rust/compiler/rustc_expand/src/base.rs

1354 lines
45 KiB
Rust
Raw Normal View History

use crate::expand::{self, AstFragment, Invocation};
use crate::module::DirOwnership;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Nonterminal};
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 18:33:17 -05:00
use rustc_ast::tokenstream::{CanSynthesizeMissingTokens, TokenStream};
use rustc_ast::visit::{AssocCtxt, Visitor};
use rustc_ast::{self as ast, AstLike, Attribute, Item, NodeId, PatKind};
use rustc_attr::{self as attr, Deprecation, Stability};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::{self, Lrc};
2020-03-17 13:06:01 +01:00
use rustc_errors::{DiagnosticBuilder, ErrorReported};
Extend `proc_macro_back_compat` lint to `procedural-masquerade` We now lint on *any* use of `procedural-masquerade` crate. While this crate still exists, its main reverse dependency (`cssparser`) no longer depends on it. Any crates still depending off should stop doing so, as it only exists to support very old Rust versions. If a crate actually needs to support old versions of rustc via `procedural-masquerade`, then they'll just need to accept the warning until we remove it entirely (at the same time as the back-compat hack). The latest version of `procedural-masquerade` does not work with the latest rustc, but trying to check for the version seems like more trouble than it's worth. While working on this, I realized that the `proc-macro-hack` check was never actually doing anything. The corresponding enum variant in `proc-macro-hack` is named `Value` or `Nested` - it has never been called `Input`. Due to a strange Crater issue, the Crater run that tested adding this did *not* end up testing it - some of the crates that would have failed did not actually have their tests checked, making it seem as though the `proc-macro-hack` check was working. The Crater issue is being discussed at https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661 Despite the `proc-macro-hack` check not actually doing anything, we haven't gotten any reports from users about their build being broken. I went ahead and removed it entirely, since it's clear that no one is being affected by the `proc-macro-hack` regression in practice.
2021-03-15 15:54:25 -04:00
use rustc_lint_defs::builtin::PROC_MACRO_BACK_COMPAT;
use rustc_lint_defs::BuiltinLintDiagnostics;
use rustc_parse::{self, nt_to_tokenstream, parser, MACRO_ARGUMENTS};
use rustc_session::{parse::ParseSess, Limit, Session};
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 19:52:16 -04:00
use rustc_span::def_id::{CrateNum, DefId};
2020-01-01 19:40:49 +01:00
use rustc_span::edition::Edition;
2021-06-25 20:43:04 +02:00
use rustc_span::hygiene::{AstPass, ExpnData, ExpnKind, LocalExpnId};
use rustc_span::source_map::SourceMap;
2020-01-01 19:30:57 +01:00
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{FileName, MultiSpan, Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
2019-02-07 02:33:01 +09:00
2019-12-22 17:42:04 -05:00
use std::default::Default;
use std::iter;
use std::path::PathBuf;
use std::rc::Rc;
crate use rustc_span::hygiene::MacroKind;
// When adding new variants, make sure to
// adjust the `visit_*` / `flat_map_*` calls in `InvocationCollector`
// to use `assign_id!`
2019-12-22 17:42:04 -05:00
#[derive(Debug, Clone)]
pub enum Annotatable {
Item(P<ast::Item>),
TraitItem(P<ast::AssocItem>),
ImplItem(P<ast::AssocItem>),
ForeignItem(P<ast::ForeignItem>),
Stmt(P<ast::Stmt>),
Expr(P<ast::Expr>),
Arm(ast::Arm),
ExprField(ast::ExprField),
PatField(ast::PatField),
GenericParam(ast::GenericParam),
Param(ast::Param),
FieldDef(ast::FieldDef),
Variant(ast::Variant),
}
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 18:33:17 -05:00
impl Annotatable {
pub fn span(&self) -> Span {
match *self {
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 18:33:17 -05:00
Annotatable::Item(ref item) => item.span,
Annotatable::TraitItem(ref trait_item) => trait_item.span,
Annotatable::ImplItem(ref impl_item) => impl_item.span,
Annotatable::ForeignItem(ref foreign_item) => foreign_item.span,
Annotatable::Stmt(ref stmt) => stmt.span,
Annotatable::Expr(ref expr) => expr.span,
Annotatable::Arm(ref arm) => arm.span,
Annotatable::ExprField(ref field) => field.span,
Annotatable::PatField(ref fp) => fp.pat.span,
Annotatable::GenericParam(ref gp) => gp.ident.span,
Annotatable::Param(ref p) => p.span,
Annotatable::FieldDef(ref sf) => sf.span,
Annotatable::Variant(ref v) => v.span,
}
}
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 18:33:17 -05:00
pub fn visit_attrs(&mut self, f: impl FnOnce(&mut Vec<Attribute>)) {
match self {
Overhaul `syntax::fold::Folder`. This commit changes `syntax::fold::Folder` from a functional style (where most methods take a `T` and produce a new `T`) to a more imperative style (where most methods take and modify a `&mut T`), and renames it `syntax::mut_visit::MutVisitor`. The first benefit is speed. The functional style does not require any reallocations, due to the use of `P::map` and `MoveMap::move_{,flat_}map`. However, every field in the AST must be overwritten; even those fields that are unchanged are overwritten with the same value. This causes a lot of unnecessary memory writes. The imperative style reduces instruction counts by 1--3% across a wide range of workloads, particularly incremental workloads. The second benefit is conciseness; the imperative style is usually more concise. E.g. compare the old functional style: ``` fn fold_abc(&mut self, abc: ABC) { ABC { a: fold_a(abc.a), b: fold_b(abc.b), c: abc.c, } } ``` with the imperative style: ``` fn visit_abc(&mut self, ABC { a, b, c: _ }: &mut ABC) { visit_a(a); visit_b(b); } ``` (The reductions get larger in more complex examples.) Overall, the patch removes over 200 lines of code -- even though the new code has more comments -- and a lot of the remaining lines have fewer characters. Some notes: - The old style used methods called `fold_*`. The new style mostly uses methods called `visit_*`, but there are a few methods that map a `T` to something other than a `T`, which are called `flat_map_*` (`T` maps to multiple `T`s) or `filter_map_*` (`T` maps to 0 or 1 `T`s). - `move_map.rs`/`MoveMap`/`move_map`/`move_flat_map` are renamed `map_in_place.rs`/`MapInPlace`/`map_in_place`/`flat_map_in_place` to reflect their slightly changed signatures. - Although this commit renames the `fold` module as `mut_visit`, it keeps it in the `fold.rs` file, so as not to confuse git. The next commit will rename the file.
2019-02-05 15:20:55 +11:00
Annotatable::Item(item) => item.visit_attrs(f),
Annotatable::TraitItem(trait_item) => trait_item.visit_attrs(f),
Annotatable::ImplItem(impl_item) => impl_item.visit_attrs(f),
Annotatable::ForeignItem(foreign_item) => foreign_item.visit_attrs(f),
Annotatable::Stmt(stmt) => stmt.visit_attrs(f),
Annotatable::Expr(expr) => expr.visit_attrs(f),
Annotatable::Arm(arm) => arm.visit_attrs(f),
Annotatable::ExprField(field) => field.visit_attrs(f),
Annotatable::PatField(fp) => fp.visit_attrs(f),
Annotatable::GenericParam(gp) => gp.visit_attrs(f),
Annotatable::Param(p) => p.visit_attrs(f),
Annotatable::FieldDef(sf) => sf.visit_attrs(f),
Annotatable::Variant(v) => v.visit_attrs(f),
}
}
pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
match self {
Annotatable::Item(item) => visitor.visit_item(item),
Annotatable::TraitItem(item) => visitor.visit_assoc_item(item, AssocCtxt::Trait),
Annotatable::ImplItem(item) => visitor.visit_assoc_item(item, AssocCtxt::Impl),
Annotatable::ForeignItem(foreign_item) => visitor.visit_foreign_item(foreign_item),
Annotatable::Stmt(stmt) => visitor.visit_stmt(stmt),
Annotatable::Expr(expr) => visitor.visit_expr(expr),
Annotatable::Arm(arm) => visitor.visit_arm(arm),
Annotatable::ExprField(field) => visitor.visit_expr_field(field),
Annotatable::PatField(fp) => visitor.visit_pat_field(fp),
Annotatable::GenericParam(gp) => visitor.visit_generic_param(gp),
Annotatable::Param(p) => visitor.visit_param(p),
Annotatable::FieldDef(sf) => visitor.visit_field_def(sf),
Annotatable::Variant(v) => visitor.visit_variant(v),
}
}
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 18:33:17 -05:00
pub fn into_nonterminal(self) -> Nonterminal {
match self {
Annotatable::Item(item) => token::NtItem(item),
Annotatable::TraitItem(item) | Annotatable::ImplItem(item) => {
token::NtItem(P(item.and_then(ast::AssocItem::into_item)))
}
Annotatable::ForeignItem(item) => {
token::NtItem(P(item.and_then(ast::ForeignItem::into_item)))
}
Annotatable::Stmt(stmt) => token::NtStmt(stmt.into_inner()),
Annotatable::Expr(expr) => token::NtExpr(expr),
Annotatable::Arm(..)
| Annotatable::ExprField(..)
| Annotatable::PatField(..)
| Annotatable::GenericParam(..)
| Annotatable::Param(..)
| Annotatable::FieldDef(..)
| Annotatable::Variant(..) => panic!("unexpected annotatable"),
}
}
crate fn into_tokens(self, sess: &ParseSess) -> TokenStream {
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 18:33:17 -05:00
nt_to_tokenstream(&self.into_nonterminal(), sess, CanSynthesizeMissingTokens::No)
}
pub fn expect_item(self) -> P<ast::Item> {
match self {
Annotatable::Item(i) => i,
2019-12-22 17:42:04 -05:00
_ => panic!("expected Item"),
}
}
pub fn expect_trait_item(self) -> P<ast::AssocItem> {
match self {
Annotatable::TraitItem(i) => i,
2019-12-22 17:42:04 -05:00
_ => panic!("expected Item"),
}
}
pub fn expect_impl_item(self) -> P<ast::AssocItem> {
match self {
Annotatable::ImplItem(i) => i,
2019-12-22 17:42:04 -05:00
_ => panic!("expected Item"),
}
}
pub fn expect_foreign_item(self) -> P<ast::ForeignItem> {
match self {
Annotatable::ForeignItem(i) => i,
2019-12-22 17:42:04 -05:00
_ => panic!("expected foreign item"),
}
}
pub fn expect_stmt(self) -> ast::Stmt {
match self {
Annotatable::Stmt(stmt) => stmt.into_inner(),
_ => panic!("expected statement"),
}
}
pub fn expect_expr(self) -> P<ast::Expr> {
match self {
Annotatable::Expr(expr) => expr,
_ => panic!("expected expression"),
}
}
pub fn expect_arm(self) -> ast::Arm {
match self {
Annotatable::Arm(arm) => arm,
2019-12-22 17:42:04 -05:00
_ => panic!("expected match arm"),
}
}
pub fn expect_expr_field(self) -> ast::ExprField {
match self {
Annotatable::ExprField(field) => field,
2019-12-22 17:42:04 -05:00
_ => panic!("expected field"),
}
}
pub fn expect_pat_field(self) -> ast::PatField {
match self {
Annotatable::PatField(fp) => fp,
2019-12-22 17:42:04 -05:00
_ => panic!("expected field pattern"),
}
}
pub fn expect_generic_param(self) -> ast::GenericParam {
match self {
Annotatable::GenericParam(gp) => gp,
2019-12-22 17:42:04 -05:00
_ => panic!("expected generic parameter"),
}
}
pub fn expect_param(self) -> ast::Param {
match self {
Annotatable::Param(param) => param,
2019-12-22 17:42:04 -05:00
_ => panic!("expected parameter"),
}
}
pub fn expect_field_def(self) -> ast::FieldDef {
match self {
Annotatable::FieldDef(sf) => sf,
2019-12-22 17:42:04 -05:00
_ => panic!("expected struct field"),
}
}
pub fn expect_variant(self) -> ast::Variant {
match self {
Annotatable::Variant(v) => v,
2019-12-22 17:42:04 -05:00
_ => panic!("expected variant"),
}
}
}
/// Result of an expansion that may need to be retried.
/// Consider using this for non-`MultiItemModifier` expanders as well.
pub enum ExpandResult<T, U> {
/// Expansion produced a result (possibly dummy).
Ready(T),
/// Expansion could not produce a result and needs to be retried.
Retry(U),
}
// `meta_item` is the attribute, and `item` is the item being modified.
pub trait MultiItemModifier {
2019-12-22 17:42:04 -05:00
fn expand(
&self,
ecx: &mut ExtCtxt<'_>,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable,
) -> ExpandResult<Vec<Annotatable>, Annotatable>;
}
2019-12-30 21:38:43 +03:00
impl<F> MultiItemModifier for F
2019-12-22 17:42:04 -05:00
where
2019-12-30 21:38:43 +03:00
F: Fn(&mut ExtCtxt<'_>, Span, &ast::MetaItem, Annotatable) -> Vec<Annotatable>,
{
2019-12-22 17:42:04 -05:00
fn expand(
&self,
ecx: &mut ExtCtxt<'_>,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable,
) -> ExpandResult<Vec<Annotatable>, Annotatable> {
ExpandResult::Ready(self(ecx, span, meta_item, item))
}
}
pub trait ProcMacro {
2020-03-17 10:09:18 +01:00
fn expand<'cx>(
&self,
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
ts: TokenStream,
) -> Result<TokenStream, ErrorReported>;
}
impl<F> ProcMacro for F
2019-12-22 17:42:04 -05:00
where
F: Fn(TokenStream) -> TokenStream,
{
2020-03-17 10:09:18 +01:00
fn expand<'cx>(
&self,
_ecx: &'cx mut ExtCtxt<'_>,
_span: Span,
ts: TokenStream,
) -> Result<TokenStream, ErrorReported> {
// FIXME setup implicit context in TLS before calling self.
2020-09-28 23:10:48 +03:00
Ok(self(ts))
}
}
pub trait AttrProcMacro {
2019-12-22 17:42:04 -05:00
fn expand<'cx>(
&self,
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
annotation: TokenStream,
annotated: TokenStream,
2020-03-17 10:56:00 +01:00
) -> Result<TokenStream, ErrorReported>;
}
impl<F> AttrProcMacro for F
2019-12-22 17:42:04 -05:00
where
F: Fn(TokenStream, TokenStream) -> TokenStream,
{
2019-12-22 17:42:04 -05:00
fn expand<'cx>(
&self,
_ecx: &'cx mut ExtCtxt<'_>,
_span: Span,
annotation: TokenStream,
annotated: TokenStream,
2020-03-17 10:56:00 +01:00
) -> Result<TokenStream, ErrorReported> {
// FIXME setup implicit context in TLS before calling self.
2020-09-28 23:10:48 +03:00
Ok(self(annotation, annotated))
}
}
/// Represents a thing that maps token trees to Macro Results
pub trait TTMacroExpander {
fn expand<'cx>(
&self,
2019-02-07 02:33:01 +09:00
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
input: TokenStream,
2019-12-22 17:42:04 -05:00
) -> Box<dyn MacResult + 'cx>;
}
pub type MacroExpanderFn =
2019-12-22 17:42:04 -05:00
for<'cx> fn(&'cx mut ExtCtxt<'_>, Span, TokenStream) -> Box<dyn MacResult + 'cx>;
impl<F> TTMacroExpander for F
2019-12-22 17:42:04 -05:00
where
F: for<'cx> Fn(&'cx mut ExtCtxt<'_>, Span, TokenStream) -> Box<dyn MacResult + 'cx>,
{
fn expand<'cx>(
&self,
2019-02-07 02:33:01 +09:00
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
input: TokenStream,
2019-12-22 17:42:04 -05:00
) -> Box<dyn MacResult + 'cx> {
2020-09-28 23:10:48 +03:00
self(ecx, span, input)
}
}
2013-07-08 15:55:14 -07:00
// Use a macro because forwarding to a simple function has type system issues
macro_rules! make_stmts_default {
($me:expr) => {
2019-12-22 17:42:04 -05:00
$me.make_expr().map(|e| {
smallvec![ast::Stmt {
id: ast::DUMMY_NODE_ID,
span: e.span,
kind: ast::StmtKind::Expr(e),
}]
})
};
}
/// The result of a macro expansion. The return values of the various
/// methods are spliced into the AST at the callsite of the macro.
pub trait MacResult {
2019-02-08 14:53:55 +01:00
/// Creates an expression.
2014-09-13 19:06:01 +03:00
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
None
}
2019-02-08 14:53:55 +01:00
/// Creates zero or more items.
2018-08-30 11:42:16 +02:00
fn make_items(self: Box<Self>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
None
}
2019-02-08 14:53:55 +01:00
/// Creates zero or more impl items.
fn make_impl_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
None
}
2019-02-08 14:53:55 +01:00
/// Creates zero or more trait items.
fn make_trait_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
None
}
2019-02-08 14:53:55 +01:00
/// Creates zero or more items in an `extern {}` block
fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[P<ast::ForeignItem>; 1]>> {
2019-12-22 17:42:04 -05:00
None
}
2019-02-08 14:53:55 +01:00
/// Creates a pattern.
2014-09-13 19:06:01 +03:00
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
2014-05-19 13:32:51 -07:00
None
}
2019-02-08 14:53:55 +01:00
/// Creates zero or more statements.
///
/// By default this attempts to create an expression statement,
/// returning None if that fails.
2018-08-30 11:42:16 +02:00
fn make_stmts(self: Box<Self>) -> Option<SmallVec<[ast::Stmt; 1]>> {
make_stmts_default!(self)
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
None
}
fn make_arms(self: Box<Self>) -> Option<SmallVec<[ast::Arm; 1]>> {
None
}
fn make_expr_fields(self: Box<Self>) -> Option<SmallVec<[ast::ExprField; 1]>> {
None
}
fn make_pat_fields(self: Box<Self>) -> Option<SmallVec<[ast::PatField; 1]>> {
None
}
fn make_generic_params(self: Box<Self>) -> Option<SmallVec<[ast::GenericParam; 1]>> {
None
}
fn make_params(self: Box<Self>) -> Option<SmallVec<[ast::Param; 1]>> {
None
}
fn make_field_defs(self: Box<Self>) -> Option<SmallVec<[ast::FieldDef; 1]>> {
None
}
fn make_variants(self: Box<Self>) -> Option<SmallVec<[ast::Variant; 1]>> {
None
}
}
2013-07-08 15:55:14 -07:00
macro_rules! make_MacEager {
( $( $fld:ident: $t:ty, )* ) => {
/// `MacResult` implementation for the common case where you've already
/// built each form of AST that you might return.
#[derive(Default)]
pub struct MacEager {
$(
pub $fld: Option<$t>,
)*
}
impl MacEager {
$(
pub fn $fld(v: $t) -> Box<dyn MacResult> {
Box::new(MacEager {
$fld: Some(v),
..Default::default()
})
}
)*
}
}
}
make_MacEager! {
expr: P<ast::Expr>,
pat: P<ast::Pat>,
2018-08-30 11:42:16 +02:00
items: SmallVec<[P<ast::Item>; 1]>,
impl_items: SmallVec<[P<ast::AssocItem>; 1]>,
trait_items: SmallVec<[P<ast::AssocItem>; 1]>,
foreign_items: SmallVec<[P<ast::ForeignItem>; 1]>,
2018-08-30 11:42:16 +02:00
stmts: SmallVec<[ast::Stmt; 1]>,
ty: P<ast::Ty>,
2014-05-19 13:32:51 -07:00
}
impl MacResult for MacEager {
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
self.expr
2014-05-19 13:32:51 -07:00
}
2018-08-30 11:42:16 +02:00
fn make_items(self: Box<Self>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
self.items
2014-05-19 13:32:51 -07:00
}
fn make_impl_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
self.impl_items
}
fn make_trait_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
self.trait_items
}
fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[P<ast::ForeignItem>; 1]>> {
self.foreign_items
}
2018-08-30 11:42:16 +02:00
fn make_stmts(self: Box<Self>) -> Option<SmallVec<[ast::Stmt; 1]>> {
match self.stmts.as_ref().map_or(0, |s| s.len()) {
0 => make_stmts_default!(self),
_ => self.stmts,
}
}
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
if let Some(p) = self.pat {
return Some(p);
}
if let Some(e) = self.expr {
if let ast::ExprKind::Lit(_) = e.kind {
return Some(P(ast::Pat {
id: ast::DUMMY_NODE_ID,
span: e.span,
2019-09-26 16:18:31 +01:00
kind: PatKind::Lit(e),
tokens: None,
}));
}
}
None
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
self.ty
}
}
/// Fill-in macro expansion result, to allow compilation to continue
/// after hitting errors.
2015-03-30 09:38:59 -04:00
#[derive(Copy, Clone)]
pub struct DummyResult {
2018-12-20 03:57:48 +03:00
is_error: bool,
span: Span,
2012-07-06 14:29:50 -07:00
}
impl DummyResult {
2019-02-08 14:53:55 +01:00
/// Creates a default MacResult that can be anything.
///
/// Use this as a return value after hitting any errors and
/// calling `span_err`.
2019-12-22 17:42:04 -05:00
pub fn any(span: Span) -> Box<dyn MacResult + 'static> {
Box::new(DummyResult { is_error: true, span })
2018-12-20 03:57:48 +03:00
}
/// Same as `any`, but must be a valid fragment, not error.
2019-12-22 17:42:04 -05:00
pub fn any_valid(span: Span) -> Box<dyn MacResult + 'static> {
Box::new(DummyResult { is_error: false, span })
}
/// A plain dummy expression.
2018-12-20 03:57:48 +03:00
pub fn raw_expr(sp: Span, is_error: bool) -> P<ast::Expr> {
2014-09-13 19:06:01 +03:00
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
kind: if is_error { ast::ExprKind::Err } else { ast::ExprKind::Tup(Vec::new()) },
span: sp,
2019-12-03 16:38:34 +01:00
attrs: ast::AttrVec::new(),
2020-05-19 16:56:20 -04:00
tokens: None,
2014-09-13 19:06:01 +03:00
})
}
2014-05-19 13:32:51 -07:00
/// A plain dummy pattern.
2014-09-13 19:06:01 +03:00
pub fn raw_pat(sp: Span) -> ast::Pat {
ast::Pat { id: ast::DUMMY_NODE_ID, kind: PatKind::Wild, span: sp, tokens: None }
2014-05-19 13:32:51 -07:00
}
/// A plain dummy type.
2018-12-20 03:57:48 +03:00
pub fn raw_ty(sp: Span, is_error: bool) -> P<ast::Ty> {
P(ast::Ty {
id: ast::DUMMY_NODE_ID,
2019-09-26 17:25:31 +01:00
kind: if is_error { ast::TyKind::Err } else { ast::TyKind::Tup(Vec::new()) },
2019-12-22 17:42:04 -05:00
span: sp,
tokens: None,
})
}
}
impl MacResult for DummyResult {
2014-09-13 19:06:01 +03:00
fn make_expr(self: Box<DummyResult>) -> Option<P<ast::Expr>> {
2018-12-20 03:57:48 +03:00
Some(DummyResult::raw_expr(self.span, self.is_error))
}
2014-09-13 19:06:01 +03:00
fn make_pat(self: Box<DummyResult>) -> Option<P<ast::Pat>> {
Some(P(DummyResult::raw_pat(self.span)))
2014-05-19 13:32:51 -07:00
}
2018-08-30 11:42:16 +02:00
fn make_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
Some(SmallVec::new())
}
fn make_impl_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
Some(SmallVec::new())
}
fn make_trait_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
Some(SmallVec::new())
}
fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[P<ast::ForeignItem>; 1]>> {
Some(SmallVec::new())
}
2018-08-30 11:42:16 +02:00
fn make_stmts(self: Box<DummyResult>) -> Option<SmallVec<[ast::Stmt; 1]>> {
2018-08-13 22:15:16 +03:00
Some(smallvec![ast::Stmt {
2016-06-17 02:30:01 +00:00
id: ast::DUMMY_NODE_ID,
2019-09-26 17:34:50 +01:00
kind: ast::StmtKind::Expr(DummyResult::raw_expr(self.span, self.is_error)),
2016-06-17 02:30:01 +00:00
span: self.span,
2018-08-13 22:15:16 +03:00
}])
}
fn make_ty(self: Box<DummyResult>) -> Option<P<ast::Ty>> {
2018-12-20 03:57:48 +03:00
Some(DummyResult::raw_ty(self.span, self.is_error))
}
fn make_arms(self: Box<DummyResult>) -> Option<SmallVec<[ast::Arm; 1]>> {
2019-12-22 17:42:04 -05:00
Some(SmallVec::new())
}
fn make_expr_fields(self: Box<DummyResult>) -> Option<SmallVec<[ast::ExprField; 1]>> {
Some(SmallVec::new())
}
fn make_pat_fields(self: Box<DummyResult>) -> Option<SmallVec<[ast::PatField; 1]>> {
Some(SmallVec::new())
}
fn make_generic_params(self: Box<DummyResult>) -> Option<SmallVec<[ast::GenericParam; 1]>> {
Some(SmallVec::new())
}
fn make_params(self: Box<DummyResult>) -> Option<SmallVec<[ast::Param; 1]>> {
Some(SmallVec::new())
}
fn make_field_defs(self: Box<DummyResult>) -> Option<SmallVec<[ast::FieldDef; 1]>> {
Some(SmallVec::new())
}
fn make_variants(self: Box<DummyResult>) -> Option<SmallVec<[ast::Variant; 1]>> {
Some(SmallVec::new())
}
}
/// A syntax extension kind.
pub enum SyntaxExtensionKind {
/// A token-based function-like macro.
Bang(
/// An expander with signature TokenStream -> TokenStream.
Box<dyn ProcMacro + sync::Sync + sync::Send>,
),
/// An AST-based function-like macro.
LegacyBang(
/// An expander with signature TokenStream -> AST.
Box<dyn TTMacroExpander + sync::Sync + sync::Send>,
),
/// A token-based attribute macro.
Attr(
/// An expander with signature (TokenStream, TokenStream) -> TokenStream.
/// The first TokenSteam is the attribute itself, the second is the annotated item.
/// The produced TokenSteam replaces the input TokenSteam.
Box<dyn AttrProcMacro + sync::Sync + sync::Send>,
),
/// An AST-based attribute macro.
LegacyAttr(
/// An expander with signature (AST, AST) -> AST.
/// The first AST fragment is the attribute itself, the second is the annotated item.
/// The produced AST fragment replaces the input AST fragment.
Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
),
/// A trivial attribute "macro" that does nothing,
/// only keeps the attribute and marks it as inert,
/// thus making it ineligible for further expansion.
NonMacroAttr {
/// Suppresses the `unused_attributes` lint for this attribute.
mark_used: bool,
},
/// A token-based derive macro.
Derive(
/// An expander with signature TokenStream -> TokenStream (not yet).
/// The produced TokenSteam is appended to the input TokenSteam.
Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
),
/// An AST-based derive macro.
LegacyDerive(
/// An expander with signature AST -> AST.
/// The produced AST fragment is appended to the input AST fragment.
Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
),
}
/// A struct representing a macro definition in "lowered" form ready for expansion.
pub struct SyntaxExtension {
/// A syntax extension kind.
pub kind: SyntaxExtensionKind,
/// Span of the macro definition.
pub span: Span,
/// List of unstable features that are treated as stable inside this macro.
pub allow_internal_unstable: Option<Lrc<[Symbol]>>,
/// Suppresses the `unsafe_code` lint for code produced by this macro.
pub allow_internal_unsafe: bool,
/// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`) for this macro.
pub local_inner_macros: bool,
/// The macro's stability info.
pub stability: Option<Stability>,
/// The macro's deprecation info.
pub deprecation: Option<Deprecation>,
/// Names of helper attributes registered by this macro.
pub helper_attrs: Vec<Symbol>,
/// Edition of the crate in which this macro is defined.
pub edition: Edition,
/// Built-in macros have a couple of special properties like availability
/// in `#[no_implicit_prelude]` modules, so we have to keep this flag.
pub builtin_name: Option<Symbol>,
}
impl SyntaxExtension {
2019-02-08 14:53:55 +01:00
/// Returns which kind of macro calls this syntax extension.
pub fn macro_kind(&self) -> MacroKind {
match self.kind {
2019-12-22 17:42:04 -05:00
SyntaxExtensionKind::Bang(..) | SyntaxExtensionKind::LegacyBang(..) => MacroKind::Bang,
SyntaxExtensionKind::Attr(..)
| SyntaxExtensionKind::LegacyAttr(..)
| SyntaxExtensionKind::NonMacroAttr { .. } => MacroKind::Attr,
SyntaxExtensionKind::Derive(..) | SyntaxExtensionKind::LegacyDerive(..) => {
MacroKind::Derive
}
}
}
2017-03-22 08:39:51 +00:00
/// Constructs a syntax extension with default properties.
pub fn default(kind: SyntaxExtensionKind, edition: Edition) -> SyntaxExtension {
SyntaxExtension {
span: DUMMY_SP,
allow_internal_unstable: None,
allow_internal_unsafe: false,
local_inner_macros: false,
stability: None,
deprecation: None,
helper_attrs: Vec::new(),
edition,
builtin_name: None,
kind,
2018-06-24 19:54:23 +03:00
}
}
/// Constructs a syntax extension with the given properties
/// and other properties converted from attributes.
pub fn new(
sess: &Session,
kind: SyntaxExtensionKind,
span: Span,
helper_attrs: Vec<Symbol>,
edition: Edition,
2020-04-19 13:00:18 +02:00
name: Symbol,
attrs: &[ast::Attribute],
) -> SyntaxExtension {
let allow_internal_unstable =
attr::allow_internal_unstable(sess, &attrs).collect::<Vec<Symbol>>();
let mut local_inner_macros = false;
if let Some(macro_export) = sess.find_by_name(attrs, sym::macro_export) {
if let Some(l) = macro_export.meta_item_list() {
local_inner_macros = attr::list_contains_name(&l, sym::local_inner_macros);
}
}
let (builtin_name, helper_attrs) = sess
2021-01-09 16:54:12 +01:00
.find_by_name(attrs, sym::rustc_builtin_macro)
.map(|attr| {
// Override `helper_attrs` passed above if it's a built-in macro,
// marking `proc_macro_derive` macros as built-in is not a realistic use case.
parse_macro_name_and_helper_attrs(sess.diagnostic(), attr, "built-in").map_or_else(
|| (Some(name), Vec::new()),
|(name, helper_attrs)| (Some(name), helper_attrs),
)
})
.unwrap_or_else(|| (None, helper_attrs));
let (stability, const_stability) = attr::find_stability(&sess, attrs, span);
if let Some((_, sp)) = const_stability {
sess.parse_sess
.span_diagnostic
.struct_span_err(sp, "macros cannot have const stability attributes")
.span_label(sp, "invalid const stability attribute")
.span_label(
sess.source_map().guess_head_span(span),
"const stability attribute affects this macro",
)
.emit();
}
SyntaxExtension {
kind,
span,
allow_internal_unstable: (!allow_internal_unstable.is_empty())
.then(|| allow_internal_unstable.into()),
allow_internal_unsafe: sess.contains_name(attrs, sym::allow_internal_unsafe),
local_inner_macros,
stability: stability.map(|(s, _)| s),
deprecation: attr::find_deprecation(&sess, attrs).map(|(d, _)| d),
helper_attrs,
edition,
builtin_name,
}
}
pub fn dummy_bang(edition: Edition) -> SyntaxExtension {
2019-12-22 17:42:04 -05:00
fn expander<'cx>(
_: &'cx mut ExtCtxt<'_>,
span: Span,
_: TokenStream,
) -> Box<dyn MacResult + 'cx> {
DummyResult::any(span)
}
SyntaxExtension::default(SyntaxExtensionKind::LegacyBang(Box::new(expander)), edition)
}
pub fn dummy_derive(edition: Edition) -> SyntaxExtension {
2019-12-22 17:42:04 -05:00
fn expander(
_: &mut ExtCtxt<'_>,
_: Span,
_: &ast::MetaItem,
_: Annotatable,
) -> Vec<Annotatable> {
Vec::new()
}
SyntaxExtension::default(SyntaxExtensionKind::Derive(Box::new(expander)), edition)
}
pub fn non_macro_attr(mark_used: bool, edition: Edition) -> SyntaxExtension {
SyntaxExtension::default(SyntaxExtensionKind::NonMacroAttr { mark_used }, edition)
}
pub fn expn_data(
&self,
2021-06-25 20:43:04 +02:00
parent: LocalExpnId,
call_site: Span,
descr: Symbol,
macro_def_id: Option<DefId>,
2021-06-28 19:29:55 +02:00
parent_module: Option<DefId>,
) -> ExpnData {
ExpnData::new(
ExpnKind::Macro(self.macro_kind(), descr),
2021-06-25 20:43:04 +02:00
parent.to_expn_id(),
call_site,
self.span,
self.allow_internal_unstable.clone(),
self.allow_internal_unsafe,
self.local_inner_macros,
self.edition,
macro_def_id,
2021-06-28 19:29:55 +02:00
parent_module,
)
}
}
/// Error type that denotes indeterminacy.
pub struct Indeterminate;
pub type DeriveResolutions = Vec<(ast::Path, Annotatable, Option<Lrc<SyntaxExtension>>)>;
2020-06-27 23:51:28 +03:00
pub trait ResolverExpand {
fn next_node_id(&mut self) -> NodeId;
fn resolve_dollar_crates(&mut self);
2021-06-25 20:43:04 +02:00
fn visit_ast_fragment_with_placeholders(
&mut self,
expn_id: LocalExpnId,
fragment: &AstFragment,
);
2021-01-10 14:36:30 +03:00
fn register_builtin_macro(&mut self, name: Symbol, ext: SyntaxExtensionKind);
fn expansion_for_ast_pass(
&mut self,
call_site: Span,
pass: AstPass,
features: &[Symbol],
parent_module_id: Option<NodeId>,
2021-06-25 20:43:04 +02:00
) -> LocalExpnId;
2016-11-10 10:11:25 +00:00
fn resolve_imports(&mut self);
fn resolve_macro_invocation(
2019-12-22 17:42:04 -05:00
&mut self,
invoc: &Invocation,
2021-06-25 20:43:04 +02:00
eager_expansion_root: LocalExpnId,
2019-12-22 17:42:04 -05:00
force: bool,
) -> Result<Lrc<SyntaxExtension>, Indeterminate>;
fn check_unused_macros(&mut self);
2020-11-19 01:50:16 +03:00
// Resolver interfaces for specific built-in macros.
/// Does `#[derive(...)]` attribute with the given `ExpnId` have built-in `Copy` inside it?
2021-06-25 20:43:04 +02:00
fn has_derive_copy(&self, expn_id: LocalExpnId) -> bool;
/// Resolve paths inside the `#[derive(...)]` attribute with the given `ExpnId`.
fn resolve_derives(
&mut self,
2021-06-25 20:43:04 +02:00
expn_id: LocalExpnId,
force: bool,
derive_paths: &dyn Fn() -> DeriveResolutions,
) -> Result<(), Indeterminate>;
/// Take resolutions for paths inside the `#[derive(...)]` attribute with the given `ExpnId`
/// back from resolver.
2021-06-25 20:43:04 +02:00
fn take_derive_resolutions(&mut self, expn_id: LocalExpnId) -> Option<DeriveResolutions>;
2020-11-19 01:50:16 +03:00
/// Path resolution logic for `#[cfg_accessible(path)]`.
2021-06-25 20:43:04 +02:00
fn cfg_accessible(
&mut self,
expn_id: LocalExpnId,
path: &ast::Path,
) -> Result<bool, Indeterminate>;
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 19:52:16 -04:00
/// Decodes the proc-macro quoted span in the specified crate, with the specified id.
/// No caching is performed.
fn get_proc_macro_quoted_span(&self, krate: CrateNum, id: usize) -> Span;
}
#[derive(Clone, Default)]
pub struct ModuleData {
/// Path to the module starting from the crate name, like `my_crate::foo::bar`.
2020-04-19 13:00:18 +02:00
pub mod_path: Vec<Ident>,
/// Stack of paths to files loaded by out-of-line module items,
/// used to detect and report recursive module inclusions.
pub file_path_stack: Vec<PathBuf>,
/// Directory to search child module files in,
/// often (but not necessarily) the parent of the top file path on the `file_path_stack`.
pub dir_path: PathBuf,
}
impl ModuleData {
pub fn with_dir_path(&self, dir_path: PathBuf) -> ModuleData {
ModuleData {
mod_path: self.mod_path.clone(),
file_path_stack: self.file_path_stack.clone(),
dir_path,
}
}
}
#[derive(Clone)]
pub struct ExpansionData {
2021-06-25 20:43:04 +02:00
pub id: LocalExpnId,
pub depth: usize,
pub module: Rc<ModuleData>,
pub dir_ownership: DirOwnership,
pub prior_type_ascription: Option<(Span, bool)>,
/// Some parent node that is close to this macro call
pub lint_node_id: NodeId,
}
type OnExternModLoaded<'a> =
Option<&'a dyn Fn(Ident, Vec<Attribute>, Vec<P<Item>>, Span) -> (Vec<Attribute>, Vec<P<Item>>)>;
2014-06-09 13:12:30 -07:00
/// One of these is made during expansion and incrementally updated as we go;
/// when a macro expansion occurs, the resulting nodes have the `backtrace()
/// -> expn_data` of their expansion context stored into their span.
2013-12-25 11:10:33 -07:00
pub struct ExtCtxt<'a> {
pub sess: &'a Session,
pub ecfg: expand::ExpansionConfig<'a>,
pub reduced_recursion_limit: Option<Limit>,
pub root_path: PathBuf,
2020-06-27 23:51:28 +03:00
pub resolver: &'a mut dyn ResolverExpand,
pub current_expansion: ExpansionData,
/// Error recovery mode entered when expansion is stuck
/// (or during eager expansion, but that's a hack).
pub force_mode: bool,
pub expansions: FxHashMap<Span, Vec<String>>,
2020-03-16 00:43:37 +01:00
/// Called directly after having parsed an external `mod foo;` in expansion.
///
/// `Ident` is the module name.
pub(super) extern_mod_loaded: OnExternModLoaded<'a>,
}
2013-03-15 15:24:24 -04:00
2013-12-25 11:10:33 -07:00
impl<'a> ExtCtxt<'a> {
2019-12-22 17:42:04 -05:00
pub fn new(
sess: &'a Session,
2019-12-22 17:42:04 -05:00
ecfg: expand::ExpansionConfig<'a>,
2020-06-27 23:51:28 +03:00
resolver: &'a mut dyn ResolverExpand,
extern_mod_loaded: OnExternModLoaded<'a>,
2019-12-22 17:42:04 -05:00
) -> ExtCtxt<'a> {
2013-12-27 17:17:36 -07:00
ExtCtxt {
sess,
ecfg,
reduced_recursion_limit: None,
resolver,
2020-03-16 00:43:37 +01:00
extern_mod_loaded,
root_path: PathBuf::new(),
current_expansion: ExpansionData {
2021-06-25 20:43:04 +02:00
id: LocalExpnId::ROOT,
depth: 0,
module: Default::default(),
dir_ownership: DirOwnership::Owned { relative: None },
prior_type_ascription: None,
lint_node_id: ast::CRATE_NODE_ID,
},
force_mode: false,
expansions: FxHashMap::default(),
}
}
/// Returns a `Folder` for deeply expanding all macros in an AST node.
pub fn expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self, false)
}
2019-02-08 14:53:55 +01:00
/// Returns a `Folder` that deeply expands all macros and assigns all `NodeId`s in an AST node.
/// Once `NodeId`s are assigned, the node may not be expanded, removed, or otherwise modified.
pub fn monotonic_expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self, true)
}
pub fn new_parser_from_tts(&self, stream: TokenStream) -> parser::Parser<'a> {
rustc_parse::stream_to_parser(&self.sess.parse_sess, stream, MACRO_ARGUMENTS)
}
2019-12-22 17:42:04 -05:00
pub fn source_map(&self) -> &'a SourceMap {
self.sess.parse_sess.source_map()
2019-12-22 17:42:04 -05:00
}
pub fn parse_sess(&self) -> &'a ParseSess {
&self.sess.parse_sess
2019-12-22 17:42:04 -05:00
}
pub fn call_site(&self) -> Span {
self.current_expansion.id.expn_data().call_site
2017-03-17 04:04:41 +00:00
}
/// Equivalent of `Span::def_site` from the proc macro API,
/// except that the location is taken from the span passed as an argument.
pub fn with_def_site_ctxt(&self, span: Span) -> Span {
2021-06-25 20:43:04 +02:00
span.with_def_site_ctxt(self.current_expansion.id.to_expn_id())
}
/// Equivalent of `Span::call_site` from the proc macro API,
/// except that the location is taken from the span passed as an argument.
pub fn with_call_site_ctxt(&self, span: Span) -> Span {
2021-06-25 20:43:04 +02:00
span.with_call_site_ctxt(self.current_expansion.id.to_expn_id())
}
/// Equivalent of `Span::mixed_site` from the proc macro API,
/// except that the location is taken from the span passed as an argument.
pub fn with_mixed_site_ctxt(&self, span: Span) -> Span {
2021-06-25 20:43:04 +02:00
span.with_mixed_site_ctxt(self.current_expansion.id.to_expn_id())
}
/// Returns span for the macro which originally caused the current expansion to happen.
///
/// Stops backtracing at include! boundary.
2017-05-15 09:41:05 +00:00
pub fn expansion_cause(&self) -> Option<Span> {
self.current_expansion.id.expansion_cause()
}
2019-12-22 17:42:04 -05:00
pub fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> DiagnosticBuilder<'a> {
self.sess.parse_sess.span_diagnostic.struct_span_err(sp, msg)
2015-12-21 10:00:43 +13:00
}
/// Emit `msg` attached to `sp`, without immediately stopping
/// compilation.
///
/// Compilation will be stopped in the near future (at the end of
/// the macro expansion phase).
pub fn span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
self.sess.parse_sess.span_diagnostic.span_err(sp, msg);
}
pub fn span_warn<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
self.sess.parse_sess.span_diagnostic.span_warn(sp, msg);
}
pub fn span_bug<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
self.sess.parse_sess.span_diagnostic.span_bug(sp, msg);
}
pub fn trace_macros_diag(&mut self) {
for (sp, notes) in self.expansions.iter() {
let mut db = self.sess.parse_sess.span_diagnostic.span_note_diag(*sp, "trace_macro");
for note in notes {
db.note(note);
}
db.emit();
}
// Fixme: does this result in errors?
self.expansions.clear();
}
pub fn bug(&self, msg: &str) -> ! {
self.sess.parse_sess.span_diagnostic.bug(msg);
}
pub fn trace_macros(&self) -> bool {
self.ecfg.trace_mac
}
2013-12-28 22:35:38 -07:00
pub fn set_trace_macros(&mut self, x: bool) {
self.ecfg.trace_mac = x
}
2020-04-19 13:00:18 +02:00
pub fn std_path(&self, components: &[Symbol]) -> Vec<Ident> {
let def_site = self.with_def_site_ctxt(DUMMY_SP);
2019-05-11 17:41:37 +03:00
iter::once(Ident::new(kw::DollarCrate, def_site))
.chain(components.iter().map(|&s| Ident::with_dummy_span(s)))
.collect()
}
pub fn def_site_path(&self, components: &[Symbol]) -> Vec<Ident> {
let def_site = self.with_def_site_ctxt(DUMMY_SP);
components.iter().map(|&s| Ident::new(s, def_site)).collect()
}
2017-05-11 10:26:07 +02:00
pub fn check_unused_macros(&mut self) {
2017-05-11 10:26:07 +02:00
self.resolver.check_unused_macros();
}
2019-06-22 21:51:51 +02:00
2021-05-18 21:46:41 -04:00
/// Resolves a `path` mentioned inside Rust code, returning an absolute path.
2019-06-22 21:51:51 +02:00
///
2021-05-18 21:46:41 -04:00
/// This unifies the logic used for resolving `include_X!`.
2019-06-22 21:51:51 +02:00
///
2021-05-18 21:46:41 -04:00
/// FIXME: move this to `rustc_builtin_macros` and make it private.
pub fn resolve_path(
&self,
path: impl Into<PathBuf>,
span: Span,
) -> Result<PathBuf, DiagnosticBuilder<'a>> {
2019-06-22 21:51:51 +02:00
let path = path.into();
// Relative paths are resolved relative to the file in which they are found
// after macro expansion (that is, they are unhygienic).
if !path.is_absolute() {
let callsite = span.source_callsite();
let mut result = match self.source_map().span_to_filename(callsite) {
FileName::Real(name) => name
.into_local_path()
.expect("attempting to resolve a file path in an external file"),
2019-06-22 21:51:51 +02:00
FileName::DocTest(path, _) => path,
2019-12-22 17:42:04 -05:00
other => {
return Err(self.struct_span_err(
span,
&format!(
"cannot resolve relative path in non-file source `{}`",
other.prefer_local()
),
2019-12-22 17:42:04 -05:00
));
}
2019-06-22 21:51:51 +02:00
};
result.pop();
result.push(path);
Ok(result)
2019-06-22 21:51:51 +02:00
} else {
Ok(path)
2019-06-22 21:51:51 +02:00
}
}
}
2019-02-08 14:53:55 +01:00
/// Extracts a string literal from the macro expanded version of `expr`,
/// emitting `err_msg` if `expr` is not a string literal. This does not stop
2019-02-08 14:53:55 +01:00
/// compilation on error, merely emits a non-fatal error and returns `None`.
pub fn expr_to_spanned_string<'a>(
2019-02-07 02:33:01 +09:00
cx: &'a mut ExtCtxt<'_>,
expr: P<ast::Expr>,
err_msg: &str,
) -> Result<(Symbol, ast::StrStyle, Span), Option<DiagnosticBuilder<'a>>> {
// Perform eager expansion on the expression.
// We want to be able to handle e.g., `concat!("foo", "bar")`.
let expr = cx.expander().fully_expand_fragment(AstFragment::Expr(expr)).make_expr();
Err(match expr.kind {
2019-09-26 16:56:53 +01:00
ast::ExprKind::Lit(ref l) => match l.kind {
ast::LitKind::Str(s, style) => return Ok((s, style, expr.span)),
ast::LitKind::Err(_) => None,
2019-12-22 17:42:04 -05:00
_ => Some(cx.struct_span_err(l.span, err_msg)),
},
ast::ExprKind::Err => None,
2019-12-22 17:42:04 -05:00
_ => Some(cx.struct_span_err(expr.span, err_msg)),
})
}
2019-12-22 17:42:04 -05:00
pub fn expr_to_string(
cx: &mut ExtCtxt<'_>,
expr: P<ast::Expr>,
err_msg: &str,
) -> Option<(Symbol, ast::StrStyle)> {
expr_to_spanned_string(cx, expr, err_msg)
2020-02-02 09:47:58 +10:00
.map_err(|err| {
err.map(|mut err| {
err.emit();
})
})
.ok()
.map(|(symbol, style, _)| (symbol, style))
2016-09-02 22:01:35 +00:00
}
/// Non-fatally assert that `tts` is empty. Note that this function
/// returns even when `tts` is non-empty, macros that *need* to stop
/// compilation should call
/// `cx.parse_sess.span_diagnostic.abort_if_errors()` (this should be
/// done as rarely as possible).
2019-12-22 17:42:04 -05:00
pub fn check_zero_tts(cx: &ExtCtxt<'_>, sp: Span, tts: TokenStream, name: &str) {
if !tts.is_empty() {
cx.span_err(sp, &format!("{} takes no arguments", name));
}
}
2020-03-17 08:29:34 +01:00
/// Parse an expression. On error, emit it, advancing to `Eof`, and return `None`.
pub fn parse_expr(p: &mut parser::Parser<'_>) -> Option<P<ast::Expr>> {
2020-03-17 08:29:34 +01:00
match p.parse_expr() {
Ok(e) => return Some(e),
Err(mut err) => err.emit(),
}
while p.token != token::Eof {
p.bump();
}
None
}
/// Interpreting `tts` as a comma-separated sequence of expressions,
2019-02-08 14:53:55 +01:00
/// expect exactly one string literal, or emit an error and return `None`.
2019-12-22 17:42:04 -05:00
pub fn get_single_str_from_tts(
cx: &mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
name: &str,
) -> Option<String> {
let mut p = cx.new_parser_from_tts(tts);
2014-11-02 23:10:09 -08:00
if p.token == token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
2019-12-22 17:42:04 -05:00
return None;
2014-11-02 23:10:09 -08:00
}
2020-03-17 08:29:34 +01:00
let ret = parse_expr(&mut p)?;
let _ = p.eat(&token::Comma);
if p.token != token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
}
2019-12-22 17:42:04 -05:00
expr_to_string(cx, ret, "argument must be a string literal").map(|(s, _)| s.to_string())
}
2020-03-17 08:29:34 +01:00
/// Extracts comma-separated expressions from `tts`.
/// On error, emit it, and return `None`.
2019-12-22 17:42:04 -05:00
pub fn get_exprs_from_tts(
cx: &mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
) -> Option<Vec<P<ast::Expr>>> {
let mut p = cx.new_parser_from_tts(tts);
let mut es = Vec::new();
2014-10-27 19:22:52 +11:00
while p.token != token::Eof {
2020-03-17 08:29:34 +01:00
let expr = parse_expr(&mut p)?;
// Perform eager expansion on the expression.
// We want to be able to handle e.g., `concat!("foo", "bar")`.
let expr = cx.expander().fully_expand_fragment(AstFragment::Expr(expr)).make_expr();
Overhaul `syntax::fold::Folder`. This commit changes `syntax::fold::Folder` from a functional style (where most methods take a `T` and produce a new `T`) to a more imperative style (where most methods take and modify a `&mut T`), and renames it `syntax::mut_visit::MutVisitor`. The first benefit is speed. The functional style does not require any reallocations, due to the use of `P::map` and `MoveMap::move_{,flat_}map`. However, every field in the AST must be overwritten; even those fields that are unchanged are overwritten with the same value. This causes a lot of unnecessary memory writes. The imperative style reduces instruction counts by 1--3% across a wide range of workloads, particularly incremental workloads. The second benefit is conciseness; the imperative style is usually more concise. E.g. compare the old functional style: ``` fn fold_abc(&mut self, abc: ABC) { ABC { a: fold_a(abc.a), b: fold_b(abc.b), c: abc.c, } } ``` with the imperative style: ``` fn visit_abc(&mut self, ABC { a, b, c: _ }: &mut ABC) { visit_a(a); visit_b(b); } ``` (The reductions get larger in more complex examples.) Overall, the patch removes over 200 lines of code -- even though the new code has more comments -- and a lot of the remaining lines have fewer characters. Some notes: - The old style used methods called `fold_*`. The new style mostly uses methods called `visit_*`, but there are a few methods that map a `T` to something other than a `T`, which are called `flat_map_*` (`T` maps to multiple `T`s) or `filter_map_*` (`T` maps to 0 or 1 `T`s). - `move_map.rs`/`MoveMap`/`move_map`/`move_flat_map` are renamed `map_in_place.rs`/`MapInPlace`/`map_in_place`/`flat_map_in_place` to reflect their slightly changed signatures. - Although this commit renames the `fold` module as `mut_visit`, it keeps it in the `fold.rs` file, so as not to confuse git. The next commit will rename the file.
2019-02-05 15:20:55 +11:00
es.push(expr);
if p.eat(&token::Comma) {
continue;
}
2014-10-27 19:22:52 +11:00
if p.token != token::Eof {
cx.span_err(sp, "expected token: `,`");
return None;
}
}
Some(es)
}
Extend `proc_macro_back_compat` lint to `procedural-masquerade` We now lint on *any* use of `procedural-masquerade` crate. While this crate still exists, its main reverse dependency (`cssparser`) no longer depends on it. Any crates still depending off should stop doing so, as it only exists to support very old Rust versions. If a crate actually needs to support old versions of rustc via `procedural-masquerade`, then they'll just need to accept the warning until we remove it entirely (at the same time as the back-compat hack). The latest version of `procedural-masquerade` does not work with the latest rustc, but trying to check for the version seems like more trouble than it's worth. While working on this, I realized that the `proc-macro-hack` check was never actually doing anything. The corresponding enum variant in `proc-macro-hack` is named `Value` or `Nested` - it has never been called `Input`. Due to a strange Crater issue, the Crater run that tested adding this did *not* end up testing it - some of the crates that would have failed did not actually have their tests checked, making it seem as though the `proc-macro-hack` check was working. The Crater issue is being discussed at https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661 Despite the `proc-macro-hack` check not actually doing anything, we haven't gotten any reports from users about their build being broken. I went ahead and removed it entirely, since it's clear that no one is being affected by the `proc-macro-hack` regression in practice.
2021-03-15 15:54:25 -04:00
pub fn parse_macro_name_and_helper_attrs(
diag: &rustc_errors::Handler,
attr: &Attribute,
descr: &str,
) -> Option<(Symbol, Vec<Symbol>)> {
// Once we've located the `#[proc_macro_derive]` attribute, verify
// that it's of the form `#[proc_macro_derive(Foo)]` or
// `#[proc_macro_derive(Foo, attributes(A, ..))]`
let list = match attr.meta_item_list() {
Some(list) => list,
None => return None,
};
if list.len() != 1 && list.len() != 2 {
diag.span_err(attr.span, "attribute must have either one or two arguments");
return None;
}
let trait_attr = match list[0].meta_item() {
Some(meta_item) => meta_item,
_ => {
diag.span_err(list[0].span(), "not a meta item");
return None;
}
};
let trait_ident = match trait_attr.ident() {
Some(trait_ident) if trait_attr.is_word() => trait_ident,
_ => {
diag.span_err(trait_attr.span, "must only be one word");
return None;
}
};
if !trait_ident.name.can_be_raw() {
diag.span_err(
trait_attr.span,
&format!("`{}` cannot be a name of {} macro", trait_ident, descr),
);
}
let attributes_attr = list.get(1);
let proc_attrs: Vec<_> = if let Some(attr) = attributes_attr {
if !attr.has_name(sym::attributes) {
diag.span_err(attr.span(), "second argument must be `attributes`")
}
attr.meta_item_list()
.unwrap_or_else(|| {
diag.span_err(attr.span(), "attribute must be of form: `attributes(foo, bar)`");
&[]
})
.iter()
.filter_map(|attr| {
let attr = match attr.meta_item() {
Some(meta_item) => meta_item,
_ => {
diag.span_err(attr.span(), "not a meta item");
return None;
}
};
let ident = match attr.ident() {
Some(ident) if attr.is_word() => ident,
_ => {
diag.span_err(attr.span, "must only be one word");
return None;
}
};
if !ident.name.can_be_raw() {
diag.span_err(
attr.span,
&format!("`{}` cannot be a name of derive helper attribute", ident),
);
}
Some(ident.name)
})
.collect()
} else {
Vec::new()
};
Some((trait_ident.name, proc_attrs))
}
Extend `proc_macro_back_compat` lint to `procedural-masquerade` We now lint on *any* use of `procedural-masquerade` crate. While this crate still exists, its main reverse dependency (`cssparser`) no longer depends on it. Any crates still depending off should stop doing so, as it only exists to support very old Rust versions. If a crate actually needs to support old versions of rustc via `procedural-masquerade`, then they'll just need to accept the warning until we remove it entirely (at the same time as the back-compat hack). The latest version of `procedural-masquerade` does not work with the latest rustc, but trying to check for the version seems like more trouble than it's worth. While working on this, I realized that the `proc-macro-hack` check was never actually doing anything. The corresponding enum variant in `proc-macro-hack` is named `Value` or `Nested` - it has never been called `Input`. Due to a strange Crater issue, the Crater run that tested adding this did *not* end up testing it - some of the crates that would have failed did not actually have their tests checked, making it seem as though the `proc-macro-hack` check was working. The Crater issue is being discussed at https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661 Despite the `proc-macro-hack` check not actually doing anything, we haven't gotten any reports from users about their build being broken. I went ahead and removed it entirely, since it's clear that no one is being affected by the `proc-macro-hack` regression in practice.
2021-03-15 15:54:25 -04:00
/// This nonterminal looks like some specific enums from
/// `proc-macro-hack` and `procedural-masquerade` crates.
/// We need to maintain some special pretty-printing behavior for them due to incorrect
/// asserts in old versions of those crates and their wide use in the ecosystem.
/// See issue #73345 for more details.
/// FIXME(#73933): Remove this eventually.
pub(crate) fn pretty_printing_compatibility_hack(nt: &Nonterminal, sess: &ParseSess) -> bool {
let item = match nt {
Nonterminal::NtItem(item) => item,
Nonterminal::NtStmt(stmt) => match &stmt.kind {
ast::StmtKind::Item(item) => item,
_ => return false,
},
_ => return false,
};
let name = item.ident.name;
if name == sym::ProceduralMasqueradeDummyType {
if let ast::ItemKind::Enum(enum_def, _) = &item.kind {
if let [variant] = &*enum_def.variants {
if variant.ident.name == sym::Input {
sess.buffer_lint_with_diagnostic(
&PROC_MACRO_BACK_COMPAT,
item.ident.span,
ast::CRATE_NODE_ID,
"using `procedural-masquerade` crate",
BuiltinLintDiagnostics::ProcMacroBackCompat(
"The `procedural-masquerade` crate has been unnecessary since Rust 1.30.0. \
Versions of this crate below 0.1.7 will eventually stop compiling.".to_string())
);
return true;
}
}
}
}
false
}