2020-10-20 22:08:19 +01:00
|
|
|
//! Note: tests specific to this file can be found in:
|
2020-11-25 12:05:04 -08:00
|
|
|
//!
|
|
|
|
//! - `ui/pattern/usefulness`
|
|
|
|
//! - `ui/or-patterns`
|
|
|
|
//! - `ui/consts/const_in_pattern`
|
|
|
|
//! - `ui/rfc-2008-non-exhaustive`
|
|
|
|
//! - `ui/half-open-range-patterns`
|
|
|
|
//! - probably many others
|
|
|
|
//!
|
2020-10-20 22:08:19 +01:00
|
|
|
//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
|
2020-11-25 12:05:04 -08:00
|
|
|
//! reason not to, for example if they depend on a particular feature like `or_patterns`.
|
|
|
|
//!
|
|
|
|
//! -----
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
|
|
|
|
//! Specifically, given a list of patterns for a type, we can tell whether:
|
|
|
|
//! (a) each pattern is reachable (reachability)
|
|
|
|
//! (b) the patterns cover every possible value for the type (exhaustiveness)
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! The algorithm implemented here is a modified version of the one described in [this
|
|
|
|
//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
|
2020-12-22 06:09:54 +00:00
|
|
|
//! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
|
2020-12-20 13:29:39 +00:00
|
|
|
//! without being as rigorous.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! # Summary
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
|
|
|
|
//! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
|
2020-12-22 06:09:54 +00:00
|
|
|
//! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
|
|
|
|
//! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
|
|
|
|
//! file is to compute it efficiently.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
|
2020-12-22 06:09:54 +00:00
|
|
|
//! is useful w.r.t. the patterns above it:
|
2020-12-20 13:29:39 +00:00
|
|
|
//! ```rust
|
2022-04-15 15:04:34 -07:00
|
|
|
//! # fn foo(x: Option<i32>) {
|
2020-12-20 13:29:39 +00:00
|
|
|
//! match x {
|
2022-04-15 15:04:34 -07:00
|
|
|
//! Some(_) => {},
|
|
|
|
//! None => {}, // reachable: `None` is matched by this but not the branch above
|
|
|
|
//! Some(0) => {}, // unreachable: all the values this matches are already matched by
|
|
|
|
//! // `Some(_)` above
|
2020-12-20 13:29:39 +00:00
|
|
|
//! }
|
2022-04-15 15:04:34 -07:00
|
|
|
//! # }
|
2020-12-20 13:29:39 +00:00
|
|
|
//! ```
|
|
|
|
//!
|
|
|
|
//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
|
2020-12-22 06:09:54 +00:00
|
|
|
//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
|
|
|
|
//! are used to tell the user which values are missing.
|
2022-04-15 15:04:34 -07:00
|
|
|
//! ```compile_fail,E0004
|
|
|
|
//! # fn foo(x: Option<i32>) {
|
2020-12-20 13:29:39 +00:00
|
|
|
//! match x {
|
2022-04-15 15:04:34 -07:00
|
|
|
//! Some(0) => {},
|
|
|
|
//! None => {},
|
2020-12-20 13:29:39 +00:00
|
|
|
//! // not exhaustive: `_` is useful because it matches `Some(1)`
|
|
|
|
//! }
|
2022-04-15 15:04:34 -07:00
|
|
|
//! # }
|
2020-12-20 13:29:39 +00:00
|
|
|
//! ```
|
|
|
|
//!
|
|
|
|
//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
|
|
|
|
//! reachability for each match branch and exhaustiveness for the whole match.
|
|
|
|
//!
|
|
|
|
//!
|
|
|
|
//! # Constructors and fields
|
|
|
|
//!
|
|
|
|
//! Note: we will often abbreviate "constructor" as "ctor".
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2022-03-30 15:14:15 -04:00
|
|
|
//! The idea that powers everything that is done in this file is the following: a (matchable)
|
2020-12-20 13:29:39 +00:00
|
|
|
//! value is made from a constructor applied to a number of subvalues. Examples of constructors are
|
|
|
|
//! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
|
|
|
|
//! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
|
|
|
|
//! pattern-matching, and this is the basis for what follows.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
|
|
|
|
//! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
|
|
|
|
//! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
|
2022-03-30 15:14:15 -04:00
|
|
|
//! `enum`, with one variant for each number. This allows us to see any matchable value as made up
|
2020-12-20 13:29:39 +00:00
|
|
|
//! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
|
|
|
|
//! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! This idea can be extended to patterns: they are also made from constructors applied to fields.
|
|
|
|
//! A pattern for a given type is allowed to use all the ctors for values of that type (which we
|
|
|
|
//! call "value constructors"), but there are also pattern-only ctors. The most important one is
|
|
|
|
//! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
|
|
|
|
//! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
|
|
|
|
//! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
|
|
|
|
//! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! From this deconstruction we can compute whether a given value matches a given pattern; we
|
|
|
|
//! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
|
|
|
|
//! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
|
|
|
|
//! we compare their fields recursively. A few representative examples:
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - `matches!(v, _) := true`
|
|
|
|
//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
|
|
|
|
//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
|
|
|
|
//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
|
|
|
|
//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
|
|
|
|
//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
|
|
|
|
//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
|
|
|
|
//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
|
|
|
|
//! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
|
|
|
|
//! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
|
2020-12-22 06:09:54 +00:00
|
|
|
//! infinitude of constructors. There are also subtleties with visibility of fields and
|
2020-12-20 13:29:39 +00:00
|
|
|
//! uninhabitedness and various other things. The constructors idea can be extended to handle most
|
|
|
|
//! of these subtleties though; caveats are documented where relevant throughout the code.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! # Specialization
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
|
|
|
|
//! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
|
|
|
|
//! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
|
|
|
|
//! enumerate all possible values. From the discussion above we see that we can proceed
|
|
|
|
//! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
|
|
|
|
//! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
|
|
|
|
//! say from knowing only the first constructor of our candidate value.
|
|
|
|
//!
|
|
|
|
//! Let's take the following example:
|
2022-04-15 15:04:34 -07:00
|
|
|
//! ```compile_fail,E0004
|
|
|
|
//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
|
|
|
|
//! # fn foo(x: Enum) {
|
2020-10-18 21:54:10 -07:00
|
|
|
//! match x {
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Enum::Variant1(_) => {} // `p1`
|
|
|
|
//! Enum::Variant2(None, 0) => {} // `p2`
|
|
|
|
//! Enum::Variant2(Some(_), 0) => {} // `q`
|
2020-10-18 21:54:10 -07:00
|
|
|
//! }
|
2022-04-15 15:04:34 -07:00
|
|
|
//! # }
|
2020-06-14 14:53:36 +02:00
|
|
|
//! ```
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
|
|
|
|
//! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
|
|
|
|
//! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
|
|
|
|
//! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2022-04-15 15:04:34 -07:00
|
|
|
//! ```compile_fail,E0004
|
|
|
|
//! # fn foo(x: (Option<bool>, u32)) {
|
2020-12-20 13:29:39 +00:00
|
|
|
//! match x {
|
|
|
|
//! (None, 0) => {} // `p2'`
|
|
|
|
//! (Some(_), 0) => {} // `q'`
|
|
|
|
//! }
|
2022-04-15 15:04:34 -07:00
|
|
|
//! # }
|
2020-10-18 21:54:10 -07:00
|
|
|
//! ```
|
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! This motivates a new step in computing usefulness, that we call _specialization_.
|
|
|
|
//! Specialization consist of filtering a list of patterns for those that match a constructor, and
|
|
|
|
//! then looking into the constructor's fields. This enables usefulness to be computed recursively.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
|
|
|
|
//! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
|
|
|
|
//! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
|
|
|
|
//! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
|
|
|
|
//! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
|
|
|
|
//! happening:
|
2022-04-15 15:04:34 -07:00
|
|
|
//! ```ignore (illustrative)
|
2020-12-20 13:29:39 +00:00
|
|
|
//! [Enum::Variant1(_)]
|
|
|
|
//! [Enum::Variant2(None, 0)]
|
|
|
|
//! [Enum::Variant2(Some(_), 0)]
|
|
|
|
//! //==>> specialize with `Variant2`
|
|
|
|
//! [None, 0]
|
|
|
|
//! [Some(_), 0]
|
|
|
|
//! //==>> specialize with `Some`
|
|
|
|
//! [_, 0]
|
|
|
|
//! //==>> specialize with `true` (say the type was `bool`)
|
|
|
|
//! [0]
|
|
|
|
//! //==>> specialize with `0`
|
|
|
|
//! []
|
|
|
|
//! ```
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
|
|
|
|
//! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
|
|
|
|
//! otherwise if returns the fields of the constructor. This only returns more than one
|
|
|
|
//! pattern-stack if `p` has a pattern-only constructor.
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - Specializing for the wrong constructor returns nothing
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(None, Some(p0)) := []`
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - Specializing for the correct constructor returns a single row with the fields
|
2020-11-25 12:05:04 -08:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
|
2020-11-25 12:05:04 -08:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
|
2020-11-25 12:05:04 -08:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - For or-patterns, we specialize each branch and concatenate the results
|
2020-11-25 12:05:04 -08:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-22 06:09:54 +00:00
|
|
|
//! - We treat the other pattern constructors as if they were a large or-pattern of all the
|
|
|
|
//! possibilities:
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
|
2020-12-22 06:09:54 +00:00
|
|
|
//! the discussion about constructor splitting in [`super::deconstruct_pat`].
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! We then extend this function to work with pattern-stacks as input, by acting on the first
|
|
|
|
//! column and keeping the other columns untouched.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
|
|
|
|
//! or-patterns in the first column are expanded before being stored in the matrix. Specialization
|
|
|
|
//! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
|
|
|
|
//! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
|
2023-10-14 16:30:23 +02:00
|
|
|
//! [`super::deconstruct_pat::Fields`] struct.
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! # Computing usefulness
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! We now have all we need to compute usefulness. The inputs to usefulness are a list of
|
|
|
|
//! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
|
|
|
|
//! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
|
|
|
|
//! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
|
|
|
|
//! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - base case: `n_columns == 0`.
|
|
|
|
//! Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
|
|
|
|
//! unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - inductive case: `n_columns > 0`.
|
|
|
|
//! We need a way to list the constructors we want to try. We will be more clever in the next
|
|
|
|
//! section but for now assume we list all value constructors for the type of the first column.
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - for each such ctor `c`:
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - for each `q'` returned by `specialize(c, q)`:
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - for each witness found, we revert specialization by pushing the constructor `c` on top.
|
2020-10-18 21:54:10 -07:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! - We return the concatenation of all the witnesses found, if any.
|
|
|
|
//!
|
|
|
|
//! Example:
|
2022-04-15 15:04:34 -07:00
|
|
|
//! ```ignore (illustrative)
|
2020-12-20 13:29:39 +00:00
|
|
|
//! [Some(true)] // p_1
|
|
|
|
//! [None] // p_2
|
|
|
|
//! [Some(_)] // q
|
|
|
|
//! //==>> try `None`: `specialize(None, q)` returns nothing
|
|
|
|
//! //==>> try `Some`: `specialize(Some, q)` returns a single row
|
|
|
|
//! [true] // p_1'
|
|
|
|
//! [_] // q'
|
|
|
|
//! //==>> try `true`: `specialize(true, q')` returns a single row
|
|
|
|
//! [] // p_1''
|
|
|
|
//! [] // q''
|
|
|
|
//! //==>> base case; `n != 0` so `q''` is not useful.
|
|
|
|
//! //==>> go back up a step
|
|
|
|
//! [true] // p_1'
|
|
|
|
//! [_] // q'
|
|
|
|
//! //==>> try `false`: `specialize(false, q')` returns a single row
|
|
|
|
//! [] // q''
|
|
|
|
//! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
|
|
|
|
//! witnesses:
|
|
|
|
//! []
|
|
|
|
//! //==>> undo the specialization with `false`
|
|
|
|
//! witnesses:
|
|
|
|
//! [false]
|
|
|
|
//! //==>> undo the specialization with `Some`
|
|
|
|
//! witnesses:
|
|
|
|
//! [Some(false)]
|
|
|
|
//! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
|
2020-10-18 21:54:10 -07:00
|
|
|
//! ```
|
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! This computation is done in [`is_useful`]. In practice we don't care about the list of
|
|
|
|
//! witnesses when computing reachability; we only need to know whether any exist. We do keep the
|
|
|
|
//! witnesses when computing exhaustiveness to report them to the user.
|
|
|
|
//!
|
2020-06-30 10:56:10 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! # Making usefulness tractable: constructor splitting
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! We're missing one last detail: which constructors do we list? Naively listing all value
|
|
|
|
//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
|
|
|
|
//! first obvious insight is that we only want to list constructors that are covered by the head
|
|
|
|
//! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
|
|
|
|
//! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
|
|
|
|
//! group together constructors that behave the same.
|
2020-06-14 14:53:36 +02:00
|
|
|
//!
|
2020-12-20 13:29:39 +00:00
|
|
|
//! The details are not necessary to understand this file, so we explain them in
|
|
|
|
//! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
|
2023-05-16 09:45:56 +00:00
|
|
|
//!
|
|
|
|
//! # Constants in patterns
|
|
|
|
//!
|
|
|
|
//! There are two kinds of constants in patterns:
|
|
|
|
//!
|
|
|
|
//! * literals (`1`, `true`, `"foo"`)
|
|
|
|
//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
|
|
|
|
//!
|
|
|
|
//! The latter are converted into other patterns with literals at the leaves. For example
|
|
|
|
//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
|
|
|
|
//! pattern. This gets problematic when comparing the constant via `==` would behave differently
|
|
|
|
//! from matching on the constant converted to a pattern. Situations like that can occur, when
|
|
|
|
//! the user implements `PartialEq` manually, and thus could make `==` behave arbitrarily different.
|
|
|
|
//! In order to honor the `==` implementation, constants of types that implement `PartialEq` manually
|
|
|
|
//! stay as a full constant and become an `Opaque` pattern. These `Opaque` patterns do not participate
|
|
|
|
//! in exhaustiveness, specialization or overlap checking.
|
2020-11-25 12:05:04 -08:00
|
|
|
|
2021-09-10 16:45:04 -04:00
|
|
|
use self::ArmType::*;
|
2016-09-24 18:24:34 +03:00
|
|
|
use self::Usefulness::*;
|
2023-10-27 05:16:13 +02:00
|
|
|
use super::deconstruct_pat::{
|
2023-10-12 19:47:33 +02:00
|
|
|
Constructor, ConstructorSet, DeconstructedPat, IntRange, MaybeInfiniteInt, SplitConstructorSet,
|
|
|
|
WitnessPat,
|
2023-10-27 05:16:13 +02:00
|
|
|
};
|
2023-10-23 18:55:04 +02:00
|
|
|
use crate::errors::{
|
|
|
|
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
|
|
|
|
OverlappingRangeEndpoints, Uncovered,
|
|
|
|
};
|
2020-11-21 23:13:32 +00:00
|
|
|
|
2020-01-06 07:03:46 +01:00
|
|
|
use rustc_data_structures::captures::Captures;
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2020-06-02 20:19:49 +03:00
|
|
|
use rustc_arena::TypedArena;
|
2021-11-23 22:55:48 +01:00
|
|
|
use rustc_data_structures::stack::ensure_sufficient_stack;
|
2021-09-26 00:00:08 +01:00
|
|
|
use rustc_hir::def_id::DefId;
|
|
|
|
use rustc_hir::HirId;
|
2021-04-04 18:42:17 +02:00
|
|
|
use rustc_middle::ty::{self, Ty, TyCtxt};
|
2023-10-21 18:08:09 +02:00
|
|
|
use rustc_session::lint;
|
2021-09-10 16:45:04 -04:00
|
|
|
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
|
2021-09-25 21:48:50 +01:00
|
|
|
use rustc_span::{Span, DUMMY_SP};
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2019-09-21 13:49:14 +02:00
|
|
|
use smallvec::{smallvec, SmallVec};
|
2016-09-26 02:53:26 +03:00
|
|
|
use std::fmt;
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
|
|
|
|
pub(crate) tcx: TyCtxt<'tcx>,
|
2020-11-21 22:41:17 +00:00
|
|
|
/// The module in which the match occurs. This is necessary for
|
|
|
|
/// checking inhabited-ness of types because whether a type is (visibly)
|
|
|
|
/// inhabited can depend on whether it was defined in the current module or
|
|
|
|
/// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
|
|
|
|
/// outside its module and should not be matchable with an empty match statement.
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) module: DefId,
|
|
|
|
pub(crate) param_env: ty::ParamEnv<'tcx>,
|
|
|
|
pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
|
2023-11-02 06:21:08 +01:00
|
|
|
/// The span of the whole match, if applicable.
|
|
|
|
pub(crate) match_span: Option<Span>,
|
2023-04-03 16:13:06 +00:00
|
|
|
/// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
|
|
|
|
pub(crate) refutable: bool,
|
2020-11-21 22:41:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
|
|
|
|
pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
|
|
|
|
if self.tcx.features().exhaustive_patterns {
|
2022-10-23 17:32:17 -05:00
|
|
|
!ty.is_inhabited_from(self.tcx, self.module, self.param_env)
|
2020-11-21 22:41:17 +00:00
|
|
|
} else {
|
|
|
|
false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
|
|
|
|
pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
|
|
|
|
match ty.kind() {
|
|
|
|
ty::Adt(def, ..) => {
|
2022-03-05 07:28:41 +11:00
|
|
|
def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
|
2020-11-21 22:41:17 +00:00
|
|
|
}
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Copy, Clone)]
|
|
|
|
pub(super) struct PatCtxt<'a, 'p, 'tcx> {
|
|
|
|
pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
|
|
|
|
/// Type of the current column under investigation.
|
|
|
|
pub(super) ty: Ty<'tcx>,
|
|
|
|
/// Span of the current pattern under investigation.
|
|
|
|
pub(super) span: Span,
|
|
|
|
/// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
|
|
|
|
/// subpattern.
|
|
|
|
pub(super) is_top_level: bool,
|
|
|
|
}
|
|
|
|
|
2020-12-31 18:48:08 +00:00
|
|
|
impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
|
|
f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-01 15:44:58 +00:00
|
|
|
/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
|
|
|
|
/// works well.
|
2020-12-31 18:48:08 +00:00
|
|
|
#[derive(Clone)]
|
2022-06-24 14:16:48 +03:00
|
|
|
pub(crate) struct PatStack<'p, 'tcx> {
|
|
|
|
pub(crate) pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
|
2020-10-23 22:49:26 +01:00
|
|
|
}
|
2019-11-01 15:44:58 +00:00
|
|
|
|
|
|
|
impl<'p, 'tcx> PatStack<'p, 'tcx> {
|
2021-09-26 00:00:08 +01:00
|
|
|
fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
|
2020-10-23 22:49:26 +01:00
|
|
|
Self::from_vec(smallvec![pat])
|
2019-11-01 15:44:58 +00:00
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self {
|
|
|
|
PatStack { pats: vec }
|
2019-11-01 15:44:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fn is_empty(&self) -> bool {
|
2020-10-23 22:49:26 +01:00
|
|
|
self.pats.is_empty()
|
2019-11-01 15:44:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fn len(&self) -> usize {
|
2020-10-23 22:49:26 +01:00
|
|
|
self.pats.len()
|
2019-11-01 15:44:58 +00:00
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
|
2020-10-23 22:49:26 +01:00
|
|
|
self.pats[0]
|
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
|
2020-10-23 22:49:26 +01:00
|
|
|
self.pats.iter().copied()
|
2019-11-01 15:44:58 +00:00
|
|
|
}
|
2019-11-01 16:33:34 +00:00
|
|
|
|
2021-01-01 22:14:22 +00:00
|
|
|
// Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
|
|
|
|
// or-pattern. Panics if `self` is empty.
|
|
|
|
fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
|
2021-09-26 00:00:08 +01:00
|
|
|
self.head().iter_fields().map(move |pat| {
|
2021-01-01 22:14:22 +00:00
|
|
|
let mut new_patstack = PatStack::from_pattern(pat);
|
|
|
|
new_patstack.pats.extend_from_slice(&self.pats[1..]);
|
|
|
|
new_patstack
|
|
|
|
})
|
2019-11-21 18:45:28 +00:00
|
|
|
}
|
|
|
|
|
2022-06-24 14:16:48 +03:00
|
|
|
// Recursively expand all patterns into their subpatterns and push each `PatStack` to matrix.
|
|
|
|
fn expand_and_extend<'a>(&'a self, matrix: &mut Matrix<'p, 'tcx>) {
|
|
|
|
if !self.is_empty() && self.head().is_or_pat() {
|
|
|
|
for pat in self.head().iter_fields() {
|
|
|
|
let mut new_patstack = PatStack::from_pattern(pat);
|
|
|
|
new_patstack.pats.extend_from_slice(&self.pats[1..]);
|
|
|
|
if !new_patstack.is_empty() && new_patstack.head().is_or_pat() {
|
|
|
|
new_patstack.expand_and_extend(matrix);
|
|
|
|
} else if !new_patstack.is_empty() {
|
|
|
|
matrix.push(new_patstack);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
/// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
|
2020-10-25 23:03:15 +00:00
|
|
|
///
|
|
|
|
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
|
|
|
|
/// fields filled with wild patterns.
|
|
|
|
///
|
|
|
|
/// This is roughly the inverse of `Constructor::apply`.
|
2021-09-22 18:16:07 +01:00
|
|
|
fn pop_head_constructor(
|
|
|
|
&self,
|
2022-07-28 08:49:39 +00:00
|
|
|
pcx: &PatCtxt<'_, 'p, 'tcx>,
|
2021-09-26 00:00:08 +01:00
|
|
|
ctor: &Constructor<'tcx>,
|
2021-09-22 18:16:07 +01:00
|
|
|
) -> PatStack<'p, 'tcx> {
|
2020-10-25 23:03:15 +00:00
|
|
|
// We pop the head pattern and push the new fields extracted from the arguments of
|
|
|
|
// `self.head()`.
|
2022-07-28 08:49:39 +00:00
|
|
|
let mut new_fields: SmallVec<[_; 2]> = self.head().specialize(pcx, ctor);
|
2020-11-18 22:07:37 +00:00
|
|
|
new_fields.extend_from_slice(&self.pats[1..]);
|
|
|
|
PatStack::from_vec(new_fields)
|
2019-11-01 16:33:34 +00:00
|
|
|
}
|
2019-11-01 15:44:58 +00:00
|
|
|
}
|
|
|
|
|
2020-12-31 18:48:08 +00:00
|
|
|
/// Pretty-printing for matrix row.
|
|
|
|
impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
|
|
write!(f, "+")?;
|
|
|
|
for pat in self.iter() {
|
2023-07-25 23:17:39 +02:00
|
|
|
write!(f, " {pat:?} +")?;
|
2020-12-31 18:48:08 +00:00
|
|
|
}
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-01 15:44:58 +00:00
|
|
|
/// A 2D matrix.
|
2021-09-26 00:00:08 +01:00
|
|
|
#[derive(Clone)]
|
2020-11-21 23:13:32 +00:00
|
|
|
pub(super) struct Matrix<'p, 'tcx> {
|
2022-06-24 14:16:48 +03:00
|
|
|
pub patterns: Vec<PatStack<'p, 'tcx>>,
|
2020-09-19 22:00:10 +09:00
|
|
|
}
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2018-11-28 13:38:46 +11:00
|
|
|
impl<'p, 'tcx> Matrix<'p, 'tcx> {
|
2020-11-12 18:16:46 +00:00
|
|
|
fn empty() -> Self {
|
2020-10-27 02:30:10 +00:00
|
|
|
Matrix { patterns: vec![] }
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
|
|
|
|
2021-01-01 22:14:22 +00:00
|
|
|
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
|
|
|
|
/// expands it.
|
2020-11-12 18:16:46 +00:00
|
|
|
fn push(&mut self, row: PatStack<'p, 'tcx>) {
|
2021-09-26 00:00:08 +01:00
|
|
|
if !row.is_empty() && row.head().is_or_pat() {
|
2022-06-24 14:16:48 +03:00
|
|
|
row.expand_and_extend(self);
|
2019-11-21 18:45:28 +00:00
|
|
|
} else {
|
2020-09-21 20:29:12 +09:00
|
|
|
self.patterns.push(row);
|
2019-11-21 18:45:28 +00:00
|
|
|
}
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
2019-11-01 16:33:34 +00:00
|
|
|
|
2019-09-23 16:07:23 +02:00
|
|
|
/// Iterate over the first component of each row
|
2021-09-26 00:00:08 +01:00
|
|
|
fn heads<'a>(
|
2020-10-23 22:49:26 +01:00
|
|
|
&'a self,
|
2021-09-26 00:00:08 +01:00
|
|
|
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
|
|
|
|
self.patterns.iter().map(|r| r.head())
|
2020-11-28 22:07:15 +00:00
|
|
|
}
|
|
|
|
|
2019-11-01 16:33:34 +00:00
|
|
|
/// This computes `S(constructor, self)`. See top of the file for explanations.
|
2019-11-28 13:03:02 +00:00
|
|
|
fn specialize_constructor(
|
2019-11-01 16:33:34 +00:00
|
|
|
&self,
|
2022-07-28 08:44:49 +00:00
|
|
|
pcx: &PatCtxt<'_, 'p, 'tcx>,
|
2020-10-27 02:30:10 +00:00
|
|
|
ctor: &Constructor<'tcx>,
|
2019-11-28 13:03:02 +00:00
|
|
|
) -> Matrix<'p, 'tcx> {
|
2021-09-23 00:36:49 +01:00
|
|
|
let mut matrix = Matrix::empty();
|
|
|
|
for row in &self.patterns {
|
2021-09-26 00:00:08 +01:00
|
|
|
if ctor.is_covered_by(pcx, row.head().ctor()) {
|
2022-07-28 08:49:39 +00:00
|
|
|
let new_row = row.pop_head_constructor(pcx, ctor);
|
2021-09-23 00:36:49 +01:00
|
|
|
matrix.push(new_row);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
matrix
|
2019-11-01 16:33:34 +00:00
|
|
|
}
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Pretty-printer for matrices of patterns, example:
|
2020-05-01 22:28:15 +02:00
|
|
|
///
|
|
|
|
/// ```text
|
2019-09-26 20:47:05 +02:00
|
|
|
/// + _ + [] +
|
|
|
|
/// + true + [First] +
|
|
|
|
/// + true + [Second(true)] +
|
|
|
|
/// + false + [_] +
|
|
|
|
/// + _ + [_, _, tail @ ..] +
|
2020-10-17 20:11:30 +01:00
|
|
|
/// ```
|
2018-11-28 13:38:46 +11:00
|
|
|
impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
|
2019-02-08 06:28:15 +09:00
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
2016-09-24 18:24:34 +03:00
|
|
|
write!(f, "\n")?;
|
|
|
|
|
2020-09-19 22:00:10 +09:00
|
|
|
let Matrix { patterns: m, .. } = self;
|
2019-09-21 13:49:14 +02:00
|
|
|
let pretty_printed_matrix: Vec<Vec<String>> =
|
2023-07-25 23:17:39 +02:00
|
|
|
m.iter().map(|row| row.iter().map(|pat| format!("{pat:?}")).collect()).collect();
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2020-12-31 18:48:08 +00:00
|
|
|
let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0);
|
2016-09-24 18:24:34 +03:00
|
|
|
assert!(m.iter().all(|row| row.len() == column_count));
|
2019-09-21 13:49:14 +02:00
|
|
|
let column_widths: Vec<usize> = (0..column_count)
|
|
|
|
.map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
|
|
|
|
.collect();
|
2016-09-24 18:24:34 +03:00
|
|
|
|
|
|
|
for row in pretty_printed_matrix {
|
|
|
|
write!(f, "+")?;
|
|
|
|
for (column, pat_str) in row.into_iter().enumerate() {
|
|
|
|
write!(f, " ")?;
|
|
|
|
write!(f, "{:1$}", pat_str, column_widths[column])?;
|
|
|
|
write!(f, " +")?;
|
|
|
|
}
|
|
|
|
write!(f, "\n")?;
|
|
|
|
}
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-01 19:22:05 +00:00
|
|
|
/// This carries the results of computing usefulness, as described at the top of the file. When
|
|
|
|
/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
|
|
|
|
/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
|
|
|
|
/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
|
|
|
|
/// witnesses of non-exhaustiveness when there are any.
|
2021-09-10 16:45:04 -04:00
|
|
|
/// Which variant to use is dictated by `ArmType`.
|
2023-10-14 16:30:23 +02:00
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
enum Usefulness<'tcx> {
|
2021-09-25 21:48:50 +01:00
|
|
|
/// If we don't care about witnesses, simply remember if the pattern was useful.
|
|
|
|
NoWitnesses { useful: bool },
|
2021-01-01 22:14:54 +00:00
|
|
|
/// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
|
|
|
|
/// pattern is unreachable.
|
2023-10-14 16:30:23 +02:00
|
|
|
WithWitnesses(Vec<WitnessStack<'tcx>>),
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
|
|
|
|
2023-10-14 16:30:23 +02:00
|
|
|
impl<'tcx> Usefulness<'tcx> {
|
2021-09-10 16:45:04 -04:00
|
|
|
fn new_useful(preference: ArmType) -> Self {
|
2019-10-27 17:07:05 +00:00
|
|
|
match preference {
|
2021-09-25 21:48:50 +01:00
|
|
|
// A single (empty) witness of reachability.
|
2023-10-14 16:30:23 +02:00
|
|
|
FakeExtraWildcard => WithWitnesses(vec![WitnessStack(vec![])]),
|
2021-09-25 21:48:50 +01:00
|
|
|
RealArm => NoWitnesses { useful: true },
|
2021-01-01 21:28:32 +00:00
|
|
|
}
|
|
|
|
}
|
2021-09-10 16:45:04 -04:00
|
|
|
|
|
|
|
fn new_not_useful(preference: ArmType) -> Self {
|
2021-01-01 21:28:32 +00:00
|
|
|
match preference {
|
2021-09-10 16:45:04 -04:00
|
|
|
FakeExtraWildcard => WithWitnesses(vec![]),
|
2021-09-25 21:48:50 +01:00
|
|
|
RealArm => NoWitnesses { useful: false },
|
2021-09-10 16:45:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn is_useful(&self) -> bool {
|
|
|
|
match self {
|
2021-09-25 21:48:50 +01:00
|
|
|
Usefulness::NoWitnesses { useful } => *useful,
|
2021-09-10 16:45:04 -04:00
|
|
|
Usefulness::WithWitnesses(witnesses) => !witnesses.is_empty(),
|
2019-10-27 17:07:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-01 21:28:32 +00:00
|
|
|
/// Combine usefulnesses from two branches. This is an associative operation.
|
2020-12-21 04:51:46 +00:00
|
|
|
fn extend(&mut self, other: Self) {
|
|
|
|
match (&mut *self, other) {
|
2021-01-01 22:14:54 +00:00
|
|
|
(WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
|
|
|
|
(WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
|
2021-01-01 21:28:32 +00:00
|
|
|
(WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
|
2021-09-25 21:48:50 +01:00
|
|
|
(NoWitnesses { useful: s_useful }, NoWitnesses { useful: o_useful }) => {
|
|
|
|
*s_useful = *s_useful || o_useful
|
|
|
|
}
|
2021-01-01 22:14:54 +00:00
|
|
|
_ => unreachable!(),
|
2020-12-21 04:51:46 +00:00
|
|
|
}
|
|
|
|
}
|
2020-12-16 06:24:31 +00:00
|
|
|
|
2021-09-10 16:45:04 -04:00
|
|
|
/// After calculating usefulness after a specialization, call this to reconstruct a usefulness
|
2020-12-17 01:56:22 +00:00
|
|
|
/// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
|
|
|
|
/// with the results of specializing with the other constructors.
|
2021-09-26 00:00:08 +01:00
|
|
|
fn apply_constructor(
|
2019-10-27 17:07:05 +00:00
|
|
|
self,
|
2023-10-14 16:30:23 +02:00
|
|
|
pcx: &PatCtxt<'_, '_, 'tcx>,
|
|
|
|
matrix: &Matrix<'_, 'tcx>, // used to compute missing ctors
|
2019-10-27 17:07:05 +00:00
|
|
|
ctor: &Constructor<'tcx>,
|
|
|
|
) -> Self {
|
|
|
|
match self {
|
2021-09-25 21:48:50 +01:00
|
|
|
NoWitnesses { .. } => self,
|
|
|
|
WithWitnesses(ref witnesses) if witnesses.is_empty() => self,
|
2021-01-01 21:28:32 +00:00
|
|
|
WithWitnesses(witnesses) => {
|
2021-09-10 16:45:04 -04:00
|
|
|
let new_witnesses = if let Constructor::Missing { .. } = ctor {
|
2023-10-03 15:30:05 +02:00
|
|
|
let mut missing = ConstructorSet::for_ty(pcx.cx, pcx.ty)
|
|
|
|
.compute_missing(pcx, matrix.heads().map(DeconstructedPat::ctor));
|
|
|
|
if missing.iter().any(|c| c.is_non_exhaustive()) {
|
|
|
|
// We only report `_` here; listing other constructors would be redundant.
|
|
|
|
missing = vec![Constructor::NonExhaustive];
|
|
|
|
}
|
|
|
|
|
2021-09-10 16:45:04 -04:00
|
|
|
// We got the special `Missing` constructor, so each of the missing constructors
|
2023-10-03 15:30:05 +02:00
|
|
|
// gives a new pattern that is not caught by the match.
|
|
|
|
// We construct for each missing constructor a version of this constructor with
|
|
|
|
// wildcards for fields, i.e. that matches everything that can be built with it.
|
|
|
|
// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get
|
|
|
|
// the pattern `Some(_)`.
|
2023-10-14 16:30:23 +02:00
|
|
|
let new_patterns: Vec<WitnessPat<'_>> = missing
|
2023-10-03 15:30:05 +02:00
|
|
|
.into_iter()
|
2023-10-14 16:30:23 +02:00
|
|
|
.map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor.clone()))
|
2023-10-03 15:30:05 +02:00
|
|
|
.collect();
|
|
|
|
|
|
|
|
witnesses
|
|
|
|
.into_iter()
|
|
|
|
.flat_map(|witness| {
|
|
|
|
new_patterns.iter().map(move |pat| {
|
2023-10-14 16:30:23 +02:00
|
|
|
let mut stack = witness.clone();
|
|
|
|
stack.0.push(pat.clone());
|
|
|
|
stack
|
2019-10-27 17:07:05 +00:00
|
|
|
})
|
2023-10-03 15:30:05 +02:00
|
|
|
})
|
|
|
|
.collect()
|
2020-10-26 18:41:31 +00:00
|
|
|
} else {
|
|
|
|
witnesses
|
|
|
|
.into_iter()
|
2021-09-26 00:00:08 +01:00
|
|
|
.map(|witness| witness.apply_constructor(pcx, &ctor))
|
2020-10-26 18:41:31 +00:00
|
|
|
.collect()
|
|
|
|
};
|
2021-01-01 21:28:32 +00:00
|
|
|
WithWitnesses(new_witnesses)
|
2019-10-27 17:07:05 +00:00
|
|
|
}
|
2017-01-01 20:57:21 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-06-22 23:52:56 +01:00
|
|
|
#[derive(Copy, Clone, Debug)]
|
2021-09-10 16:45:04 -04:00
|
|
|
enum ArmType {
|
|
|
|
FakeExtraWildcard,
|
|
|
|
RealArm,
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
|
|
|
|
2023-10-14 16:30:23 +02:00
|
|
|
/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
|
|
|
|
/// reverse order of construction) with wildcards inside to represent elements that can take any
|
|
|
|
/// inhabitant of the type as a value.
|
|
|
|
///
|
|
|
|
/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
|
|
|
|
/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
|
|
|
|
/// FIXME(Nadrieril): use the same order of patterns for both
|
2018-08-12 11:43:42 +01:00
|
|
|
///
|
2023-10-14 16:30:23 +02:00
|
|
|
/// A `WitnessStack` should have the same types and length as the `PatStacks` we are inspecting
|
|
|
|
/// (except we store the patterns in reverse order). Because Rust `match` is always against a single
|
|
|
|
/// pattern, at the end the stack will have length 1. In the middle of the algorithm, it can contain
|
2018-08-12 11:43:42 +01:00
|
|
|
/// multiple patterns.
|
|
|
|
///
|
|
|
|
/// For example, if we are constructing a witness for the match against
|
2020-10-18 21:54:10 -07:00
|
|
|
///
|
2022-04-15 15:04:34 -07:00
|
|
|
/// ```compile_fail,E0004
|
2018-08-12 11:43:42 +01:00
|
|
|
/// struct Pair(Option<(u32, u32)>, bool);
|
2022-04-15 15:04:34 -07:00
|
|
|
/// # fn foo(p: Pair) {
|
2023-03-16 07:00:55 +08:00
|
|
|
/// match p {
|
2018-08-12 11:43:42 +01:00
|
|
|
/// Pair(None, _) => {}
|
|
|
|
/// Pair(_, false) => {}
|
|
|
|
/// }
|
2022-04-15 15:04:34 -07:00
|
|
|
/// # }
|
2018-08-12 11:43:42 +01:00
|
|
|
/// ```
|
|
|
|
///
|
2023-10-14 16:30:23 +02:00
|
|
|
/// We'll perform the following steps (among others):
|
|
|
|
/// - Start with a matrix representing the match
|
|
|
|
/// `PatStack(vec![Pair(None, _)])`
|
|
|
|
/// `PatStack(vec![Pair(_, false)])`
|
|
|
|
/// - Specialize with `Pair`
|
|
|
|
/// `PatStack(vec![None, _])`
|
|
|
|
/// `PatStack(vec![_, false])`
|
|
|
|
/// - Specialize with `Some`
|
|
|
|
/// `PatStack(vec![_, false])`
|
|
|
|
/// - Specialize with `_`
|
|
|
|
/// `PatStack(vec![false])`
|
|
|
|
/// - Specialize with `true`
|
|
|
|
/// // no patstacks left
|
|
|
|
/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
|
|
|
|
/// `WitnessStack(vec![])`
|
|
|
|
/// - Apply `true`
|
|
|
|
/// `WitnessStack(vec![true])`
|
|
|
|
/// - Apply `_`
|
|
|
|
/// `WitnessStack(vec![true, _])`
|
|
|
|
/// - Apply `Some`
|
|
|
|
/// `WitnessStack(vec![true, Some(_)])`
|
|
|
|
/// - Apply `Pair`
|
|
|
|
/// `WitnessStack(vec![Pair(Some(_), true)])`
|
2018-08-12 11:43:42 +01:00
|
|
|
///
|
|
|
|
/// The final `Pair(Some(_), true)` is then the resulting witness.
|
2023-10-14 16:30:23 +02:00
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
pub(crate) struct WitnessStack<'tcx>(Vec<WitnessPat<'tcx>>);
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2023-10-14 16:30:23 +02:00
|
|
|
impl<'tcx> WitnessStack<'tcx> {
|
2020-11-12 18:16:46 +00:00
|
|
|
/// Asserts that the witness contains a single pattern, and returns it.
|
2023-10-14 16:30:23 +02:00
|
|
|
fn single_pattern(self) -> WitnessPat<'tcx> {
|
2016-09-24 20:45:59 +03:00
|
|
|
assert_eq!(self.0.len(), 1);
|
2019-09-09 16:44:06 +02:00
|
|
|
self.0.into_iter().next().unwrap()
|
2016-09-24 20:45:59 +03:00
|
|
|
}
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2016-09-24 20:45:59 +03:00
|
|
|
/// Constructs a partial witness for a pattern given a list of
|
|
|
|
/// patterns expanded by the specialization step.
|
|
|
|
///
|
|
|
|
/// When a pattern P is discovered to be useful, this function is used bottom-up
|
2018-11-27 02:59:49 +00:00
|
|
|
/// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
|
2016-09-24 20:45:59 +03:00
|
|
|
/// of values, V, where each value in that set is not covered by any previously
|
|
|
|
/// used patterns and is covered by the pattern P'. Examples:
|
|
|
|
///
|
|
|
|
/// left_ty: tuple of 3 elements
|
|
|
|
/// pats: [10, 20, _] => (10, 20, _)
|
|
|
|
///
|
|
|
|
/// left_ty: struct X { a: (bool, &'static str), b: usize}
|
|
|
|
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
|
2023-10-14 16:30:23 +02:00
|
|
|
fn apply_constructor(mut self, pcx: &PatCtxt<'_, '_, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
|
2016-09-24 20:45:59 +03:00
|
|
|
let pat = {
|
2020-05-09 12:46:42 +01:00
|
|
|
let len = self.0.len();
|
2021-09-26 00:00:08 +01:00
|
|
|
let arity = ctor.arity(pcx);
|
2023-10-14 16:30:23 +02:00
|
|
|
let fields = self.0.drain((len - arity)..).rev().collect();
|
|
|
|
WitnessPat::new(ctor.clone(), fields, pcx.ty)
|
2016-09-24 20:45:59 +03:00
|
|
|
};
|
2016-09-24 18:24:34 +03:00
|
|
|
|
2019-09-23 17:36:42 +02:00
|
|
|
self.0.push(pat);
|
2016-09-24 20:45:59 +03:00
|
|
|
|
|
|
|
self
|
|
|
|
}
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
|
|
|
|
2020-11-05 14:33:23 +01:00
|
|
|
/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
|
2016-12-01 01:12:03 +08:00
|
|
|
/// The algorithm from the paper has been modified to correctly handle empty
|
|
|
|
/// types. The changes are:
|
|
|
|
/// (0) We don't exit early if the pattern matrix has zero rows. We just
|
|
|
|
/// continue to recurse over columns.
|
|
|
|
/// (1) all_constructors will only return constructors that are statically
|
2019-02-08 14:53:55 +01:00
|
|
|
/// possible. E.g., it will only return `Ok` for `Result<T, !>`.
|
2016-09-26 02:53:26 +03:00
|
|
|
///
|
2017-12-25 18:14:50 +02:00
|
|
|
/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
|
2018-01-13 23:41:11 +02:00
|
|
|
/// to a set of such vectors `m` - this is defined as there being a set of
|
|
|
|
/// inputs that will match `v` but not any of the sets in `m`.
|
2017-12-25 18:14:50 +02:00
|
|
|
///
|
2020-05-09 13:46:05 +01:00
|
|
|
/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
|
2016-09-26 02:53:26 +03:00
|
|
|
///
|
|
|
|
/// This is used both for reachability checking (if a pattern isn't useful in
|
|
|
|
/// relation to preceding patterns, it is not reachable) and exhaustiveness
|
|
|
|
/// checking (if a wildcard pattern is useful in relation to a matrix, the
|
|
|
|
/// matrix isn't exhaustive).
|
2020-03-25 20:07:01 -03:00
|
|
|
///
|
|
|
|
/// `is_under_guard` is used to inform if the pattern has a guard. If it
|
|
|
|
/// has one it must not be inserted into the matrix. This shouldn't be
|
|
|
|
/// relied on for soundness.
|
2023-04-03 16:13:24 +00:00
|
|
|
#[instrument(level = "debug", skip(cx, matrix, lint_root), ret)]
|
2020-11-12 18:16:46 +00:00
|
|
|
fn is_useful<'p, 'tcx>(
|
2020-10-25 21:59:59 +00:00
|
|
|
cx: &MatchCheckCtxt<'p, 'tcx>,
|
2019-06-16 12:41:24 +03:00
|
|
|
matrix: &Matrix<'p, 'tcx>,
|
2019-11-28 13:03:02 +00:00
|
|
|
v: &PatStack<'p, 'tcx>,
|
2021-09-10 16:45:04 -04:00
|
|
|
witness_preference: ArmType,
|
2023-04-03 16:13:24 +00:00
|
|
|
lint_root: HirId,
|
2020-03-25 20:07:01 -03:00
|
|
|
is_under_guard: bool,
|
2019-12-03 16:15:25 +00:00
|
|
|
is_top_level: bool,
|
2023-10-14 16:30:23 +02:00
|
|
|
) -> Usefulness<'tcx> {
|
2022-07-28 08:49:39 +00:00
|
|
|
debug!(?matrix, ?v);
|
2020-09-19 22:00:10 +09:00
|
|
|
let Matrix { patterns: rows, .. } = matrix;
|
2016-09-24 20:45:59 +03:00
|
|
|
|
2016-11-28 18:38:27 +08:00
|
|
|
// The base case. We are pattern-matching on () and the return value is
|
|
|
|
// based on whether our matrix has a row or not.
|
|
|
|
// NOTE: This could potentially be optimized by checking rows.is_empty()
|
|
|
|
// first and then, if v is non-empty, the return value is based on whether
|
|
|
|
// the type of the tuple we're checking is inhabited or not.
|
|
|
|
if v.is_empty() {
|
2021-01-01 21:28:32 +00:00
|
|
|
let ret = if rows.is_empty() {
|
|
|
|
Usefulness::new_useful(witness_preference)
|
|
|
|
} else {
|
|
|
|
Usefulness::new_not_useful(witness_preference)
|
|
|
|
};
|
2020-12-31 18:48:08 +00:00
|
|
|
debug!(?ret);
|
|
|
|
return ret;
|
|
|
|
}
|
2016-11-28 18:38:27 +08:00
|
|
|
|
2021-11-09 16:13:44 +11:00
|
|
|
debug_assert!(rows.iter().all(|r| r.len() == v.len()));
|
2016-11-05 13:32:35 +02:00
|
|
|
|
2019-11-21 18:45:28 +00:00
|
|
|
// If the first pattern is an or-pattern, expand it.
|
2021-08-26 09:55:57 +02:00
|
|
|
let mut ret = Usefulness::new_not_useful(witness_preference);
|
2021-09-26 00:00:08 +01:00
|
|
|
if v.head().is_or_pat() {
|
2020-12-31 18:48:08 +00:00
|
|
|
debug!("expanding or-pattern");
|
2021-02-01 19:22:05 +00:00
|
|
|
// We try each or-pattern branch in turn.
|
2020-10-20 22:08:19 +01:00
|
|
|
let mut matrix = matrix.clone();
|
2021-09-25 21:48:50 +01:00
|
|
|
for v in v.expand_or_pat() {
|
2022-03-09 13:56:12 +01:00
|
|
|
debug!(?v);
|
2021-11-23 22:55:48 +01:00
|
|
|
let usefulness = ensure_sufficient_stack(|| {
|
2023-04-03 16:13:24 +00:00
|
|
|
is_useful(cx, &matrix, &v, witness_preference, lint_root, is_under_guard, false)
|
2021-11-23 22:55:48 +01:00
|
|
|
});
|
2022-03-09 13:56:12 +01:00
|
|
|
debug!(?usefulness);
|
2021-08-26 09:55:57 +02:00
|
|
|
ret.extend(usefulness);
|
2020-10-20 22:08:19 +01:00
|
|
|
// If pattern has a guard don't add it to the matrix.
|
2020-03-25 20:07:01 -03:00
|
|
|
if !is_under_guard {
|
2020-10-20 22:08:19 +01:00
|
|
|
// We push the already-seen patterns into the matrix in order to detect redundant
|
|
|
|
// branches like `Some(_) | Some(0)`.
|
2020-03-25 20:07:01 -03:00
|
|
|
matrix.push(v);
|
|
|
|
}
|
2021-08-26 09:55:57 +02:00
|
|
|
}
|
2020-12-17 00:47:31 +00:00
|
|
|
} else {
|
2022-07-27 11:58:34 +00:00
|
|
|
let mut ty = v.head().ty();
|
|
|
|
|
|
|
|
// Opaque types can't get destructured/split, but the patterns can
|
|
|
|
// actually hint at hidden types, so we use the patterns' types instead.
|
2022-11-26 21:51:55 +00:00
|
|
|
if let ty::Alias(ty::Opaque, ..) = ty.kind() {
|
2022-07-27 11:58:34 +00:00
|
|
|
if let Some(row) = rows.first() {
|
|
|
|
ty = row.head().ty();
|
|
|
|
}
|
|
|
|
}
|
2022-06-28 10:49:55 +00:00
|
|
|
debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span());
|
2023-10-03 15:30:05 +02:00
|
|
|
let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level };
|
2022-06-28 10:49:55 +00:00
|
|
|
|
2021-09-26 00:00:08 +01:00
|
|
|
let v_ctor = v.head().ctor();
|
2022-03-09 13:56:12 +01:00
|
|
|
debug!(?v_ctor);
|
2020-12-17 01:18:01 +00:00
|
|
|
// We split the head constructor of `v`.
|
2021-09-26 00:00:08 +01:00
|
|
|
let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
|
2020-12-17 01:18:01 +00:00
|
|
|
// For each constructor, we compute whether there's a value that starts with it that would
|
|
|
|
// witness the usefulness of `v`.
|
2020-12-20 14:29:42 +00:00
|
|
|
let start_matrix = &matrix;
|
2021-08-26 09:55:57 +02:00
|
|
|
for ctor in split_ctors {
|
2020-12-31 18:48:08 +00:00
|
|
|
debug!("specialize({:?})", ctor);
|
2020-12-17 01:18:01 +00:00
|
|
|
// We cache the result of `Fields::wildcards` because it is used a lot.
|
2021-09-26 00:00:08 +01:00
|
|
|
let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
|
2022-07-28 08:49:39 +00:00
|
|
|
let v = v.pop_head_constructor(pcx, &ctor);
|
2021-11-23 22:55:48 +01:00
|
|
|
let usefulness = ensure_sufficient_stack(|| {
|
2023-04-03 16:13:24 +00:00
|
|
|
is_useful(
|
|
|
|
cx,
|
|
|
|
&spec_matrix,
|
|
|
|
&v,
|
|
|
|
witness_preference,
|
|
|
|
lint_root,
|
|
|
|
is_under_guard,
|
|
|
|
false,
|
|
|
|
)
|
2021-11-23 22:55:48 +01:00
|
|
|
});
|
2021-09-26 00:00:08 +01:00
|
|
|
let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);
|
2021-08-26 09:55:57 +02:00
|
|
|
ret.extend(usefulness);
|
|
|
|
}
|
|
|
|
}
|
2021-09-10 16:45:04 -04:00
|
|
|
|
2021-09-25 21:48:50 +01:00
|
|
|
if ret.is_useful() {
|
|
|
|
v.head().set_reachable();
|
|
|
|
}
|
|
|
|
|
2020-05-23 13:11:28 +01:00
|
|
|
ret
|
2016-09-24 18:24:34 +03:00
|
|
|
}
|
|
|
|
|
2023-10-27 05:16:13 +02:00
|
|
|
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
|
|
|
|
/// inspect the same subvalue".
|
|
|
|
/// This is used to traverse patterns column-by-column for lints. Despite similarities with
|
|
|
|
/// `is_useful`, this is a different traversal. Notably this is linear in the depth of patterns,
|
|
|
|
/// whereas `is_useful` is worst-case exponential (exhaustiveness is NP-complete).
|
|
|
|
#[derive(Debug)]
|
|
|
|
struct PatternColumn<'p, 'tcx> {
|
|
|
|
patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
|
|
|
|
fn new(patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>) -> Self {
|
|
|
|
Self { patterns }
|
|
|
|
}
|
|
|
|
|
|
|
|
fn is_empty(&self) -> bool {
|
|
|
|
self.patterns.is_empty()
|
|
|
|
}
|
|
|
|
fn head_ty(&self) -> Option<Ty<'tcx>> {
|
2023-10-27 05:10:58 +02:00
|
|
|
if self.patterns.len() == 0 {
|
|
|
|
return None;
|
|
|
|
}
|
|
|
|
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
|
|
|
|
// version. Otherwise we could encounter constructors for the revealed type and crash.
|
|
|
|
let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
|
|
|
|
let first_ty = self.patterns[0].ty();
|
|
|
|
if is_opaque(first_ty) {
|
|
|
|
for pat in &self.patterns {
|
|
|
|
let ty = pat.ty();
|
|
|
|
if !is_opaque(ty) {
|
|
|
|
return Some(ty);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Some(first_ty)
|
2023-10-27 05:16:13 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> {
|
|
|
|
let column_ctors = self.patterns.iter().map(|p| p.ctor());
|
|
|
|
ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, column_ctors)
|
|
|
|
}
|
2023-10-21 18:08:09 +02:00
|
|
|
fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
|
|
|
self.patterns.iter().copied()
|
|
|
|
}
|
2023-10-27 05:16:13 +02:00
|
|
|
|
|
|
|
/// Does specialization: given a constructor, this takes the patterns from the column that match
|
|
|
|
/// the constructor, and outputs their fields.
|
|
|
|
/// This returns one column per field of the constructor. The normally all have the same length
|
|
|
|
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
|
|
|
|
/// which may change the lengths.
|
|
|
|
fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> {
|
|
|
|
let arity = ctor.arity(pcx);
|
|
|
|
if arity == 0 {
|
|
|
|
return Vec::new();
|
|
|
|
}
|
|
|
|
|
|
|
|
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
|
|
|
|
// columns may have different lengths in the presence of or-patterns (this is why we can't
|
|
|
|
// reuse `Matrix`).
|
|
|
|
let mut specialized_columns: Vec<_> =
|
|
|
|
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
|
|
|
|
let relevant_patterns =
|
|
|
|
self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
|
|
|
|
for pat in relevant_patterns {
|
|
|
|
let specialized = pat.specialize(pcx, &ctor);
|
|
|
|
for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
|
|
|
|
if subpat.is_or_pat() {
|
2023-10-30 15:31:00 +01:00
|
|
|
column.patterns.extend(subpat.flatten_or_pat())
|
2023-10-27 05:16:13 +02:00
|
|
|
} else {
|
|
|
|
column.patterns.push(subpat)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assert!(
|
|
|
|
!specialized_columns[0].is_empty(),
|
|
|
|
"ctor {ctor:?} was listed as present but isn't;
|
|
|
|
there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
|
|
|
|
);
|
|
|
|
specialized_columns
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-14 18:25:10 +02:00
|
|
|
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
|
2023-10-27 05:16:13 +02:00
|
|
|
/// in a given column.
|
|
|
|
#[instrument(level = "debug", skip(cx), ret)]
|
2023-10-14 18:25:10 +02:00
|
|
|
fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
|
|
|
|
cx: &MatchCheckCtxt<'p, 'tcx>,
|
2023-10-27 05:16:13 +02:00
|
|
|
column: &PatternColumn<'p, 'tcx>,
|
2023-10-14 18:25:10 +02:00
|
|
|
) -> Vec<WitnessPat<'tcx>> {
|
2023-10-27 05:16:13 +02:00
|
|
|
let Some(ty) = column.head_ty() else {
|
2023-10-21 23:04:17 +02:00
|
|
|
return Vec::new();
|
2023-10-27 05:16:13 +02:00
|
|
|
};
|
2023-10-14 18:25:10 +02:00
|
|
|
let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false };
|
|
|
|
|
2023-10-27 05:16:13 +02:00
|
|
|
let set = column.analyze_ctors(pcx);
|
2023-10-14 18:25:10 +02:00
|
|
|
if set.present.is_empty() {
|
|
|
|
// We can't consistently handle the case where no constructors are present (since this would
|
|
|
|
// require digging deep through any type in case there's a non_exhaustive enum somewhere),
|
|
|
|
// so for consistency we refuse to handle the top-level case, where we could handle it.
|
|
|
|
return vec![];
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut witnesses = Vec::new();
|
|
|
|
if cx.is_foreign_non_exhaustive_enum(ty) {
|
|
|
|
witnesses.extend(
|
|
|
|
set.missing
|
|
|
|
.into_iter()
|
|
|
|
// This will list missing visible variants.
|
|
|
|
.filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
|
|
|
|
.map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Recurse into the fields.
|
|
|
|
for ctor in set.present {
|
2023-10-27 05:16:13 +02:00
|
|
|
let specialized_columns = column.specialize(pcx, &ctor);
|
2023-10-14 18:25:10 +02:00
|
|
|
let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
|
|
|
|
for (i, col_i) in specialized_columns.iter().enumerate() {
|
|
|
|
// Compute witnesses for each column.
|
2023-10-27 05:16:13 +02:00
|
|
|
let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
|
2023-10-14 18:25:10 +02:00
|
|
|
// For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
|
|
|
|
// adding enough wildcards to match `arity`.
|
|
|
|
for wit in wits_for_col_i {
|
|
|
|
let mut pat = wild_pat.clone();
|
|
|
|
pat.fields[i] = wit;
|
|
|
|
witnesses.push(pat);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
witnesses
|
|
|
|
}
|
|
|
|
|
2023-10-21 18:08:09 +02:00
|
|
|
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
|
|
|
|
#[instrument(level = "debug", skip(cx, lint_root))]
|
|
|
|
fn lint_overlapping_range_endpoints<'p, 'tcx>(
|
|
|
|
cx: &MatchCheckCtxt<'p, 'tcx>,
|
|
|
|
column: &PatternColumn<'p, 'tcx>,
|
|
|
|
lint_root: HirId,
|
|
|
|
) {
|
|
|
|
let Some(ty) = column.head_ty() else {
|
|
|
|
return;
|
|
|
|
};
|
|
|
|
let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false };
|
|
|
|
|
|
|
|
let set = column.analyze_ctors(pcx);
|
|
|
|
|
|
|
|
if IntRange::is_integral(ty) {
|
|
|
|
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
|
2023-10-21 20:16:10 +02:00
|
|
|
let overlap_as_pat = overlap.to_diagnostic_pat(ty, cx.tcx);
|
2023-10-21 18:08:09 +02:00
|
|
|
let overlaps: Vec<_> = overlapped_spans
|
|
|
|
.iter()
|
|
|
|
.copied()
|
|
|
|
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
|
|
|
|
.collect();
|
|
|
|
cx.tcx.emit_spanned_lint(
|
|
|
|
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
|
|
|
|
lint_root,
|
|
|
|
this_span,
|
|
|
|
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
|
|
|
|
);
|
|
|
|
};
|
|
|
|
|
|
|
|
// If two ranges overlapped, the split set will contain their intersection as a singleton.
|
|
|
|
let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
|
|
|
|
for overlap_range in split_int_ranges.clone() {
|
|
|
|
if overlap_range.is_singleton() {
|
2023-10-12 19:47:33 +02:00
|
|
|
let overlap: MaybeInfiniteInt = overlap_range.lo;
|
2023-10-12 16:19:02 +02:00
|
|
|
// Ranges that look like `lo..=overlap`.
|
2023-10-21 18:08:09 +02:00
|
|
|
let mut prefixes: SmallVec<[_; 1]> = Default::default();
|
2023-10-12 16:19:02 +02:00
|
|
|
// Ranges that look like `overlap..=hi`.
|
2023-10-21 18:08:09 +02:00
|
|
|
let mut suffixes: SmallVec<[_; 1]> = Default::default();
|
|
|
|
// Iterate on patterns that contained `overlap`.
|
|
|
|
for pat in column.iter() {
|
|
|
|
let this_span = pat.span();
|
|
|
|
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
|
|
|
|
if this_range.is_singleton() {
|
|
|
|
// Don't lint when one of the ranges is a singleton.
|
|
|
|
continue;
|
|
|
|
}
|
2023-10-12 16:19:02 +02:00
|
|
|
if this_range.lo == overlap {
|
|
|
|
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
|
|
|
|
// ranges that look like `lo..=overlap`.
|
2023-10-21 18:08:09 +02:00
|
|
|
if !prefixes.is_empty() {
|
|
|
|
emit_lint(overlap_range, this_span, &prefixes);
|
|
|
|
}
|
|
|
|
suffixes.push(this_span)
|
2023-10-21 20:16:48 +02:00
|
|
|
} else if this_range.hi == overlap.plus_one() {
|
2023-10-12 16:19:02 +02:00
|
|
|
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
|
|
|
|
// ranges that look like `overlap..=hi`.
|
2023-10-21 18:08:09 +02:00
|
|
|
if !suffixes.is_empty() {
|
|
|
|
emit_lint(overlap_range, this_span, &suffixes);
|
|
|
|
}
|
|
|
|
prefixes.push(this_span)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Recurse into the fields.
|
|
|
|
for ctor in set.present {
|
|
|
|
for col in column.specialize(pcx, &ctor) {
|
|
|
|
lint_overlapping_range_endpoints(cx, &col, lint_root);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-12 18:16:46 +00:00
|
|
|
/// The arm of a match expression.
|
2022-03-09 13:56:12 +01:00
|
|
|
#[derive(Clone, Copy, Debug)]
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) struct MatchArm<'p, 'tcx> {
|
2020-12-20 13:29:39 +00:00
|
|
|
/// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
|
|
|
|
pub(crate) hir_id: HirId,
|
|
|
|
pub(crate) has_guard: bool,
|
2020-11-12 18:16:46 +00:00
|
|
|
}
|
|
|
|
|
2021-02-01 19:22:05 +00:00
|
|
|
/// Indicates whether or not a given arm is reachable.
|
2020-12-22 11:21:34 +00:00
|
|
|
#[derive(Clone, Debug)]
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) enum Reachability {
|
2021-02-01 19:22:05 +00:00
|
|
|
/// The arm is reachable. This additionally carries a set of or-pattern branches that have been
|
|
|
|
/// found to be unreachable despite the overall arm being reachable. Used only in the presence
|
|
|
|
/// of or-patterns, otherwise it stays empty.
|
2021-01-01 22:14:35 +00:00
|
|
|
Reachable(Vec<Span>),
|
2021-02-01 19:22:05 +00:00
|
|
|
/// The arm is unreachable.
|
2020-12-22 11:21:34 +00:00
|
|
|
Unreachable,
|
|
|
|
}
|
|
|
|
|
2020-11-12 18:16:46 +00:00
|
|
|
/// The output of checking a match for exhaustiveness and arm reachability.
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) struct UsefulnessReport<'p, 'tcx> {
|
2020-11-12 18:16:46 +00:00
|
|
|
/// For each arm of the input, whether that arm is reachable after the arms above it.
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>,
|
2020-11-12 18:16:46 +00:00
|
|
|
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
|
|
|
|
/// exhaustiveness.
|
2023-10-14 16:30:23 +02:00
|
|
|
pub(crate) non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
|
2020-11-12 18:16:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
|
|
|
|
/// of its arms are reachable.
|
|
|
|
///
|
2020-12-20 13:29:39 +00:00
|
|
|
/// Note: the input patterns must have been lowered through
|
|
|
|
/// `check_match::MatchVisitor::lower_pattern`.
|
2022-03-09 13:56:12 +01:00
|
|
|
#[instrument(skip(cx, arms), level = "debug")]
|
2022-05-20 19:51:09 -04:00
|
|
|
pub(crate) fn compute_match_usefulness<'p, 'tcx>(
|
2020-11-12 18:16:46 +00:00
|
|
|
cx: &MatchCheckCtxt<'p, 'tcx>,
|
|
|
|
arms: &[MatchArm<'p, 'tcx>],
|
2023-04-03 16:13:24 +00:00
|
|
|
lint_root: HirId,
|
2020-11-12 18:16:46 +00:00
|
|
|
scrut_ty: Ty<'tcx>,
|
2023-10-14 18:25:10 +02:00
|
|
|
scrut_span: Span,
|
2020-11-12 18:16:46 +00:00
|
|
|
) -> UsefulnessReport<'p, 'tcx> {
|
|
|
|
let mut matrix = Matrix::empty();
|
|
|
|
let arm_usefulness: Vec<_> = arms
|
|
|
|
.iter()
|
|
|
|
.copied()
|
|
|
|
.map(|arm| {
|
2022-03-09 13:56:12 +01:00
|
|
|
debug!(?arm);
|
2020-11-12 18:16:46 +00:00
|
|
|
let v = PatStack::from_pattern(arm.pat);
|
2021-09-25 21:48:50 +01:00
|
|
|
is_useful(cx, &matrix, &v, RealArm, arm.hir_id, arm.has_guard, true);
|
2020-11-12 18:16:46 +00:00
|
|
|
if !arm.has_guard {
|
|
|
|
matrix.push(v);
|
|
|
|
}
|
2021-09-25 21:48:50 +01:00
|
|
|
let reachability = if arm.pat.is_reachable() {
|
|
|
|
Reachability::Reachable(arm.pat.unreachable_spans())
|
|
|
|
} else {
|
|
|
|
Reachability::Unreachable
|
2020-12-22 11:21:34 +00:00
|
|
|
};
|
|
|
|
(arm, reachability)
|
2020-11-12 18:16:46 +00:00
|
|
|
})
|
|
|
|
.collect();
|
|
|
|
|
2023-04-01 17:54:20 +01:00
|
|
|
let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty, DUMMY_SP));
|
2020-11-12 18:16:46 +00:00
|
|
|
let v = PatStack::from_pattern(wild_pattern);
|
2023-04-03 16:13:24 +00:00
|
|
|
let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, lint_root, false, true);
|
2023-10-14 18:25:10 +02:00
|
|
|
let non_exhaustiveness_witnesses: Vec<_> = match usefulness {
|
2021-01-01 22:14:54 +00:00
|
|
|
WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(),
|
2021-09-25 21:48:50 +01:00
|
|
|
NoWitnesses { .. } => bug!(),
|
2020-11-12 18:16:46 +00:00
|
|
|
};
|
2023-10-14 18:25:10 +02:00
|
|
|
|
2023-10-21 18:08:09 +02:00
|
|
|
let pat_column = arms.iter().flat_map(|arm| arm.pat.flatten_or_pat()).collect::<Vec<_>>();
|
|
|
|
let pat_column = PatternColumn::new(pat_column);
|
|
|
|
lint_overlapping_range_endpoints(cx, &pat_column, lint_root);
|
|
|
|
|
2023-10-14 18:25:10 +02:00
|
|
|
// Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
|
|
|
|
// `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
|
2023-10-23 18:55:04 +02:00
|
|
|
if cx.refutable && non_exhaustiveness_witnesses.is_empty() {
|
|
|
|
if !matches!(
|
2023-10-14 18:25:10 +02:00
|
|
|
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, lint_root).0,
|
|
|
|
rustc_session::lint::Level::Allow
|
2023-10-23 18:55:04 +02:00
|
|
|
) {
|
|
|
|
let witnesses = collect_nonexhaustive_missing_variants(cx, &pat_column);
|
|
|
|
|
|
|
|
if !witnesses.is_empty() {
|
|
|
|
// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
|
|
|
|
// is not exhaustive enough.
|
|
|
|
//
|
|
|
|
// NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
|
|
|
|
cx.tcx.emit_spanned_lint(
|
|
|
|
NON_EXHAUSTIVE_OMITTED_PATTERNS,
|
|
|
|
lint_root,
|
|
|
|
scrut_span,
|
|
|
|
NonExhaustiveOmittedPattern {
|
|
|
|
scrut_ty,
|
|
|
|
uncovered: Uncovered::new(scrut_span, cx, witnesses),
|
|
|
|
},
|
|
|
|
);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
|
|
|
|
// arm. This no longer makes sense so we warn users, to avoid silently breaking their
|
|
|
|
// usage of the lint.
|
|
|
|
for arm in arms {
|
2023-11-02 06:21:08 +01:00
|
|
|
let (lint_level, lint_level_source) =
|
|
|
|
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.hir_id);
|
|
|
|
if !matches!(lint_level, rustc_session::lint::Level::Allow) {
|
|
|
|
let decorator = NonExhaustiveOmittedPatternLintOnArm {
|
|
|
|
lint_span: lint_level_source.span(),
|
|
|
|
suggest_lint_on_match: cx.match_span.map(|span| span.shrink_to_lo()),
|
|
|
|
lint_level: lint_level.as_str(),
|
|
|
|
lint_name: "non_exhaustive_omitted_patterns",
|
|
|
|
};
|
|
|
|
|
|
|
|
use rustc_errors::DecorateLint;
|
|
|
|
let mut err = cx.tcx.sess.struct_span_warn(arm.pat.span(), "");
|
|
|
|
err.set_primary_message(decorator.msg());
|
|
|
|
decorator.decorate_lint(&mut err);
|
|
|
|
err.emit();
|
2023-10-23 18:55:04 +02:00
|
|
|
}
|
|
|
|
}
|
2023-10-14 18:25:10 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-12 18:16:46 +00:00
|
|
|
UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
|
|
|
|
}
|