2018-04-15 14:56:14 +02:00
|
|
|
//! Support code for rustdoc and external tools . You really don't
|
|
|
|
//! want to be using this unless you need to.
|
|
|
|
|
2018-03-09 22:49:37 +01:00
|
|
|
use super::*;
|
|
|
|
|
|
|
|
use std::collections::hash_map::Entry;
|
2018-04-12 11:58:34 +02:00
|
|
|
use std::collections::VecDeque;
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2019-02-05 11:20:45 -06:00
|
|
|
use crate::infer::region_constraints::{Constraint, RegionConstraintData};
|
|
|
|
use crate::infer::InferCtxt;
|
2018-09-12 17:48:51 -04:00
|
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2019-02-05 11:20:45 -06:00
|
|
|
use crate::ty::fold::TypeFolder;
|
|
|
|
use crate::ty::{Region, RegionVid};
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-04-05 21:21:17 +02:00
|
|
|
// FIXME(twk): this is obviously not nice to duplicate like that
|
2018-03-09 22:49:37 +01:00
|
|
|
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
|
2018-04-01 22:38:47 +02:00
|
|
|
pub enum RegionTarget<'tcx> {
|
2018-03-09 22:49:37 +01:00
|
|
|
Region(Region<'tcx>),
|
2018-04-07 00:25:25 +02:00
|
|
|
RegionVid(RegionVid),
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Default, Debug, Clone)]
|
2018-04-01 22:38:47 +02:00
|
|
|
pub struct RegionDeps<'tcx> {
|
2018-03-09 22:49:37 +01:00
|
|
|
larger: FxHashSet<RegionTarget<'tcx>>,
|
2018-04-07 00:25:25 +02:00
|
|
|
smaller: FxHashSet<RegionTarget<'tcx>>,
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
|
2018-04-05 20:10:15 +02:00
|
|
|
pub enum AutoTraitResult<A> {
|
2018-03-09 22:49:37 +01:00
|
|
|
ExplicitImpl,
|
2018-04-05 20:10:15 +02:00
|
|
|
PositiveImpl(A),
|
2018-03-09 22:49:37 +01:00
|
|
|
NegativeImpl,
|
|
|
|
}
|
|
|
|
|
2018-04-05 20:10:15 +02:00
|
|
|
impl<A> AutoTraitResult<A> {
|
2018-03-09 22:49:37 +01:00
|
|
|
fn is_auto(&self) -> bool {
|
|
|
|
match *self {
|
2018-04-12 11:58:34 +02:00
|
|
|
AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
|
2018-03-09 22:49:37 +01:00
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-05 20:10:15 +02:00
|
|
|
pub struct AutoTraitInfo<'cx> {
|
|
|
|
pub full_user_env: ty::ParamEnv<'cx>,
|
|
|
|
pub region_data: RegionConstraintData<'cx>,
|
|
|
|
pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
|
|
|
|
}
|
|
|
|
|
2019-06-11 22:03:44 +03:00
|
|
|
pub struct AutoTraitFinder<'tcx> {
|
2019-06-14 00:48:52 +03:00
|
|
|
tcx: TyCtxt<'tcx>,
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
|
2019-06-11 22:03:44 +03:00
|
|
|
impl<'tcx> AutoTraitFinder<'tcx> {
|
2019-06-14 00:48:52 +03:00
|
|
|
pub fn new(tcx: TyCtxt<'tcx>) -> Self {
|
2018-04-07 00:12:51 +02:00
|
|
|
AutoTraitFinder { tcx }
|
|
|
|
}
|
|
|
|
|
2019-02-08 14:53:55 +01:00
|
|
|
/// Makes a best effort to determine whether and under which conditions an auto trait is
|
2018-04-26 22:22:06 +02:00
|
|
|
/// implemented for a type. For example, if you have
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// struct Foo<T> { data: Box<T> }
|
|
|
|
/// ```
|
2018-08-10 18:13:43 +01:00
|
|
|
///
|
2018-04-26 22:22:06 +02:00
|
|
|
/// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
|
|
|
|
/// The analysis attempts to account for custom impls as well as other complex cases. This
|
|
|
|
/// result is intended for use by rustdoc and other such consumers.
|
2018-08-10 18:13:43 +01:00
|
|
|
///
|
2018-04-26 22:22:06 +02:00
|
|
|
/// (Note that due to the coinductive nature of Send, the full and correct result is actually
|
|
|
|
/// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
|
|
|
|
/// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
|
|
|
|
/// But this is often not the best way to present to the user.)
|
2018-08-10 18:13:43 +01:00
|
|
|
///
|
2018-04-26 22:22:06 +02:00
|
|
|
/// Warning: The API should be considered highly unstable, and it may be refactored or removed
|
|
|
|
/// in the future.
|
2018-04-12 11:58:34 +02:00
|
|
|
pub fn find_auto_trait_generics<A>(
|
|
|
|
&self,
|
2019-04-20 18:27:44 +03:00
|
|
|
ty: Ty<'tcx>,
|
2019-04-22 22:52:51 +03:00
|
|
|
orig_env: ty::ParamEnv<'tcx>,
|
2018-04-12 11:58:34 +02:00
|
|
|
trait_did: DefId,
|
2019-06-14 00:48:52 +03:00
|
|
|
auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
|
2018-04-12 11:58:34 +02:00
|
|
|
) -> AutoTraitResult<A> {
|
2018-03-09 22:49:37 +01:00
|
|
|
let tcx = self.tcx;
|
|
|
|
|
|
|
|
let trait_ref = ty::TraitRef {
|
|
|
|
def_id: trait_did,
|
|
|
|
substs: tcx.mk_substs_trait(ty, &[]),
|
|
|
|
};
|
|
|
|
|
2018-04-05 20:10:15 +02:00
|
|
|
let trait_pred = ty::Binder::bind(trait_ref);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-04-12 11:58:34 +02:00
|
|
|
let bail_out = tcx.infer_ctxt().enter(|infcx| {
|
|
|
|
let mut selcx = SelectionContext::with_negative(&infcx, true);
|
|
|
|
let result = selcx.select(&Obligation::new(
|
|
|
|
ObligationCause::dummy(),
|
2019-04-22 22:52:51 +03:00
|
|
|
orig_env,
|
2018-04-12 11:58:34 +02:00
|
|
|
trait_pred.to_poly_trait_predicate(),
|
|
|
|
));
|
2018-09-12 16:57:19 +02:00
|
|
|
|
2018-04-12 11:58:34 +02:00
|
|
|
match result {
|
|
|
|
Ok(Some(Vtable::VtableImpl(_))) => {
|
|
|
|
debug!(
|
2019-04-22 22:52:51 +03:00
|
|
|
"find_auto_trait_generics({:?}): \
|
2018-03-09 22:49:37 +01:00
|
|
|
manual impl found, bailing out",
|
2019-04-22 22:52:51 +03:00
|
|
|
trait_ref
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
2018-09-12 16:57:19 +02:00
|
|
|
true
|
2018-04-12 11:58:34 +02:00
|
|
|
}
|
2018-09-12 16:57:19 +02:00
|
|
|
_ => false
|
|
|
|
}
|
2018-04-12 11:58:34 +02:00
|
|
|
});
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
// If an explicit impl exists, it always takes priority over an auto impl
|
|
|
|
if bail_out {
|
|
|
|
return AutoTraitResult::ExplicitImpl;
|
|
|
|
}
|
|
|
|
|
2018-04-12 11:58:34 +02:00
|
|
|
return tcx.infer_ctxt().enter(|mut infcx| {
|
2018-10-16 10:44:26 +02:00
|
|
|
let mut fresh_preds = FxHashSet::default();
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
// Due to the way projections are handled by SelectionContext, we need to run
|
|
|
|
// evaluate_predicates twice: once on the original param env, and once on the result of
|
|
|
|
// the first evaluate_predicates call.
|
|
|
|
//
|
|
|
|
// The problem is this: most of rustc, including SelectionContext and traits::project,
|
2018-11-27 02:59:49 +00:00
|
|
|
// are designed to work with a concrete usage of a type (e.g., Vec<u8>
|
2018-03-09 22:49:37 +01:00
|
|
|
// fn<T>() { Vec<T> }. This information will generally never change - given
|
|
|
|
// the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
|
|
|
|
// If we're unable to prove that 'T' implements a particular trait, we're done -
|
|
|
|
// there's nothing left to do but error out.
|
|
|
|
//
|
|
|
|
// However, synthesizing an auto trait impl works differently. Here, we start out with
|
|
|
|
// a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
|
|
|
|
// with - and progressively discover the conditions we need to fulfill for it to
|
|
|
|
// implement a certain auto trait. This ends up breaking two assumptions made by trait
|
|
|
|
// selection and projection:
|
|
|
|
//
|
|
|
|
// * We can always cache the result of a particular trait selection for the lifetime of
|
|
|
|
// an InfCtxt
|
|
|
|
// * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
|
|
|
|
// SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
|
|
|
|
//
|
|
|
|
// We fix the first assumption by manually clearing out all of the InferCtxt's caches
|
|
|
|
// in between calls to SelectionContext.select. This allows us to keep all of the
|
|
|
|
// intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
|
|
|
|
// them between calls.
|
|
|
|
//
|
|
|
|
// We fix the second assumption by reprocessing the result of our first call to
|
|
|
|
// evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
|
|
|
|
// pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
|
|
|
|
// traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
|
|
|
|
// SelectionContext to return it back to us.
|
|
|
|
|
2018-04-12 11:58:34 +02:00
|
|
|
let (new_env, user_env) = match self.evaluate_predicates(
|
|
|
|
&mut infcx,
|
|
|
|
trait_did,
|
|
|
|
ty,
|
2019-04-22 22:52:51 +03:00
|
|
|
orig_env,
|
|
|
|
orig_env,
|
2018-04-12 11:58:34 +02:00
|
|
|
&mut fresh_preds,
|
|
|
|
false,
|
|
|
|
) {
|
|
|
|
Some(e) => e,
|
|
|
|
None => return AutoTraitResult::NegativeImpl,
|
|
|
|
};
|
|
|
|
|
|
|
|
let (full_env, full_user_env) = self.evaluate_predicates(
|
|
|
|
&mut infcx,
|
|
|
|
trait_did,
|
|
|
|
ty,
|
2019-04-22 22:52:51 +03:00
|
|
|
new_env,
|
2018-04-12 11:58:34 +02:00
|
|
|
user_env,
|
|
|
|
&mut fresh_preds,
|
|
|
|
true,
|
|
|
|
).unwrap_or_else(|| {
|
|
|
|
panic!(
|
|
|
|
"Failed to fully process: {:?} {:?} {:?}",
|
2019-04-22 22:52:51 +03:00
|
|
|
ty, trait_did, orig_env
|
2018-04-12 11:58:34 +02:00
|
|
|
)
|
|
|
|
});
|
|
|
|
|
|
|
|
debug!(
|
2019-04-22 22:52:51 +03:00
|
|
|
"find_auto_trait_generics({:?}): fulfilling \
|
2018-03-09 22:49:37 +01:00
|
|
|
with {:?}",
|
2019-04-22 22:52:51 +03:00
|
|
|
trait_ref, full_env
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
infcx.clear_caches();
|
|
|
|
|
|
|
|
// At this point, we already have all of the bounds we need. FulfillmentContext is used
|
|
|
|
// to store all of the necessary region/lifetime bounds in the InferContext, as well as
|
|
|
|
// an additional sanity check.
|
|
|
|
let mut fulfill = FulfillmentContext::new();
|
2018-04-12 11:58:34 +02:00
|
|
|
fulfill.register_bound(
|
|
|
|
&infcx,
|
|
|
|
full_env,
|
|
|
|
ty,
|
|
|
|
trait_did,
|
2019-02-04 20:01:14 +01:00
|
|
|
ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID),
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
|
|
|
fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
|
|
|
|
panic!(
|
|
|
|
"Unable to fulfill trait {:?} for '{:?}': {:?}",
|
|
|
|
trait_did, ty, e
|
|
|
|
)
|
|
|
|
});
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-09-12 17:48:51 -04:00
|
|
|
let body_id_map: FxHashMap<_, _> = infcx
|
2018-03-09 22:49:37 +01:00
|
|
|
.region_obligations
|
|
|
|
.borrow()
|
|
|
|
.iter()
|
2018-09-12 17:48:51 -04:00
|
|
|
.map(|&(id, _)| (id, vec![]))
|
2018-03-09 22:49:37 +01:00
|
|
|
.collect();
|
|
|
|
|
2019-04-22 22:52:51 +03:00
|
|
|
infcx.process_registered_region_obligations(&body_id_map, None, full_env);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
let region_data = infcx
|
|
|
|
.borrow_region_constraints()
|
|
|
|
.region_constraint_data()
|
|
|
|
.clone();
|
|
|
|
|
|
|
|
let vid_to_region = self.map_vid_to_region(®ion_data);
|
|
|
|
|
2018-04-07 00:25:25 +02:00
|
|
|
let info = AutoTraitInfo {
|
|
|
|
full_user_env,
|
|
|
|
region_data,
|
|
|
|
vid_to_region,
|
|
|
|
};
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-04-05 20:10:15 +02:00
|
|
|
return AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info));
|
2018-03-09 22:49:37 +01:00
|
|
|
});
|
|
|
|
}
|
2018-04-05 20:10:15 +02:00
|
|
|
}
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2019-06-11 22:03:44 +03:00
|
|
|
impl AutoTraitFinder<'tcx> {
|
2018-03-09 22:49:37 +01:00
|
|
|
// The core logic responsible for computing the bounds for our synthesized impl.
|
|
|
|
//
|
|
|
|
// To calculate the bounds, we call SelectionContext.select in a loop. Like FulfillmentContext,
|
2018-08-19 15:30:23 +02:00
|
|
|
// we recursively select the nested obligations of predicates we encounter. However, whenever we
|
2018-03-09 22:49:37 +01:00
|
|
|
// encounter an UnimplementedError involving a type parameter, we add it to our ParamEnv. Since
|
|
|
|
// our goal is to determine when a particular type implements an auto trait, Unimplemented
|
|
|
|
// errors tell us what conditions need to be met.
|
|
|
|
//
|
2018-08-19 15:30:23 +02:00
|
|
|
// This method ends up working somewhat similarly to FulfillmentContext, but with a few key
|
2018-03-09 22:49:37 +01:00
|
|
|
// differences. FulfillmentContext works under the assumption that it's dealing with concrete
|
|
|
|
// user code. According, it considers all possible ways that a Predicate could be met - which
|
|
|
|
// isn't always what we want for a synthesized impl. For example, given the predicate 'T:
|
|
|
|
// Iterator', FulfillmentContext can end up reporting an Unimplemented error for T:
|
|
|
|
// IntoIterator - since there's an implementation of Iteratpr where T: IntoIterator,
|
|
|
|
// FulfillmentContext will drive SelectionContext to consider that impl before giving up. If we
|
|
|
|
// were to rely on FulfillmentContext's decision, we might end up synthesizing an impl like
|
|
|
|
// this:
|
|
|
|
// 'impl<T> Send for Foo<T> where T: IntoIterator'
|
|
|
|
//
|
|
|
|
// While it might be technically true that Foo implements Send where T: IntoIterator,
|
|
|
|
// the bound is overly restrictive - it's really only necessary that T: Iterator.
|
|
|
|
//
|
|
|
|
// For this reason, evaluate_predicates handles predicates with type variables specially. When
|
|
|
|
// we encounter an Unimplemented error for a bound such as 'T: Iterator', we immediately add it
|
|
|
|
// to our ParamEnv, and add it to our stack for recursive evaluation. When we later select it,
|
|
|
|
// we'll pick up any nested bounds, without ever inferring that 'T: IntoIterator' needs to
|
|
|
|
// hold.
|
|
|
|
//
|
2018-08-19 15:30:23 +02:00
|
|
|
// One additional consideration is supertrait bounds. Normally, a ParamEnv is only ever
|
2018-08-10 18:13:43 +01:00
|
|
|
// constructed once for a given type. As part of the construction process, the ParamEnv will
|
2018-11-27 02:59:49 +00:00
|
|
|
// have any supertrait bounds normalized - e.g., if we have a type 'struct Foo<T: Copy>', the
|
2018-03-09 22:49:37 +01:00
|
|
|
// ParamEnv will contain 'T: Copy' and 'T: Clone', since 'Copy: Clone'. When we construct our
|
2018-08-19 15:30:23 +02:00
|
|
|
// own ParamEnv, we need to do this ourselves, through traits::elaborate_predicates, or else
|
2018-03-09 22:49:37 +01:00
|
|
|
// SelectionContext will choke on the missing predicates. However, this should never show up in
|
|
|
|
// the final synthesized generics: we don't want our generated docs page to contain something
|
|
|
|
// like 'T: Copy + Clone', as that's redundant. Therefore, we keep track of a separate
|
|
|
|
// 'user_env', which only holds the predicates that will actually be displayed to the user.
|
2019-06-14 00:48:52 +03:00
|
|
|
fn evaluate_predicates(
|
2018-04-12 11:58:34 +02:00
|
|
|
&self,
|
2019-06-14 00:48:52 +03:00
|
|
|
infcx: &InferCtxt<'_, 'tcx>,
|
2018-04-12 11:58:34 +02:00
|
|
|
trait_did: DefId,
|
2019-06-14 00:48:52 +03:00
|
|
|
ty: Ty<'tcx>,
|
|
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
|
|
user_env: ty::ParamEnv<'tcx>,
|
|
|
|
fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
|
2018-04-12 11:58:34 +02:00
|
|
|
only_projections: bool,
|
2019-06-14 00:48:52 +03:00
|
|
|
) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
|
2018-03-09 22:49:37 +01:00
|
|
|
let tcx = infcx.tcx;
|
|
|
|
|
2018-10-25 15:14:32 -04:00
|
|
|
let mut select = SelectionContext::with_negative(&infcx, true);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-10-16 10:44:26 +02:00
|
|
|
let mut already_visited = FxHashSet::default();
|
2018-03-09 22:49:37 +01:00
|
|
|
let mut predicates = VecDeque::new();
|
2018-04-05 20:10:15 +02:00
|
|
|
predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
|
2018-04-12 11:58:34 +02:00
|
|
|
trait_ref: ty::TraitRef {
|
|
|
|
def_id: trait_did,
|
|
|
|
substs: infcx.tcx.mk_substs_trait(ty, &[]),
|
|
|
|
},
|
|
|
|
}));
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
|
|
|
|
let mut user_computed_preds: FxHashSet<_> =
|
|
|
|
user_env.caller_bounds.iter().cloned().collect();
|
|
|
|
|
2019-04-22 22:52:51 +03:00
|
|
|
let mut new_env = param_env;
|
2019-02-04 20:01:14 +01:00
|
|
|
let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
while let Some(pred) = predicates.pop_front() {
|
|
|
|
infcx.clear_caches();
|
|
|
|
|
2019-04-22 22:52:51 +03:00
|
|
|
if !already_visited.insert(pred) {
|
2018-03-09 22:49:37 +01:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2019-05-11 19:08:26 +01:00
|
|
|
// Call infcx.resolve_vars_if_possible to see if we can
|
2018-10-24 00:57:09 -04:00
|
|
|
// get rid of any inference variables.
|
2019-05-11 19:08:26 +01:00
|
|
|
let obligation = infcx.resolve_vars_if_possible(
|
2018-10-24 00:57:09 -04:00
|
|
|
&Obligation::new(dummy_cause.clone(), new_env, pred)
|
|
|
|
);
|
|
|
|
let result = select.select(&obligation);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
match &result {
|
|
|
|
&Ok(Some(ref vtable)) => {
|
2018-11-27 02:59:49 +00:00
|
|
|
// If we see an explicit negative impl (e.g., 'impl !Send for MyStruct'),
|
2018-11-08 12:15:26 -05:00
|
|
|
// we immediately bail out, since it's impossible for us to continue.
|
2018-10-25 15:14:32 -04:00
|
|
|
match vtable {
|
|
|
|
Vtable::VtableImpl(VtableImplData { impl_def_id, .. }) => {
|
2018-10-25 15:32:59 -04:00
|
|
|
// Blame tidy for the weird bracket placement
|
2019-07-14 00:09:46 +03:00
|
|
|
if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative
|
2018-10-25 15:32:59 -04:00
|
|
|
{
|
2018-10-25 15:14:32 -04:00
|
|
|
debug!("evaluate_nested_obligations: Found explicit negative impl\
|
|
|
|
{:?}, bailing out", impl_def_id);
|
|
|
|
return None;
|
|
|
|
}
|
|
|
|
},
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
|
2018-03-09 22:49:37 +01:00
|
|
|
let obligations = vtable.clone().nested_obligations().into_iter();
|
|
|
|
|
2018-04-12 11:58:34 +02:00
|
|
|
if !self.evaluate_nested_obligations(
|
|
|
|
ty,
|
|
|
|
obligations,
|
|
|
|
&mut user_computed_preds,
|
|
|
|
fresh_preds,
|
|
|
|
&mut predicates,
|
|
|
|
&mut select,
|
|
|
|
only_projections,
|
|
|
|
) {
|
2018-03-09 22:49:37 +01:00
|
|
|
return None;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
&Ok(None) => {}
|
|
|
|
&Err(SelectionError::Unimplemented) => {
|
2018-11-14 16:36:48 -05:00
|
|
|
if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
|
2018-03-09 22:49:37 +01:00
|
|
|
already_visited.remove(&pred);
|
2018-09-12 17:34:08 -04:00
|
|
|
self.add_user_pred(
|
|
|
|
&mut user_computed_preds,
|
2019-04-22 22:52:51 +03:00
|
|
|
ty::Predicate::Trait(pred),
|
2018-09-12 17:34:08 -04:00
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
predicates.push_back(pred);
|
|
|
|
} else {
|
2018-04-12 11:58:34 +02:00
|
|
|
debug!(
|
|
|
|
"evaluate_nested_obligations: Unimplemented found, bailing: \
|
2018-04-07 00:25:25 +02:00
|
|
|
{:?} {:?} {:?}",
|
2018-04-12 11:58:34 +02:00
|
|
|
ty,
|
|
|
|
pred,
|
|
|
|
pred.skip_binder().trait_ref.substs
|
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
return None;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
|
|
|
|
};
|
|
|
|
|
|
|
|
computed_preds.extend(user_computed_preds.iter().cloned());
|
|
|
|
let normalized_preds =
|
2019-04-22 22:52:51 +03:00
|
|
|
elaborate_predicates(tcx, computed_preds.iter().cloned().collect());
|
2018-11-17 18:56:14 +01:00
|
|
|
new_env = ty::ParamEnv::new(
|
|
|
|
tcx.mk_predicates(normalized_preds),
|
|
|
|
param_env.reveal,
|
|
|
|
None
|
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
|
2018-04-12 11:58:34 +02:00
|
|
|
let final_user_env = ty::ParamEnv::new(
|
|
|
|
tcx.mk_predicates(user_computed_preds.into_iter()),
|
|
|
|
user_env.reveal,
|
2018-11-17 18:56:14 +01:00
|
|
|
None
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
|
|
|
debug!(
|
2019-04-20 18:27:44 +03:00
|
|
|
"evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
|
2018-03-09 22:49:37 +01:00
|
|
|
'{:?}'",
|
2019-04-20 18:27:44 +03:00
|
|
|
ty, trait_did, new_env, final_user_env
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
return Some((new_env, final_user_env));
|
|
|
|
}
|
|
|
|
|
2018-08-02 14:34:25 -04:00
|
|
|
// This method is designed to work around the following issue:
|
|
|
|
// When we compute auto trait bounds, we repeatedly call SelectionContext.select,
|
|
|
|
// progressively building a ParamEnv based on the results we get.
|
|
|
|
// However, our usage of SelectionContext differs from its normal use within the compiler,
|
|
|
|
// in that we capture and re-reprocess predicates from Unimplemented errors.
|
|
|
|
//
|
|
|
|
// This can lead to a corner case when dealing with region parameters.
|
|
|
|
// During our selection loop in evaluate_predicates, we might end up with
|
|
|
|
// two trait predicates that differ only in their region parameters:
|
|
|
|
// one containing a HRTB lifetime parameter, and one containing a 'normal'
|
|
|
|
// lifetime parameter. For example:
|
|
|
|
//
|
|
|
|
// T as MyTrait<'a>
|
|
|
|
// T as MyTrait<'static>
|
|
|
|
//
|
|
|
|
// If we put both of these predicates in our computed ParamEnv, we'll
|
|
|
|
// confuse SelectionContext, since it will (correctly) view both as being applicable.
|
|
|
|
//
|
2018-11-27 02:59:49 +00:00
|
|
|
// To solve this, we pick the 'more strict' lifetime bound - i.e., the HRTB
|
2018-08-02 14:34:25 -04:00
|
|
|
// Our end goal is to generate a user-visible description of the conditions
|
|
|
|
// under which a type implements an auto trait. A trait predicate involving
|
|
|
|
// a HRTB means that the type needs to work with any choice of lifetime,
|
2018-11-27 02:59:49 +00:00
|
|
|
// not just one specific lifetime (e.g., 'static).
|
2018-09-12 17:34:08 -04:00
|
|
|
fn add_user_pred<'c>(
|
|
|
|
&self,
|
|
|
|
user_computed_preds: &mut FxHashSet<ty::Predicate<'c>>,
|
|
|
|
new_pred: ty::Predicate<'c>,
|
|
|
|
) {
|
2018-08-02 13:59:16 -04:00
|
|
|
let mut should_add_new = true;
|
|
|
|
user_computed_preds.retain(|&old_pred| {
|
|
|
|
match (&new_pred, old_pred) {
|
|
|
|
(&ty::Predicate::Trait(new_trait), ty::Predicate::Trait(old_trait)) => {
|
|
|
|
if new_trait.def_id() == old_trait.def_id() {
|
|
|
|
let new_substs = new_trait.skip_binder().trait_ref.substs;
|
|
|
|
let old_substs = old_trait.skip_binder().trait_ref.substs;
|
2018-09-12 16:57:19 +02:00
|
|
|
|
2018-08-02 13:59:16 -04:00
|
|
|
if !new_substs.types().eq(old_substs.types()) {
|
|
|
|
// We can't compare lifetimes if the types are different,
|
|
|
|
// so skip checking old_pred
|
2018-09-12 17:34:08 -04:00
|
|
|
return true;
|
2018-08-02 13:59:16 -04:00
|
|
|
}
|
|
|
|
|
2018-09-12 17:34:08 -04:00
|
|
|
for (new_region, old_region) in
|
|
|
|
new_substs.regions().zip(old_substs.regions())
|
|
|
|
{
|
2018-08-02 13:59:16 -04:00
|
|
|
match (new_region, old_region) {
|
|
|
|
// If both predicates have an 'ReLateBound' (a HRTB) in the
|
|
|
|
// same spot, we do nothing
|
2018-08-02 14:58:13 -04:00
|
|
|
(
|
|
|
|
ty::RegionKind::ReLateBound(_, _),
|
2018-09-12 17:34:08 -04:00
|
|
|
ty::RegionKind::ReLateBound(_, _),
|
|
|
|
) => {}
|
2018-08-02 13:59:16 -04:00
|
|
|
|
2018-10-28 15:33:27 -04:00
|
|
|
(ty::RegionKind::ReLateBound(_, _), _) |
|
|
|
|
(_, ty::RegionKind::ReVar(_)) => {
|
|
|
|
// One of these is true:
|
2018-08-02 13:59:16 -04:00
|
|
|
// The new predicate has a HRTB in a spot where the old
|
|
|
|
// predicate does not (if they both had a HRTB, the previous
|
2018-10-28 15:33:27 -04:00
|
|
|
// match arm would have executed). A HRBT is a 'stricter'
|
|
|
|
// bound than anything else, so we want to keep the newer
|
|
|
|
// predicate (with the HRBT) in place of the old predicate.
|
2018-08-02 13:59:16 -04:00
|
|
|
//
|
2018-10-28 15:33:27 -04:00
|
|
|
// OR
|
|
|
|
//
|
|
|
|
// The old predicate has a region variable where the new
|
|
|
|
// predicate has some other kind of region. An region
|
|
|
|
// variable isn't something we can actually display to a user,
|
|
|
|
// so we choose ther new predicate (which doesn't have a region
|
|
|
|
// varaible).
|
|
|
|
//
|
|
|
|
// In both cases, we want to remove the old predicate,
|
|
|
|
// from user_computed_preds, and replace it with the new
|
|
|
|
// one. Having both the old and the new
|
2018-08-02 13:59:16 -04:00
|
|
|
// predicate in a ParamEnv would confuse SelectionContext
|
2018-10-28 15:33:27 -04:00
|
|
|
//
|
2018-08-02 13:59:16 -04:00
|
|
|
// We're currently in the predicate passed to 'retain',
|
|
|
|
// so we return 'false' to remove the old predicate from
|
|
|
|
// user_computed_preds
|
|
|
|
return false;
|
2018-09-12 17:34:08 -04:00
|
|
|
}
|
2018-10-28 15:33:27 -04:00
|
|
|
(_, ty::RegionKind::ReLateBound(_, _)) |
|
|
|
|
(ty::RegionKind::ReVar(_), _) => {
|
|
|
|
// This is the opposite situation as the previous arm.
|
|
|
|
// One of these is true:
|
|
|
|
//
|
|
|
|
// The old predicate has a HRTB lifetime in a place where the
|
|
|
|
// new predicate does not.
|
|
|
|
//
|
|
|
|
// OR
|
|
|
|
//
|
|
|
|
// The new predicate has a region variable where the old
|
|
|
|
// predicate has some other type of region.
|
|
|
|
//
|
|
|
|
// We want to leave the old
|
2018-08-02 13:59:16 -04:00
|
|
|
// predicate in user_computed_preds, and skip adding
|
|
|
|
// new_pred to user_computed_params.
|
|
|
|
should_add_new = false
|
2018-10-28 15:33:27 -04:00
|
|
|
},
|
2018-08-02 13:59:16 -04:00
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-09-12 17:34:08 -04:00
|
|
|
}
|
2018-08-02 13:59:16 -04:00
|
|
|
_ => {}
|
|
|
|
}
|
2018-09-12 17:34:08 -04:00
|
|
|
return true;
|
2018-08-02 13:59:16 -04:00
|
|
|
});
|
|
|
|
|
|
|
|
if should_add_new {
|
|
|
|
user_computed_preds.insert(new_pred);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-03-09 22:49:37 +01:00
|
|
|
// This is very similar to handle_lifetimes. However, instead of matching ty::Region's
|
|
|
|
// to each other, we match ty::RegionVid's to ty::Region's
|
2019-04-22 22:52:51 +03:00
|
|
|
fn map_vid_to_region<'cx>(
|
2018-04-12 11:58:34 +02:00
|
|
|
&self,
|
|
|
|
regions: &RegionConstraintData<'cx>,
|
|
|
|
) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
|
2018-10-16 10:44:26 +02:00
|
|
|
let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
|
|
|
|
let mut finished_map = FxHashMap::default();
|
2018-03-09 22:49:37 +01:00
|
|
|
|
|
|
|
for constraint in regions.constraints.keys() {
|
|
|
|
match constraint {
|
|
|
|
&Constraint::VarSubVar(r1, r2) => {
|
|
|
|
{
|
2018-09-12 17:34:08 -04:00
|
|
|
let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
|
2018-03-09 22:49:37 +01:00
|
|
|
deps1.larger.insert(RegionTarget::RegionVid(r2));
|
|
|
|
}
|
|
|
|
|
2018-09-12 17:34:08 -04:00
|
|
|
let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
|
2018-03-09 22:49:37 +01:00
|
|
|
deps2.smaller.insert(RegionTarget::RegionVid(r1));
|
|
|
|
}
|
|
|
|
&Constraint::RegSubVar(region, vid) => {
|
|
|
|
{
|
2018-09-12 17:34:08 -04:00
|
|
|
let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
|
2018-03-09 22:49:37 +01:00
|
|
|
deps1.larger.insert(RegionTarget::RegionVid(vid));
|
|
|
|
}
|
|
|
|
|
2018-09-12 17:34:08 -04:00
|
|
|
let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
|
2018-03-09 22:49:37 +01:00
|
|
|
deps2.smaller.insert(RegionTarget::Region(region));
|
|
|
|
}
|
|
|
|
&Constraint::VarSubReg(vid, region) => {
|
|
|
|
finished_map.insert(vid, region);
|
|
|
|
}
|
|
|
|
&Constraint::RegSubReg(r1, r2) => {
|
|
|
|
{
|
2018-09-12 17:34:08 -04:00
|
|
|
let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
|
2018-03-09 22:49:37 +01:00
|
|
|
deps1.larger.insert(RegionTarget::Region(r2));
|
|
|
|
}
|
|
|
|
|
2018-09-12 17:34:08 -04:00
|
|
|
let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
|
2018-03-09 22:49:37 +01:00
|
|
|
deps2.smaller.insert(RegionTarget::Region(r1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while !vid_map.is_empty() {
|
|
|
|
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
|
|
|
|
let deps = vid_map.remove(&target).expect("Entry somehow missing");
|
|
|
|
|
|
|
|
for smaller in deps.smaller.iter() {
|
|
|
|
for larger in deps.larger.iter() {
|
|
|
|
match (smaller, larger) {
|
|
|
|
(&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
|
|
|
|
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
|
|
|
|
let smaller_deps = v.into_mut();
|
|
|
|
smaller_deps.larger.insert(*larger);
|
|
|
|
smaller_deps.larger.remove(&target);
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Entry::Occupied(v) = vid_map.entry(*larger) {
|
|
|
|
let larger_deps = v.into_mut();
|
|
|
|
larger_deps.smaller.insert(*smaller);
|
|
|
|
larger_deps.smaller.remove(&target);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
|
|
|
|
finished_map.insert(v1, r1);
|
|
|
|
}
|
|
|
|
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
|
|
|
|
// Do nothing - we don't care about regions that are smaller than vids
|
|
|
|
}
|
|
|
|
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
|
|
|
|
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
|
|
|
|
let smaller_deps = v.into_mut();
|
|
|
|
smaller_deps.larger.insert(*larger);
|
|
|
|
smaller_deps.larger.remove(&target);
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Entry::Occupied(v) = vid_map.entry(*larger) {
|
|
|
|
let larger_deps = v.into_mut();
|
|
|
|
larger_deps.smaller.insert(*smaller);
|
|
|
|
larger_deps.smaller.remove(&target);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
finished_map
|
|
|
|
}
|
|
|
|
|
2019-02-26 09:30:34 +08:00
|
|
|
fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
|
2018-11-14 16:36:48 -05:00
|
|
|
return self.is_of_param(substs.type_at(0)) &&
|
|
|
|
!substs.types().any(|t| t.has_infer_types());
|
|
|
|
}
|
|
|
|
|
2018-10-24 00:57:09 -04:00
|
|
|
pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
|
2019-09-16 19:08:35 +01:00
|
|
|
return match ty.kind {
|
2018-08-22 01:35:29 +01:00
|
|
|
ty::Param(_) => true,
|
2018-10-24 00:57:09 -04:00
|
|
|
ty::Projection(p) => self.is_of_param(p.self_ty()),
|
2018-04-12 11:58:34 +02:00
|
|
|
_ => false,
|
|
|
|
};
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
|
2018-11-28 21:15:06 -05:00
|
|
|
fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
|
2019-09-16 19:08:35 +01:00
|
|
|
match p.ty().skip_binder().kind {
|
2018-11-28 21:15:06 -05:00
|
|
|
ty::Projection(proj) if proj == p.skip_binder().projection_ty => {
|
|
|
|
true
|
|
|
|
},
|
|
|
|
_ => false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-14 00:48:52 +03:00
|
|
|
fn evaluate_nested_obligations(
|
2018-04-12 11:58:34 +02:00
|
|
|
&self,
|
2019-04-25 22:54:19 +02:00
|
|
|
ty: Ty<'_>,
|
2019-06-14 00:48:52 +03:00
|
|
|
nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
|
|
|
|
computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
|
|
|
|
fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
|
|
|
|
predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
|
|
|
|
select: &mut SelectionContext<'_, 'tcx>,
|
2018-04-12 11:58:34 +02:00
|
|
|
only_projections: bool,
|
|
|
|
) -> bool {
|
2019-02-04 20:01:14 +01:00
|
|
|
let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-10-24 00:57:09 -04:00
|
|
|
for (obligation, mut predicate) in nested
|
2019-04-22 22:52:51 +03:00
|
|
|
.map(|o| (o.clone(), o.predicate))
|
2018-04-12 11:58:34 +02:00
|
|
|
{
|
|
|
|
let is_new_pred =
|
2019-04-22 22:52:51 +03:00
|
|
|
fresh_preds.insert(self.clean_pred(select.infcx(), predicate));
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-10-24 00:57:09 -04:00
|
|
|
// Resolve any inference variables that we can, to help selection succeed
|
2019-05-11 19:08:26 +01:00
|
|
|
predicate = select.infcx().resolve_vars_if_possible(&predicate);
|
2018-10-24 00:57:09 -04:00
|
|
|
|
|
|
|
// We only add a predicate as a user-displayable bound if
|
|
|
|
// it involves a generic parameter, and doesn't contain
|
|
|
|
// any inference variables.
|
|
|
|
//
|
|
|
|
// Displaying a bound involving a concrete type (instead of a generic
|
|
|
|
// parameter) would be pointless, since it's always true
|
|
|
|
// (e.g. u8: Copy)
|
|
|
|
// Displaying an inference variable is impossible, since they're
|
|
|
|
// an internal compiler detail without a defined visual representation
|
|
|
|
//
|
|
|
|
// We check this by calling is_of_param on the relevant types
|
|
|
|
// from the various possible predicates
|
2018-03-09 22:49:37 +01:00
|
|
|
match &predicate {
|
2019-04-22 22:52:51 +03:00
|
|
|
&ty::Predicate::Trait(p) => {
|
2018-11-14 16:36:48 -05:00
|
|
|
if self.is_param_no_infer(p.skip_binder().trait_ref.substs)
|
2018-10-24 00:57:09 -04:00
|
|
|
&& !only_projections
|
|
|
|
&& is_new_pred {
|
2018-03-09 22:49:37 +01:00
|
|
|
|
2018-08-02 13:59:16 -04:00
|
|
|
self.add_user_pred(computed_preds, predicate);
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
2019-04-22 22:52:51 +03:00
|
|
|
predicates.push_back(p);
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
&ty::Predicate::Projection(p) => {
|
2018-10-24 00:57:09 -04:00
|
|
|
debug!("evaluate_nested_obligations: examining projection predicate {:?}",
|
|
|
|
predicate);
|
|
|
|
|
|
|
|
// As described above, we only want to display
|
|
|
|
// bounds which include a generic parameter but don't include
|
|
|
|
// an inference variable.
|
|
|
|
// Additionally, we check if we've seen this predicate before,
|
|
|
|
// to avoid rendering duplicate bounds to the user.
|
2018-11-14 16:36:48 -05:00
|
|
|
if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
|
2019-04-27 20:33:03 -04:00
|
|
|
&& !p.ty().skip_binder().has_infer_types()
|
2018-10-24 00:57:09 -04:00
|
|
|
&& is_new_pred {
|
|
|
|
debug!("evaluate_nested_obligations: adding projection predicate\
|
|
|
|
to computed_preds: {:?}", predicate);
|
|
|
|
|
2018-11-28 21:15:06 -05:00
|
|
|
// Under unusual circumstances, we can end up with a self-refeential
|
|
|
|
// projection predicate. For example:
|
|
|
|
// <T as MyType>::Value == <T as MyType>::Value
|
|
|
|
// Not only is displaying this to the user pointless,
|
|
|
|
// having it in the ParamEnv will cause an issue if we try to call
|
|
|
|
// poly_project_and_unify_type on the predicate, since this kind of
|
|
|
|
// predicate will normally never end up in a ParamEnv.
|
|
|
|
//
|
|
|
|
// For these reasons, we ignore these weird predicates,
|
|
|
|
// ensuring that we're able to properly synthesize an auto trait impl
|
|
|
|
if self.is_self_referential_projection(p) {
|
|
|
|
debug!("evaluate_nested_obligations: encountered a projection
|
|
|
|
predicate equating a type with itself! Skipping");
|
|
|
|
|
|
|
|
} else {
|
|
|
|
self.add_user_pred(computed_preds, predicate);
|
|
|
|
}
|
2018-10-24 00:57:09 -04:00
|
|
|
}
|
|
|
|
|
Always try to project predicates when finding auto traits in rustdoc
Fixes #60726
Previous, AutoTraitFinder would only try to project predicates when the
predicate type contained an inference variable. When finding auto
traits, we only project to try to unify inference variables - we don't
otherwise learn any new information about the required bounds.
However, this lead to failing to properly generate a negative auto trait
impl (indicating that a type never implements a certain auto trait) in
the following unusual scenario:
In almost all cases, a type has an (implicit) negative impl of an auto
trait due some other type having an explicit *negative* impl of that
auto trait. For example:
struct MyType<T> {
field: *const T
}
has an implicit 'impl<T> !Send for MyType<T>', due to the explicit
negative impl (in libcore) 'impl<T: ?Sized> !Send for *const T'.
However, as exposed by the 'abi_stable' crate, this isn't always the
case. This minimzed example shows how a type can never implement
'Send', due to a projection error:
```
pub struct True;
pub struct False;
pub trait MyTrait {
type Project;
}
pub struct MyStruct<T> {
field: T
}
impl MyTrait for u8 {
type Project = False;
}
unsafe impl<T> Send for MyStruct<T>
where T: MyTrait<Project=True> {}
pub struct Wrapper {
inner: MyStruct<u8>
}
```
In this example, `<u8 as MyTrait>::Project == True'
must hold for 'MyStruct<u8>: Send' to hold.
However, '<u8 as MyTrait>::Project == False' holds instead
To properly account for this unusual case, we need to call
'poly_project_and_unify' on *all* predicates, not just those with
inference variables. This ensures that we catch the projection error
that occurs above, and don't incorrectly determine that 'Wrapper: Send'
holds.
2019-05-13 01:37:04 -04:00
|
|
|
// There are three possible cases when we project a predicate:
|
|
|
|
//
|
|
|
|
// 1. We encounter an error. This means that it's impossible for
|
|
|
|
// our current type to implement the auto trait - there's bound
|
|
|
|
// that we could add to our ParamEnv that would 'fix' this kind
|
|
|
|
// of error, as it's not caused by an unimplemented type.
|
|
|
|
//
|
|
|
|
// 2. We succesfully project the predicate (Ok(Some(_))), generating
|
|
|
|
// some subobligations. We then process these subobligations
|
|
|
|
// like any other generated sub-obligations.
|
|
|
|
//
|
|
|
|
// 3. We receieve an 'ambiguous' result (Ok(None))
|
|
|
|
// If we were actually trying to compile a crate,
|
|
|
|
// we would need to re-process this obligation later.
|
|
|
|
// However, all we care about is finding out what bounds
|
|
|
|
// are needed for our type to implement a particular auto trait.
|
|
|
|
// We've already added this obligation to our computed ParamEnv
|
|
|
|
// above (if it was necessary). Therefore, we don't need
|
|
|
|
// to do any further processing of the obligation.
|
|
|
|
//
|
|
|
|
// Note that we *must* try to project *all* projection predicates
|
|
|
|
// we encounter, even ones without inference variable.
|
|
|
|
// This ensures that we detect any projection errors,
|
|
|
|
// which indicate that our type can *never* implement the given
|
|
|
|
// auto trait. In that case, we will generate an explicit negative
|
|
|
|
// impl (e.g. 'impl !Send for MyType'). However, we don't
|
|
|
|
// try to process any of the generated subobligations -
|
|
|
|
// they contain no new information, since we already know
|
|
|
|
// that our type implements the projected-through trait,
|
|
|
|
// and can lead to weird region issues.
|
|
|
|
//
|
|
|
|
// Normally, we'll generate a negative impl as a result of encountering
|
|
|
|
// a type with an explicit negative impl of an auto trait
|
|
|
|
// (for example, raw pointers have !Send and !Sync impls)
|
|
|
|
// However, through some **interesting** manipulations of the type
|
|
|
|
// system, it's actually possible to write a type that never
|
|
|
|
// implements an auto trait due to a projection error, not a normal
|
|
|
|
// negative impl error. To properly handle this case, we need
|
|
|
|
// to ensure that we catch any potential projection errors,
|
|
|
|
// and turn them into an explicit negative impl for our type.
|
|
|
|
debug!("Projecting and unifying projection predicate {:?}",
|
|
|
|
predicate);
|
|
|
|
|
|
|
|
match poly_project_and_unify_type(select, &obligation.with(p)) {
|
|
|
|
Err(e) => {
|
|
|
|
debug!(
|
|
|
|
"evaluate_nested_obligations: Unable to unify predicate \
|
|
|
|
'{:?}' '{:?}', bailing out",
|
|
|
|
ty, e
|
|
|
|
);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
Ok(Some(v)) => {
|
|
|
|
// We only care about sub-obligations
|
|
|
|
// when we started out trying to unify
|
|
|
|
// some inference variables. See the comment above
|
|
|
|
// for more infomration
|
|
|
|
if p.ty().skip_binder().has_infer_types() {
|
2018-04-12 11:58:34 +02:00
|
|
|
if !self.evaluate_nested_obligations(
|
|
|
|
ty,
|
|
|
|
v.clone().iter().cloned(),
|
|
|
|
computed_preds,
|
|
|
|
fresh_preds,
|
|
|
|
predicates,
|
|
|
|
select,
|
|
|
|
only_projections,
|
|
|
|
) {
|
2018-03-09 22:49:37 +01:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
Always try to project predicates when finding auto traits in rustdoc
Fixes #60726
Previous, AutoTraitFinder would only try to project predicates when the
predicate type contained an inference variable. When finding auto
traits, we only project to try to unify inference variables - we don't
otherwise learn any new information about the required bounds.
However, this lead to failing to properly generate a negative auto trait
impl (indicating that a type never implements a certain auto trait) in
the following unusual scenario:
In almost all cases, a type has an (implicit) negative impl of an auto
trait due some other type having an explicit *negative* impl of that
auto trait. For example:
struct MyType<T> {
field: *const T
}
has an implicit 'impl<T> !Send for MyType<T>', due to the explicit
negative impl (in libcore) 'impl<T: ?Sized> !Send for *const T'.
However, as exposed by the 'abi_stable' crate, this isn't always the
case. This minimzed example shows how a type can never implement
'Send', due to a projection error:
```
pub struct True;
pub struct False;
pub trait MyTrait {
type Project;
}
pub struct MyStruct<T> {
field: T
}
impl MyTrait for u8 {
type Project = False;
}
unsafe impl<T> Send for MyStruct<T>
where T: MyTrait<Project=True> {}
pub struct Wrapper {
inner: MyStruct<u8>
}
```
In this example, `<u8 as MyTrait>::Project == True'
must hold for 'MyStruct<u8>: Send' to hold.
However, '<u8 as MyTrait>::Project == False' holds instead
To properly account for this unusual case, we need to call
'poly_project_and_unify' on *all* predicates, not just those with
inference variables. This ensures that we catch the projection error
that occurs above, and don't incorrectly determine that 'Wrapper: Send'
holds.
2019-05-13 01:37:04 -04:00
|
|
|
}
|
|
|
|
Ok(None) => {
|
|
|
|
// It's ok not to make progress when hvave no inference variables -
|
|
|
|
// in that case, we were only performing unifcation to check if an
|
|
|
|
// error occured (which would indicate that it's impossible for our
|
|
|
|
// type to implement the auto trait).
|
|
|
|
// However, we should always make progress (either by generating
|
|
|
|
// subobligations or getting an error) when we started off with
|
|
|
|
// inference variables
|
|
|
|
if p.ty().skip_binder().has_infer_types() {
|
2018-03-09 22:49:37 +01:00
|
|
|
panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
&ty::Predicate::RegionOutlives(ref binder) => {
|
2019-02-20 05:22:23 -05:00
|
|
|
if select
|
|
|
|
.infcx()
|
|
|
|
.region_outlives_predicate(&dummy_cause, binder)
|
|
|
|
.is_err()
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
&ty::Predicate::TypeOutlives(ref binder) => {
|
2018-04-12 11:58:34 +02:00
|
|
|
match (
|
2018-10-24 22:30:34 +02:00
|
|
|
binder.no_bound_vars(),
|
|
|
|
binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
|
2018-04-12 11:58:34 +02:00
|
|
|
) {
|
2018-03-09 22:49:37 +01:00
|
|
|
(None, Some(t_a)) => {
|
2018-09-12 17:28:47 -04:00
|
|
|
select.infcx().register_region_obligation_with_cause(
|
|
|
|
t_a,
|
2019-04-25 22:05:04 +01:00
|
|
|
select.infcx().tcx.lifetimes.re_static,
|
2018-09-12 17:28:47 -04:00
|
|
|
&dummy_cause,
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
(Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
|
2018-09-12 17:28:47 -04:00
|
|
|
select.infcx().register_region_obligation_with_cause(
|
|
|
|
t_a,
|
|
|
|
r_b,
|
|
|
|
&dummy_cause,
|
2018-04-12 11:58:34 +02:00
|
|
|
);
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
_ => {}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
_ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
|
|
|
|
};
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2019-06-14 00:48:52 +03:00
|
|
|
pub fn clean_pred(
|
2018-04-12 11:58:34 +02:00
|
|
|
&self,
|
2019-06-14 00:48:52 +03:00
|
|
|
infcx: &InferCtxt<'_, 'tcx>,
|
|
|
|
p: ty::Predicate<'tcx>,
|
|
|
|
) -> ty::Predicate<'tcx> {
|
2018-03-09 22:49:37 +01:00
|
|
|
infcx.freshen(p)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Replaces all ReVars in a type with ty::Region's, using the provided map
|
2019-06-14 00:48:52 +03:00
|
|
|
pub struct RegionReplacer<'a, 'tcx> {
|
2018-03-09 22:49:37 +01:00
|
|
|
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
|
2019-06-14 00:48:52 +03:00
|
|
|
tcx: TyCtxt<'tcx>,
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
|
2019-06-14 00:48:52 +03:00
|
|
|
impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
|
|
|
|
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
|
2018-03-09 22:49:37 +01:00
|
|
|
self.tcx
|
|
|
|
}
|
|
|
|
|
|
|
|
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
|
|
|
|
(match r {
|
2018-04-12 11:58:34 +02:00
|
|
|
&ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
|
|
|
|
_ => None,
|
|
|
|
}).unwrap_or_else(|| r.super_fold_with(self))
|
2018-03-09 22:49:37 +01:00
|
|
|
}
|
|
|
|
}
|