_expr = true;
if let ty::Dynamic(..) = declared_ret_ty.kind() {
// FIXME: We need to verify that the return type is `Sized` after the return expression has
// been evaluated so that we have types available for all the nodes being returned, but that
// requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
// causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
// while keeping the current ordering we will ignore the tail expression's type because we
// don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
// because we will trigger "unreachable expression" lints unconditionally.
// Because of all of this, we perform a crude check to know whether the simplest `!Sized`
// case that a newcomer might make, returning a bare trait, and in that case we populate
// the tail expression's type so that the suggestion will be correct, but ignore all other
// possible cases.
fcx.check_expr(&body.value);
fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
} else {
fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
fcx.check_return_expr(&body.value, false);
}
fcx.in_tail_expr = false;
// We insert the deferred_generator_interiors entry after visiting the body.
// This ensures that all nested generators appear before the entry of this generator.
// resolve_generator_interiors relies on this property.
let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
let interior = fcx
.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));
let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
Some(GeneratorTypes {
resume_ty,
yield_ty,
interior,
movability: can_be_generator.unwrap(),
})
} else {
None
};
// Finalize the return check by taking the LUB of the return types
// we saw and assigning it to the expected return type. This isn't
// really expected to fail, since the coercions would have failed
// earlier when trying to find a LUB.
let coercion = fcx.ret_coercion.take().unwrap().into_inner();
let mut actual_return_ty = coercion.complete(&fcx);
debug!("actual_return_ty = {:?}", actual_return_ty);
if let ty::Dynamic(..) = declared_ret_ty.kind() {
// We have special-cased the case where the function is declared
// `-> dyn Foo` and we don't actually relate it to the
// `fcx.ret_coercion`, so just substitute a type variable.
actual_return_ty =
fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span });
debug!("actual_return_ty replaced with {:?}", actual_return_ty);
}
// HACK(oli-obk, compiler-errors): We should be comparing this against
// `declared_ret_ty`, but then anything uninferred would be inferred to
// the opaque type itself. That again would cause writeback to assume
// we have a recursive call site and do the sadly stabilized fallback to `()`.
fcx.demand_suptype(span, ret_ty, actual_return_ty);
// Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
if let Some(panic_impl_did) = tcx.lang_items().panic_impl()
&& panic_impl_did == hir.local_def_id(fn_id).to_def_id()
{
check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig, decl, declared_ret_ty);
}
// Check that a function marked as `#[alloc_error_handler]` has signature `fn(Layout) -> !`
if let Some(alloc_error_handler_did) = tcx.lang_items().oom()
&& alloc_error_handler_did == hir.local_def_id(fn_id).to_def_id()
{
check_alloc_error_fn(tcx, alloc_error_handler_did.expect_local(), fn_sig, decl, declared_ret_ty);
}
(fcx, gen_ty)
}
fn check_panic_info_fn(
tcx: TyCtxt<'_>,
fn_id: LocalDefId,
fn_sig: ty::FnSig<'_>,
decl: &hir::FnDecl<'_>,
declared_ret_ty: Ty<'_>,
) {
let Some(panic_info_did) = tcx.lang_items().panic_info() else {
tcx.sess.err("language item required, but not found: `panic_info`");
return;
};
if *declared_ret_ty.kind() != ty::Never {
tcx.sess.span_err(decl.output.span(), "return type should be `!`");
}
let inputs = fn_sig.inputs();
if inputs.len() != 1 {
tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
return;
}
let arg_is_panic_info = match *inputs[0].kind() {
ty::Ref(region, ty, mutbl) => match *ty.kind() {
ty::Adt(ref adt, _) => {
adt.did() == panic_info_did && mutbl == hir::Mutability::Not && !region.is_static()
}
_ => false,
},
_ => false,
};
if !arg_is_panic_info {
tcx.sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
}
let DefKind::Fn = tcx.def_kind(fn_id) else {
let span = tcx.def_span(fn_id);
tcx.sess.span_err(span, "should be a function");
return;
};
let generic_counts = tcx.generics_of(fn_id).own_counts();
if generic_counts.types != 0 {
let span = tcx.def_span(fn_id);
tcx.sess.span_err(span, "should have no type parameters");
}
if generic_counts.consts != 0 {
let span = tcx.def_span(fn_id);
tcx.sess.span_err(span, "should have no const parameters");
}
}
fn check_alloc_error_fn(
tcx: TyCtxt<'_>,
fn_id: LocalDefId,
fn_sig: ty::FnSig<'_>,
decl: &hir::FnDecl<'_>,
declared_ret_ty: Ty<'_>,
) {
let Some(alloc_layout_did) = tcx.lang_items().alloc_layout() else {
tcx.sess.err("language item required, but not found: `alloc_layout`");
return;
};
if *declared_ret_ty.kind() != ty::Never {
tcx.sess.span_err(decl.output.span(), "return type should be `!`");
}
let inputs = fn_sig.inputs();
if inputs.len() != 1 {
tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
return;
}
let arg_is_alloc_layout = match inputs[0].kind() {
ty::Adt(ref adt, _) => adt.did() == alloc_layout_did,
_ => false,
};
if !arg_is_alloc_layout {
tcx.sess.span_err(decl.inputs[0].span, "argument should be `Layout`");
}
let DefKind::Fn = tcx.def_kind(fn_id) else {
let span = tcx.def_span(fn_id);
tcx.sess.span_err(span, "`#[alloc_error_handler]` should be a function");
return;
};
let generic_counts = tcx.generics_of(fn_id).own_counts();
if generic_counts.types != 0 {
let span = tcx.def_span(fn_id);
tcx.sess.span_err(span, "`#[alloc_error_handler]` function should have no type parameters");
}
if generic_counts.consts != 0 {
let span = tcx.def_span(fn_id);
tcx.sess
.span_err(span, "`#[alloc_error_handler]` function should have no const parameters");
}
}
fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
def.destructor(tcx); // force the destructor to be evaluated
check_representable(tcx, span, def_id);
if def.repr().simd() {
check_simd(tcx, span, def_id);
}
check_transparent(tcx, span, def);
check_packed(tcx, span, def);
}
fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
def.destructor(tcx); // force the destructor to be evaluated
check_representable(tcx, span, def_id);
check_transparent(tcx, span, def);
check_union_fields(tcx, span, def_id);
check_packed(tcx, span, def);
}
/// Check that the fields of the `union` do not need dropping.
2020-10-24 16:13:39 +02:00
fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
let item_type = tcx.type_of(item_def_id);
if let ty::Adt(def, substs) = item_type.kind() {
assert!(def.is_union());
2022-06-29 22:33:18 -04:00
fn allowed_union_field<'tcx>(
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> bool {
// We don't just accept all !needs_drop fields, due to semver concerns.
match ty.kind() {
ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check)
ty::Tuple(tys) => {
// allow tuples of allowed types
tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env, span))
}
ty::Array(elem, _len) => {
// Like `Copy`, we do *not* special-case length 0.
allowed_union_field(*elem, tcx, param_env, span)
}
_ => {
// Fallback case: allow `ManuallyDrop` and things that are `Copy`.
ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop())
2022-06-29 22:33:18 -04:00
|| ty.is_copy_modulo_regions(tcx.at(span), param_env)
}
}
}
let param_env = tcx.param_env(item_def_id);
2022-06-29 22:33:18 -04:00
for field in &def.non_enum_variant().fields {
let field_ty = field.ty(tcx, substs);
2022-06-29 22:33:18 -04:00
if !allowed_union_field(field_ty, tcx, param_env, span) {
2021-11-15 14:47:36 +11:00
let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) {
// We are currently checking the type this field came from, so it must be local.
Some(Node::Field(field)) => (field.span, field.ty.span),
_ => unreachable!("mir field has to correspond to hir field"),
};
struct_span_err!(
tcx.sess,
field_span,
E0740,
"unions cannot contain fields that may need dropping"
)
.note(
"a type is guaranteed not to need dropping \
when it implements `Copy`, or when it is the special `ManuallyDrop<_>` type",
)
2021-11-14 22:04:25 +11:00
.multipart_suggestion_verbose(
"when the type does not implement `Copy`, \
wrap it inside a `ManuallyDrop<_>` and ensure it is manually dropped",
2021-11-15 14:47:36 +11:00
vec![
(ty_span.shrink_to_lo(), "std::mem::ManuallyDrop<".into()),
2021-11-15 14:47:36 +11:00
(ty_span.shrink_to_hi(), ">".into()),
],
2021-11-14 22:04:25 +11:00
Applicability::MaybeIncorrect,
)
.emit();
return false;
2022-06-29 22:33:18 -04:00
} else if field_ty.needs_drop(tcx, param_env) {
// This should never happen. But we can get here e.g. in case of name resolution errors.
tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields");
}
}
} else {
span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
}
true
}
2020-10-24 16:13:39 +02:00
/// Check that a `static` is inhabited.
fn check_static_inhabited<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
2020-10-24 16:13:39 +02:00
// Make sure statics are inhabited.
// Other parts of the compiler assume that there are no uninhabited places. In principle it
// would be enough to check this for `extern` statics, as statics with an initializer will
2020-10-24 16:13:39 +02:00
// have UB during initialization if they are uninhabited, but there also seems to be no good
// reason to allow any statics to be uninhabited.
let ty = tcx.type_of(def_id);
let span = tcx.def_span(def_id);
let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
Ok(l) => l,
// Foreign statics that overflow their allowed size should emit an error
Err(LayoutError::SizeOverflow(_))
if {
let node = tcx.hir().get_by_def_id(def_id);
matches!(
node,
hir::Node::ForeignItem(hir::ForeignItem {
kind: hir::ForeignItemKind::Static(..),
..
})
)
} =>
{
tcx.sess
.struct_span_err(span, "extern static is too large for the current architecture")
.emit();
return;
}
// Generic statics are rejected, but we still reach this case.
Err(e) => {
tcx.sess.delay_span_bug(span, &e.to_string());
return;
}
2020-10-24 16:13:39 +02:00
};
if layout.abi.is_uninhabited() {
tcx.struct_span_lint_hir(
UNINHABITED_STATIC,
tcx.hir().local_def_id_to_hir_id(def_id),
span,
|lint| {
lint.build("static of uninhabited type")
.note("uninhabited statics cannot be initialized, and any access would be an immediate error")
.emit();
},
);
}
}
/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
/// projections that would result in "inheriting lifetimes".
pub(super) fn check_opaque<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
substs: SubstsRef<'tcx>,
origin: &hir::OpaqueTyOrigin,
) {
let span = tcx.def_span(def_id);
check_opaque_for_inheriting_lifetimes(tcx, def_id, span);
2020-09-07 10:01:45 +01:00
if tcx.type_of(def_id).references_error() {
return;
}
if check_opaque_for_cycles(tcx, def_id, substs, span, origin).is_err() {
return;
}
check_opaque_meets_bounds(tcx, def_id, substs, span, origin);
}
/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
/// in "inheriting lifetimes".
#[instrument(level = "debug", skip(tcx, span))]
2021-12-13 21:45:08 -04:00
pub(super) fn check_opaque_for_inheriting_lifetimes<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
span: Span,
) {
2021-10-20 22:38:10 +02:00
let item = tcx.hir().expect_item(def_id);
2020-12-06 21:31:42 +01:00
debug!(?item, ?span);
2020-12-06 21:31:42 +01:00
struct FoundParentLifetime;
2022-01-12 03:19:52 +00:00
struct FindParentLifetimeVisitor<'tcx>(&'tcx ty::Generics);
2022-06-17 13:15:00 +01:00
impl<'tcx> ty::visit::TypeVisitor<'tcx> for FindParentLifetimeVisitor<'tcx> {
2020-12-06 21:31:42 +01:00
type BreakTy = FoundParentLifetime;
2020-11-05 17:30:39 +01:00
fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
2020-12-06 21:31:42 +01:00
debug!("FindParentLifetimeVisitor: r={:?}", r);
if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *r {
if index < self.0.parent_count as u32 {
2020-12-06 21:31:42 +01:00
return ControlFlow::Break(FoundParentLifetime);
} else {
return ControlFlow::CONTINUE;
}
}
r.super_visit_with(self)
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
if let ty::ConstKind::Unevaluated(..) = c.kind() {
2020-12-06 21:31:42 +01:00
// FIXME(#72219) We currently don't detect lifetimes within substs
// which would violate this check. Even though the particular substitution is not used
// within the const, this should still be fixed.
return ControlFlow::CONTINUE;
}
c.super_visit_with(self)
}
}
2020-12-06 21:31:42 +01:00
struct ProhibitOpaqueVisitor<'tcx> {
2021-03-13 16:05:15 +01:00
tcx: TyCtxt<'tcx>,
2020-12-06 21:31:42 +01:00
opaque_identity_ty: Ty<'tcx>,
generics: &'tcx ty::Generics,
2021-02-13 14:45:53 +08:00
selftys: Vec<(Span, Option<String>)>,
2020-12-06 21:31:42 +01:00
}
2022-06-17 13:15:00 +01:00
impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
2020-12-06 21:31:42 +01:00
type BreakTy = Ty<'tcx>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
debug!("check_opaque_for_inheriting_lifetimes: (visit_ty) t={:?}", t);
if t == self.opaque_identity_ty {
ControlFlow::CONTINUE
} else {
2022-01-12 03:19:52 +00:00
t.super_visit_with(&mut FindParentLifetimeVisitor(self.generics))
2020-12-06 21:31:42 +01:00
.map_break(|FoundParentLifetime| t)
}
}
}
2021-12-13 21:45:08 -04:00
impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
2021-02-13 14:45:53 +08:00
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
2021-02-13 14:45:53 +08:00
}
fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
match arg.kind {
hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
[PathSegment { res: Res::SelfTy { trait_: _, alias_to: impl_ref }, .. }] => {
2021-02-13 14:45:53 +08:00
let impl_ty_name =
impl_ref.map(|(def_id, _)| self.tcx.def_path_str(def_id));
self.selftys.push((path.span, impl_ty_name));
}
_ => {}
},
_ => {}
}
hir::intravisit::walk_ty(self, arg);
}
}
if let ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
..
}) = item.kind
{
let mut visitor = ProhibitOpaqueVisitor {
opaque_identity_ty: tcx.mk_opaque(
def_id.to_def_id(),
InternalSubsts::identity_for_item(tcx, def_id.to_def_id()),
),
generics: tcx.generics_of(def_id),
2021-02-13 14:45:53 +08:00
tcx,
selftys: vec![],
};
let prohibit_opaque = tcx
.explicit_item_bounds(def_id)
.iter()
.try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
debug!(
2021-02-13 14:45:53 +08:00
"check_opaque_for_inheriting_lifetimes: prohibit_opaque={:?}, visitor.opaque_identity_ty={:?}, visitor.generics={:?}",
prohibit_opaque, visitor.opaque_identity_ty, visitor.generics
);
if let Some(ty) = prohibit_opaque.break_value() {
2021-02-12 16:50:45 +08:00
visitor.visit_item(&item);
let is_async = match item.kind {
ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..))
}
_ => unreachable!(),
};
let mut err = struct_span_err!(
tcx.sess,
span,
E0760,
"`{}` return type cannot contain a projection or `Self` that references lifetimes from \
a parent scope",
if is_async { "async fn" } else { "impl Trait" },
);
2021-02-13 14:45:53 +08:00
for (span, name) in visitor.selftys {
2021-02-12 16:50:45 +08:00
err.span_suggestion(
span,
"consider spelling out the type instead",
2021-02-13 14:45:53 +08:00
name.unwrap_or_else(|| format!("{:?}", ty)),
2021-02-12 16:50:45 +08:00
Applicability::MaybeIncorrect,
);
}
err.emit();
}
}
}
/// Checks that an opaque type does not contain cycles.
pub(super) fn check_opaque_for_cycles<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
substs: SubstsRef<'tcx>,
span: Span,
origin: &hir::OpaqueTyOrigin,
) -> Result<(), ErrorGuaranteed> {
2021-07-14 12:31:58 -03:00
if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
let reported = match origin {
hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span),
_ => opaque_type_cycle_error(tcx, def_id, span),
};
Err(reported)
} else {
Ok(())
}
}
/// Check that the concrete type behind `impl Trait` actually implements `Trait`.
2020-07-02 21:45:28 +01:00
///
/// This is mostly checked at the places that specify the opaque type, but we
/// check those cases in the `param_env` of that function, which may have
/// bounds not on this opaque type:
///
/// type X<T> = impl Clone
/// fn f<T: Clone>(t: T) -> X<T> {
/// t
/// }
///
/// Without this check the above code is incorrectly accepted: we would ICE if
/// some tried, for example, to clone an `Option<X<&mut ()>>`.
#[instrument(level = "debug", skip(tcx))]
fn check_opaque_meets_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
substs: SubstsRef<'tcx>,
span: Span,
origin: &hir::OpaqueTyOrigin,
) {
2022-05-08 15:12:56 -04:00
let hidden_type = tcx.bound_type_of(def_id.to_def_id()).subst(tcx, substs);
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
let defining_use_anchor = match *origin {
hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did,
hir::OpaqueTyOrigin::TyAlias => def_id,
};
let param_env = tcx.param_env(defining_use_anchor);
2022-07-02 16:37:49 +03:00
tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor)).enter(
move |infcx| {
let ocx = ObligationCtxt::new(&infcx);
let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);
2022-07-02 16:37:49 +03:00
let misc_cause = traits::ObligationCause::misc(span, hir_id);
2022-07-02 16:37:49 +03:00
match infcx.at(&misc_cause, param_env).eq(opaque_ty, hidden_type) {
Ok(infer_ok) => ocx.register_infer_ok_obligations(infer_ok),
Err(ty_err) => {
tcx.sess.delay_span_bug(
span,
&format!("could not unify `{hidden_type}` with revealed type:\n{ty_err}"),
);
}
}
2022-07-02 16:37:49 +03:00
// Additionally require the hidden type to be well-formed with only the generics of the opaque type.
// Defining use functions may have more bounds than the opaque type, which is ok, as long as the
// hidden type is well formed even without those bounds.
let predicate = ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_type.into()))
.to_predicate(tcx);
ocx.register_obligation(Obligation::new(misc_cause, param_env, predicate));
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
infcx.report_fulfillment_errors(&errors, None, false);
}
2022-07-02 16:37:49 +03:00
match origin {
// Checked when type checking the function containing them.
hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {}
// Can have different predicates to their defining use
hir::OpaqueTyOrigin::TyAlias => {
let outlives_environment = OutlivesEnvironment::new(param_env);
infcx.check_region_obligations_and_report_errors(
defining_use_anchor,
&outlives_environment,
);
}
}
// Clean up after ourselves
let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
},
);
}
2022-06-12 00:47:21 +02:00
fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) {
debug!(
"check_item_type(it.def_id={:?}, it.name={})",
id.def_id,
tcx.def_path_str(id.def_id.to_def_id())
);
let _indenter = indenter();
match tcx.def_kind(id.def_id) {
DefKind::Static(..) => {
tcx.ensure().typeck(id.def_id.def_id);
maybe_check_static_with_link_section(tcx, id.def_id.def_id);
check_static_inhabited(tcx, id.def_id.def_id);
}
DefKind::Const => {
tcx.ensure().typeck(id.def_id.def_id);
}
DefKind::Enum => {
let item = tcx.hir().item(id);
let hir::ItemKind::Enum(ref enum_definition, _) = item.kind else {
return;
};
check_enum(tcx, &enum_definition.variants, item.def_id.def_id);
}
DefKind::Fn => {} // entirely within check_item_body
DefKind::Impl => {
let it = tcx.hir().item(id);
let hir::ItemKind::Impl(ref impl_) = it.kind else {
return;
};
debug!("ItemKind::Impl {} with id {:?}", it.ident, it.def_id);
if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.def_id) {
check_impl_items_against_trait(
tcx,
it.span,
it.def_id.def_id,
impl_trait_ref,
&impl_.items,
);
check_on_unimplemented(tcx, it);
}
}
DefKind::Trait => {
let it = tcx.hir().item(id);
let hir::ItemKind::Trait(_, _, _, _, ref items) = it.kind else {
return;
};
check_on_unimplemented(tcx, it);
for item in items.iter() {
let item = tcx.hir().trait_item(item.id);
match item.kind {
hir::TraitItemKind::Fn(ref sig, _) => {
let abi = sig.header.abi;
fn_maybe_err(tcx, item.ident.span, abi);
}
hir::TraitItemKind::Type(.., Some(default)) => {
let assoc_item = tcx.associated_item(item.def_id);
let trait_substs =
InternalSubsts::identity_for_item(tcx, it.def_id.to_def_id());
let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
tcx,
assoc_item,
assoc_item,
default.span,
ty::TraitRef { def_id: it.def_id.to_def_id(), substs: trait_substs },
);
}
_ => {}
}
}
}
DefKind::Struct => {
check_struct(tcx, id.def_id.def_id);
}
DefKind::Union => {
check_union(tcx, id.def_id.def_id);
}
DefKind::OpaqueTy => {
let item = tcx.hir().item(id);
let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else {
return;
};
// HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
// `async-std` (and `pub async fn` in general).
// Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
// See https://github.com/rust-lang/rust/issues/75100
if !tcx.sess.opts.actually_rustdoc {
let substs = InternalSubsts::identity_for_item(tcx, item.def_id.to_def_id());
check_opaque(tcx, item.def_id.def_id, substs, &origin);
}
}
DefKind::TyAlias => {
let pty_ty = tcx.type_of(id.def_id);
let generics = tcx.generics_of(id.def_id);
check_type_params_are_used(tcx, &generics, pty_ty);
}
DefKind::ForeignMod => {
let it = tcx.hir().item(id);
let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
return;
};
check_abi(tcx, it.hir_id(), it.span, abi);
2020-11-11 22:40:09 +01:00
if abi == Abi::RustIntrinsic {
for item in items {
2020-11-11 21:57:54 +01:00
let item = tcx.hir().foreign_item(item.id);
intrinsic::check_intrinsic_type(tcx, item);
}
2020-11-11 22:40:09 +01:00
} else if abi == Abi::PlatformIntrinsic {
for item in items {
2020-11-11 21:57:54 +01:00
let item = tcx.hir().foreign_item(item.id);
intrinsic::check_platform_intrinsic_type(tcx, item);
}
} else {
2020-11-11 22:40:09 +01:00
for item in items {
let def_id = item.id.def_id.def_id;
2020-10-24 16:13:39 +02:00
let generics = tcx.generics_of(def_id);
let own_counts = generics.own_counts();
if generics.params.len() - own_counts.lifetimes != 0 {
let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
(_, 0) => ("type", "types", Some("u32")),
// We don't specify an example value, because we can't generate
// a valid value for any type.
(0, _) => ("const", "consts", None),
_ => ("type or const", "types or consts", None),
};
struct_span_err!(
tcx.sess,
item.span,
E0044,
"foreign items may not have {kinds} parameters",
)
.span_label(item.span, &format!("can't have {kinds} parameters"))
.help(
// FIXME: once we start storing spans for type arguments, turn this
// into a suggestion.
&format!(
"replace the {} parameters with concrete {}{}",
kinds,
kinds_pl,
egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
),
)
.emit();
}
2020-11-11 21:57:54 +01:00
let item = tcx.hir().foreign_item(item.id);
2020-10-24 16:13:39 +02:00
match item.kind {
hir::ForeignItemKind::Fn(ref fn_decl, _, _) => {
2020-11-11 22:40:09 +01:00
require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
2020-10-24 16:13:39 +02:00
}
hir::ForeignItemKind::Static(..) => {
check_static_inhabited(tcx, def_id);
2020-10-24 16:13:39 +02:00
}
_ => {}
}
}
}
}
DefKind::GlobalAsm => {
let it = tcx.hir().item(id);
let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.hir_id());
}
_ => {}
}
}
pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
// an error would be reported if this fails.
let _ = traits::OnUnimplementedDirective::of_item(tcx, item.def_id.to_def_id());
}
pub(super) fn check_specialization_validity<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def: &ty::TraitDef,
trait_item: &ty::AssocItem,
impl_id: DefId,
impl_item: &hir::ImplItemRef,
) {
let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
if parent.is_from_trait() {
None
} else {
Some((parent, parent.item(tcx, trait_item.def_id)))
}
});
let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
match parent_item {
// Parent impl exists, and contains the parent item we're trying to specialize, but
// doesn't mark it `default`.
Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
Some(Err(parent_impl.def_id()))
}
// Parent impl contains item and makes it specializable.
Some(_) => Some(Ok(())),
// Parent impl doesn't mention the item. This means it's inherited from the
// grandparent. In that case, if parent is a `default impl`, inherited items use the
// "defaultness" from the grandparent, else they are final.
None => {
if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
None
} else {
Some(Err(parent_impl.def_id()))
}
}
}
});
// If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
// item. This is allowed, the item isn't actually getting specialized here.
let result = opt_result.unwrap_or(Ok(()));
if let Err(parent_impl) = result {
report_forbidden_specialization(tcx, impl_item, parent_impl);
}
}
fn check_impl_items_against_trait<'tcx>(
tcx: TyCtxt<'tcx>,
full_impl_span: Span,
impl_id: LocalDefId,
impl_trait_ref: ty::TraitRef<'tcx>,
2021-07-15 22:19:39 +02:00
impl_item_refs: &[hir::ImplItemRef],
) {
// If the trait reference itself is erroneous (so the compilation is going
// to fail), skip checking the items here -- the `impl_item` table in `tcx`
// isn't populated for such impls.
if impl_trait_ref.references_error() {
return;
}
// Negative impls are not expected to have any items
match tcx.impl_polarity(impl_id) {
ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
ty::ImplPolarity::Negative => {
if let [first_item_ref, ..] = impl_item_refs {
let first_item_span = tcx.hir().impl_item(first_item_ref.id).span;
struct_span_err!(
tcx.sess,
first_item_span,
E0749,
"negative impls cannot have any items"
)
.emit();
}
return;
}
}
let trait_def = tcx.trait_def(impl_trait_ref.def_id);
for impl_item in impl_item_refs {
let ty_impl_item = tcx.associated_item(impl_item.id.def_id);
let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id {
tcx.associated_item(trait_item_id)
} else {
// Checked in `associated_item`.
tcx.sess.delay_span_bug(impl_item.span, "missing associated item in trait");
continue;
};
let impl_item_full = tcx.hir().impl_item(impl_item.id);
match impl_item_full.kind {
hir::ImplItemKind::Const(..) => {
// Find associated const definition.
compare_const_impl(
tcx,
&ty_impl_item,
impl_item.span,
&ty_trait_item,
impl_trait_ref,
);
}
hir::ImplItemKind::Fn(..) => {
let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
compare_impl_method(
tcx,
&ty_impl_item,
&ty_trait_item,
impl_trait_ref,
opt_trait_span,
);
}
hir::ImplItemKind::TyAlias(impl_ty) => {
let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
compare_ty_impl(
tcx,
&ty_impl_item,
impl_ty.span,
&ty_trait_item,
impl_trait_ref,
opt_trait_span,
);
}
}
check_specialization_validity(
tcx,
trait_def,
&ty_trait_item,
impl_id.to_def_id(),
impl_item,
);
}
if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
// Check for missing items from trait
let mut missing_items = Vec::new();
let mut must_implement_one_of: Option<&[Ident]> =
trait_def.must_implement_one_of.as_deref();
for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) {
let is_implemented = ancestors
.leaf_def(tcx, trait_item_id)
.map_or(false, |node_item| node_item.item.defaultness(tcx).has_value());
if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
missing_items.push(tcx.associated_item(trait_item_id));
}
// true if this item is specifically implemented in this impl
let is_implemented_here = ancestors
.leaf_def(tcx, trait_item_id)
.map_or(false, |node_item| !node_item.defining_node.is_from_trait());
if !is_implemented_here {
match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
tcx,
full_impl_span,
trait_item_id,
feature,
reason,
issue,
),
// Unmarked default bodies are considered stable (at least for now).
EvalResult::Allow | EvalResult::Unmarked => {}
}
}
if let Some(required_items) = &must_implement_one_of {
if is_implemented_here {
let trait_item = tcx.associated_item(trait_item_id);
if required_items.contains(&trait_item.ident(tcx)) {
must_implement_one_of = None;
}
}
}
}
if !missing_items.is_empty() {
missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span);
}
if let Some(missing_items) = must_implement_one_of {
let attr_span = tcx
2022-05-02 09:31:56 +02:00
.get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of)
.map(|attr| attr.span);
missing_items_must_implement_one_of_err(
tcx,
tcx.def_span(impl_id),
missing_items,
attr_span,
);
}
}
}
/// Checks whether a type can be represented in memory. In particular, it
/// identifies types that contain themselves without indirection through a
/// pointer, which would mean their size is unbounded.
pub(super) fn check_representable(tcx: TyCtxt<'_>, sp: Span, item_def_id: LocalDefId) -> bool {
let rty = tcx.type_of(item_def_id);
// Check that it is possible to represent this type. This call identifies
// (1) types that contain themselves and (2) types that contain a different
// recursive type. It is only necessary to throw an error on those that
// contain themselves. For case 2, there must be an inner type that will be
// caught by case 1.
2021-11-30 21:30:05 -08:00
match representability::ty_is_representable(tcx, rty, sp, None) {
Representability::SelfRecursive(spans) => {
recursive_type_with_infinite_size_error(tcx, item_def_id.to_def_id(), spans);
return false;
}
Representability::Representable | Representability::ContainsRecursive => (),
}
true
}
pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
let t = tcx.type_of(def_id);
if let ty::Adt(def, substs) = t.kind()
&& def.is_struct()
{
let fields = &def.non_enum_variant().fields;
if fields.is_empty() {
struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
return;
}
let e = fields[0].ty(tcx, substs);
if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
.span_label(sp, "SIMD elements must have the same type")
.emit();
return;
}
let len = if let ty::Array(_ty, c) = e.kind() {
c.try_eval_usize(tcx, tcx.param_env(def.did()))
} else {
Some(fields.len() as u64)
};
if let Some(len) = len {
if len == 0 {
struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
return;
} else if len > MAX_SIMD_LANES {
struct_span_err!(
tcx.sess,
sp,
E0075,
"SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
)
.emit();
return;
}
}
// Check that we use types valid for use in the lanes of a SIMD "vector register"
// These are scalar types which directly match a "machine" type
// Yes: Integers, floats, "thin" pointers
// No: char, "fat" pointers, compound types
match e.kind() {
ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct<T>([T; N]) through, let monomorphization catch errors
ty::Array(t, _clen)
if matches!(
t.kind(),
ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
) =>
{ /* struct([f32; 4]) is ok */ }
_ => {
struct_span_err!(
tcx.sess,
sp,
E0077,
"SIMD vector element type should be a \
primitive scalar (integer/float/pointer) type"
)
.emit();
return;
}
}
}
}
pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
let repr = def.repr();
if repr.packed() {
2022-05-02 09:31:56 +02:00
for attr in tcx.get_attrs(def.did(), sym::repr) {
for r in attr::parse_repr_attr(&tcx.sess, attr) {
2022-02-26 07:43:47 -03:00
if let attr::ReprPacked(pack) = r
2022-05-02 09:31:56 +02:00
&& let Some(repr_pack) = repr.pack
&& pack as u64 != repr_pack.bytes()
{
struct_span_err!(
tcx.sess,
sp,
E0634,
"type has conflicting packed representation hints"
)
.emit();
}
}
}
if repr.align.is_some() {
struct_span_err!(
tcx.sess,
sp,
E0587,
"type has conflicting packed and align representation hints"
)
.emit();
} else {
if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
let mut err = struct_span_err!(
tcx.sess,
sp,
E0588,
"packed type cannot transitively contain a `#[repr(align)]` type"
);
err.span_note(
tcx.def_span(def_spans[0].0),
&format!(
"`{}` has a `#[repr(align)]` attribute",
tcx.item_name(def_spans[0].0)
),
);
if def_spans.len() > 2 {
let mut first = true;
for (adt_def, span) in def_spans.iter().skip(1).rev() {
let ident = tcx.item_name(*adt_def);
err.span_note(
*span,
&if first {
format!(
"`{}` contains a field of type `{}`",
tcx.type_of(def.did()),
ident
)
} else {
format!("...which contains a field of type `{ident}`")
},
);
first = false;
}
}
err.emit();
}
}
}
}
pub(super) fn check_packed_inner(
tcx: TyCtxt<'_>,
def_id: DefId,
stack: &mut Vec<DefId>,
) -> Option<Vec<(DefId, Span)>> {
if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() {
if def.is_struct() || def.is_union() {
if def.repr().align.is_some() {
return Some(vec![(def.did(), DUMMY_SP)]);
}
stack.push(def_id);
for field in &def.non_enum_variant().fields {
if let ty::Adt(def, _) = field.ty(tcx, substs).kind()
&& !stack.contains(&def.did())
&& let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
{
defs.push((def.did(), field.ident(tcx).span));
return Some(defs);
}
}
stack.pop();
}
}
None
}
pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, sp: Span, adt: ty::AdtDef<'tcx>) {
if !adt.repr().transparent() {
return;
}
if adt.is_union() && !tcx.features().transparent_unions {
feature_err(
&tcx.sess.parse_sess,
sym::transparent_unions,
sp,
"transparent unions are unstable",
)
.emit();
}
if adt.variants().len() != 1 {
bad_variant_count(tcx, adt, sp, adt.did());
if adt.variants().is_empty() {
// Don't bother checking the fields. No variants (and thus no fields) exist.
return;
}
}
// For each field, figure out if it's known to be a ZST and align(1), with "known"
// respecting #[non_exhaustive] attributes.
let field_infos = adt.all_fields().map(|field| {
let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
let param_env = tcx.param_env(field.did);
let layout = tcx.layout_of(param_env.and(ty));
// We are currently checking the type this field came from, so it must be local
let span = tcx.hir().span_if_local(field.did).unwrap();
let zst = layout.map_or(false, |layout| layout.is_zst());
let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
if !zst {
return (span, zst, align1, None);
}
fn check_non_exhaustive<'tcx>(
tcx: TyCtxt<'tcx>,
t: Ty<'tcx>,
) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> {
match t.kind() {
ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)),
ty::Array(ty, _) => check_non_exhaustive(tcx, *ty),
ty::Adt(def, subst) => {
if !def.did().is_local() {
let non_exhaustive = def.is_variant_list_non_exhaustive()
|| def
.variants()
.iter()
.any(ty::VariantDef::is_field_list_non_exhaustive);
let has_priv = def.all_fields().any(|f| !f.vis.is_public());
if non_exhaustive || has_priv {
return ControlFlow::Break((
def.descr(),
def.did(),
subst,
non_exhaustive,
));
}
}
def.all_fields()
.map(|field| field.ty(tcx, subst))
.try_for_each(|t| check_non_exhaustive(tcx, t))
}
_ => ControlFlow::Continue(()),
}
}
(span, zst, align1, check_non_exhaustive(tcx, ty).break_value())
});
let non_zst_fields = field_infos
.clone()
.filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None });
let non_zst_count = non_zst_fields.clone().count();
if non_zst_count >= 2 {
bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, sp);
}
let incompatible_zst_fields =
field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count();
let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2;
for (span, zst, align1, non_exhaustive) in field_infos {
if zst && !align1 {
struct_span_err!(
tcx.sess,
span,
E0691,
"zero-sized field in transparent {} has alignment larger than 1",
adt.descr(),
)
.span_label(span, "has alignment larger than 1")
.emit();
}
if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive {
tcx.struct_span_lint_hir(
REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()),
span,
|lint| {
let note = if non_exhaustive {
"is marked with `#[non_exhaustive]`"
} else {
"contains private fields"
};
let field_ty = tcx.def_path_str_with_substs(def_id, substs);
lint.build("zero-sized fields in repr(transparent) cannot contain external non-exhaustive types")
.note(format!("this {descr} contains `{field_ty}`, which {note}, \
and makes it not a breaking change to become non-zero-sized in the future."))
.emit();
},
)
}
}
}
#[allow(trivial_numeric_casts)]
fn check_enum<'tcx>(tcx: TyCtxt<'tcx>, vs: &'tcx [hir::Variant<'tcx>], def_id: LocalDefId) {
let def = tcx.adt_def(def_id);
let sp = tcx.def_span(def_id);
def.destructor(tcx); // force the destructor to be evaluated
if vs.is_empty() {
if let Some(attr) = tcx.get_attrs(def_id.to_def_id(), sym::repr).next() {
struct_span_err!(
tcx.sess,
attr.span,
E0084,
"unsupported representation for zero-variant enum"
)
.span_label(sp, "zero-variant enum")
.emit();
}
}
let repr_type_ty = def.repr().discr_type().to_ty(tcx);
if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
if !tcx.features().repr128 {
feature_err(
&tcx.sess.parse_sess,
sym::repr128,
sp,
"repr with 128-bit type is unstable",
)
.emit();
}
}
for v in vs {
if let Some(ref e) = v.disr_expr {
tcx.ensure().typeck(tcx.hir().local_def_id(e.hir_id));
}
}
if tcx.adt_def(def_id).repr().int.is_none() && tcx.features().arbitrary_enum_discriminant {
2020-12-24 02:55:21 +01:00
let is_unit = |var: &hir::Variant<'_>| matches!(var.data, hir::VariantData::Unit(..));
let has_disr = |var: &hir::Variant<'_>| var.disr_expr.is_some();
let has_non_units = vs.iter().any(|var| !is_unit(var));
let disr_units = vs.iter().any(|var| is_unit(&var) && has_disr(&var));
let disr_non_unit = vs.iter().any(|var| !is_unit(&var) && has_disr(&var));
if disr_non_unit || (disr_units && has_non_units) {
let mut err =
struct_span_err!(tcx.sess, sp, E0732, "`#[repr(inttype)]` must be specified");
err.emit();
}
}
detect_discriminant_duplicate(tcx, def.discriminants(tcx).collect(), vs, sp);
check_representable(tcx, sp, def_id);
check_transparent(tcx, sp, def);
}
/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
fn detect_discriminant_duplicate<'tcx>(
tcx: TyCtxt<'tcx>,
mut discrs: Vec<(VariantIdx, Discr<'tcx>)>,
vs: &'tcx [hir::Variant<'tcx>],
self_span: Span,
) {
// Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
// Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
let report = |dis: Discr<'tcx>, idx: usize, err: &mut Diagnostic| {
let var = &vs[idx]; // HIR for the duplicate discriminant
let (span, display_discr) = match var.disr_expr {
Some(ref expr) => {
// In the case the discriminant is both a duplicate and overflowed, let the user know
if let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind
&& let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
&& *lit_value != dis.val
{
(tcx.hir().span(expr.hir_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
// Otherwise, format the value as-is
} else {
(tcx.hir().span(expr.hir_id), format!("`{dis}`"))
}
}
None => {
// At this point we know this discriminant is a duplicate, and was not explicitly
2022-08-07 23:50:12 +02:00
// assigned by the user. Here we iterate backwards to fetch the HIR for the last
// explicitly assigned discriminant, and letting the user know that this was the
// increment startpoint, and how many steps from there leading to the duplicate
if let Some((n, hir::Variant { span, ident, .. })) =
vs[..idx].iter().rev().enumerate().find(|v| v.1.disr_expr.is_some())
{
let ve_ident = var.ident;
let n = n + 1;
let sp = if n > 1 { "variants" } else { "variant" };
err.span_label(
*span,
format!("discriminant for `{ve_ident}` incremented from this startpoint (`{ident}` + {n} {sp} later => `{ve_ident}` = {dis})"),
);
}
(vs[idx].span, format!("`{dis}`"))
}
};
err.span_label(span, format!("{display_discr} assigned here"));
};
// Here we loop through the discriminants, comparing each discriminant to another.
// When a duplicate is detected, we instantiate an error and point to both
2022-08-07 23:50:12 +02:00
// initial and duplicate value. The duplicate discriminant is then discarded by swapping
// it with the last element and decrementing the `vec.len` (which is why we have to evaluate
// `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
// style as we are mutating `discrs` on the fly).
let mut i = 0;
while i < discrs.len() {
let hir_var_i_idx = discrs[i].0.index();
let mut error: Option<DiagnosticBuilder<'_, _>> = None;
let mut o = i + 1;
while o < discrs.len() {
let hir_var_o_idx = discrs[o].0.index();
if discrs[i].1.val == discrs[o].1.val {
let err = error.get_or_insert_with(|| {
let mut ret = struct_span_err!(
tcx.sess,
self_span,
E0081,
"discriminant value `{}` assigned more than once",
discrs[i].1,
);
report(discrs[i].1, hir_var_i_idx, &mut ret);
ret
});
report(discrs[o].1, hir_var_o_idx, err);
// Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
discrs[o] = *discrs.last().unwrap();
discrs.pop();
} else {
o += 1;
}
}
if let Some(mut e) = error {
e.emit();
}
i += 1;
}
}
pub(super) fn check_type_params_are_used<'tcx>(
tcx: TyCtxt<'tcx>,
generics: &ty::Generics,
ty: Ty<'tcx>,
) {
debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);
assert_eq!(generics.parent, None);
if generics.own_counts().types == 0 {
return;
}
let mut params_used = BitSet::new_empty(generics.params.len());
if ty.references_error() {
// If there is already another error, do not emit
// an error for not using a type parameter.
assert!(tcx.sess.has_errors().is_some());
return;
}
2022-01-12 03:19:52 +00:00
for leaf in ty.walk() {
if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
&& let ty::Param(param) = leaf_ty.kind()
{
debug!("found use of ty param {:?}", param);
params_used.insert(param.index);
}
}
for param in &generics.params {
if !params_used.contains(param.index)
&& let ty::GenericParamDefKind::Type { .. } = param.kind
{
let span = tcx.def_span(param.def_id);
struct_span_err!(
tcx.sess,
span,
E0091,
"type parameter `{}` is unused",
param.name,
)
.span_label(span, "unused type parameter")
.emit();
}
}
}
pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
let module = tcx.hir_module_items(module_def_id);
for id in module.items() {
check_item_type(tcx, id);
}
}
fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed {
struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
.span_label(span, "recursive `async fn`")
.note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
.note(
"consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
)
.emit()
}
/// Emit an error for recursive opaque types.
///
/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
/// `impl Trait`.
///
/// If all the return expressions evaluate to `!`, then we explain that the error will go away
/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
fn opaque_type_cycle_error(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) -> ErrorGuaranteed {
let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
let mut label = false;
if let Some((def_id, visitor)) = get_owner_return_paths(tcx, def_id) {
let typeck_results = tcx.typeck(def_id);
if visitor
.returns
.iter()
.filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
.all(|ty| matches!(ty.kind(), ty::Never))
{
let spans = visitor
.returns
.iter()
.filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
.map(|expr| expr.span)
.collect::<Vec<Span>>();
let span_len = spans.len();
if span_len == 1 {
err.span_label(spans[0], "this returned value is of `!` type");
} else {
let mut multispan: MultiSpan = spans.clone().into();
for span in spans {
multispan.push_span_label(span, "this returned value is of `!` type");
}
err.span_note(multispan, "these returned values have a concrete \"never\" type");
}
err.help("this error will resolve once the item's body returns a concrete type");
} else {
let mut seen = FxHashSet::default();
seen.insert(span);
err.span_label(span, "recursive opaque type");
label = true;
for (sp, ty) in visitor
.returns
.iter()
.filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
.filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
{
2021-03-16 00:05:45 +01:00
struct OpaqueTypeCollector(Vec<DefId>);
2022-06-17 13:15:00 +01:00
impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypeCollector {
2020-11-05 17:30:39 +01:00
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
match *t.kind() {
ty::Opaque(def, _) => {
self.0.push(def);
ControlFlow::CONTINUE
}
_ => t.super_visit_with(self),
}
}
}
2021-03-16 00:05:45 +01:00
let mut visitor = OpaqueTypeCollector(vec![]);
ty.visit_with(&mut visitor);
for def_id in visitor.0 {
let ty_span = tcx.def_span(def_id);
if !seen.contains(&ty_span) {
err.span_label(ty_span, &format!("returning this opaque type `{ty}`"));
seen.insert(ty_span);
}
err.span_label(sp, &format!("returning here with type `{ty}`"));
}
}
}
}
if !label {
err.span_label(span, "cannot resolve opaque type");
}
err.emit()
}