rust/src/librustc_mir/build/expr/as_rvalue.rs

209 lines
9.2 KiB
Rust
Raw Normal View History

2015-08-18 17:59:21 -04:00
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See docs in build/expr/mod.rs
use rustc_data_structures::fnv::FnvHashMap;
use build::{BlockAnd, Builder};
use build::expr::category::{Category, RvalueFunc};
use hair::*;
use repr::*;
impl<'a,'tcx> Builder<'a,'tcx> {
2015-08-18 17:59:21 -04:00
/// Compile `expr`, yielding an rvalue.
pub fn as_rvalue<M>(&mut self, block: BasicBlock, expr: M) -> BlockAnd<Rvalue<'tcx>>
where M: Mirror<'tcx, Output = Expr<'tcx>>
2015-08-18 17:59:21 -04:00
{
let expr = self.hir.mirror(expr);
self.expr_as_rvalue(block, expr)
}
fn expr_as_rvalue(&mut self,
mut block: BasicBlock,
expr: Expr<'tcx>)
-> BlockAnd<Rvalue<'tcx>> {
debug!("expr_as_rvalue(block={:?}, expr={:?})", block, expr);
2015-08-18 17:59:21 -04:00
let this = self;
let expr_span = expr.span;
match expr.kind {
ExprKind::Scope { extent, value } => {
this.in_scope(extent, block, |this| this.as_rvalue(block, value))
2015-08-18 17:59:21 -04:00
}
ExprKind::InlineAsm { asm } => {
block.and(Rvalue::InlineAsm(asm))
}
ExprKind::Repeat { value, count } => {
let value_operand = unpack!(block = this.as_operand(block, value));
let count_operand = unpack!(block = this.as_operand(block, count));
block.and(Rvalue::Repeat(value_operand, count_operand))
}
ExprKind::Borrow { region, borrow_kind, arg } => {
let arg_lvalue = unpack!(block = this.as_lvalue(block, arg));
block.and(Rvalue::Ref(region, borrow_kind, arg_lvalue))
}
ExprKind::Binary { op, lhs, rhs } => {
let lhs = unpack!(block = this.as_operand(block, lhs));
let rhs = unpack!(block = this.as_operand(block, rhs));
block.and(Rvalue::BinaryOp(op, lhs, rhs))
}
ExprKind::Unary { op, arg } => {
let arg = unpack!(block = this.as_operand(block, arg));
block.and(Rvalue::UnaryOp(op, arg))
}
ExprKind::Box { value } => {
2015-08-18 17:59:21 -04:00
let value = this.hir.mirror(value);
let value_ty = value.ty.clone();
let result = this.temp(value_ty.clone());
// to start, malloc some memory of suitable type (thus far, uninitialized):
let rvalue = Rvalue::Box(value.ty.clone());
this.cfg.push_assign(block, expr_span, &result, rvalue);
// schedule a shallow free of that memory, lest we unwind:
let extent = this.extent_of_innermost_scope().unwrap();
this.schedule_drop(expr_span, extent, DropKind::Free, &result, value_ty);
2015-08-18 17:59:21 -04:00
// initialize the box contents:
let contents = result.clone().deref();
unpack!(block = this.into(&contents, block, value));
// now that the result is fully initialized, cancel the drop
// by "using" the result (which is linear):
block.and(Rvalue::Use(Operand::Consume(result)))
}
ExprKind::Cast { source } => {
let source = unpack!(block = this.as_operand(block, source));
block.and(Rvalue::Cast(CastKind::Misc, source, expr.ty))
}
ExprKind::ReifyFnPointer { source } => {
let source = unpack!(block = this.as_operand(block, source));
block.and(Rvalue::Cast(CastKind::ReifyFnPointer, source, expr.ty))
}
ExprKind::UnsafeFnPointer { source } => {
let source = unpack!(block = this.as_operand(block, source));
block.and(Rvalue::Cast(CastKind::UnsafeFnPointer, source, expr.ty))
}
ExprKind::Unsize { source } => {
let source = unpack!(block = this.as_operand(block, source));
block.and(Rvalue::Cast(CastKind::Unsize, source, expr.ty))
}
ExprKind::Vec { fields } => {
// (*) We would (maybe) be closer to trans if we
// handled this and other aggregate cases via
// `into()`, not `as_rvalue` -- in that case, instead
// of generating
//
// let tmp1 = ...1;
// let tmp2 = ...2;
// dest = Rvalue::Aggregate(Foo, [tmp1, tmp2])
//
// we could just generate
//
// dest.f = ...1;
// dest.g = ...2;
//
// The problem is that then we would need to:
//
// (a) have a more complex mechanism for handling
// partial cleanup;
// (b) distinguish the case where the type `Foo` has a
// destructor, in which case creating an instance
// as a whole "arms" the destructor, and you can't
// write individual fields; and,
// (c) handle the case where the type Foo has no
// fields. We don't want `let x: ();` to compile
// to the same MIR as `let x = ();`.
// first process the set of fields
let fields: Vec<_> =
fields.into_iter()
.map(|f| unpack!(block = this.as_operand(block, f)))
.collect();
block.and(Rvalue::Aggregate(AggregateKind::Vec, fields))
}
ExprKind::Tuple { fields } => { // see (*) above
// first process the set of fields
let fields: Vec<_> =
fields.into_iter()
.map(|f| unpack!(block = this.as_operand(block, f)))
.collect();
block.and(Rvalue::Aggregate(AggregateKind::Tuple, fields))
}
ExprKind::Closure { closure_id, substs, upvars } => { // see (*) above
let upvars =
upvars.into_iter()
.map(|upvar| unpack!(block = this.as_operand(block, upvar)))
.collect();
block.and(Rvalue::Aggregate(AggregateKind::Closure(closure_id, substs), upvars))
}
ExprKind::Adt { adt_def, variant_index, substs, fields, base } => { // see (*) above
// first process the set of fields
let fields_map: FnvHashMap<_, _> =
fields.into_iter()
.map(|f| (f.name, unpack!(block = this.as_operand(block, f.expr))))
.collect();
let field_names = this.hir.fields(adt_def, variant_index);
2015-08-18 17:59:21 -04:00
let base = base.map(|base| unpack!(block = this.as_lvalue(block, base)));
2015-08-18 17:59:21 -04:00
// for the actual values we use, take either the
// expr the user specified or, if they didn't
// specify something for this field name, create a
// path relative to the base (which must have been
// supplied, or the IR is internally
// inconsistent).
let fields: Vec<_> =
field_names.into_iter()
.map(|n| match fields_map.get(&n) {
Some(v) => v.clone(),
None => Operand::Consume(base.clone().unwrap().field(n)),
})
.collect();
block.and(Rvalue::Aggregate(AggregateKind::Adt(adt_def, variant_index, substs),
fields))
}
ExprKind::Literal { .. } |
ExprKind::Block { .. } |
ExprKind::Match { .. } |
ExprKind::If { .. } |
ExprKind::Loop { .. } |
ExprKind::LogicalOp { .. } |
ExprKind::Call { .. } |
ExprKind::Field { .. } |
ExprKind::Deref { .. } |
ExprKind::Index { .. } |
ExprKind::VarRef { .. } |
ExprKind::SelfRef |
ExprKind::Assign { .. } |
ExprKind::AssignOp { .. } |
ExprKind::Break { .. } |
ExprKind::Continue { .. } |
ExprKind::Return { .. } |
ExprKind::StaticRef { .. } => {
// these do not have corresponding `Rvalue` variants,
// so make an operand and then return that
debug_assert!(match Category::of(&expr.kind) {
Some(Category::Rvalue(RvalueFunc::AsRvalue)) => false,
_ => true,
});
let operand = unpack!(block = this.as_operand(block, expr));
block.and(Rvalue::Use(operand))
}
}
}
}