rust/src/librustc/traits/mod.rs

1283 lines
46 KiB
Rust
Raw Normal View History

//! Trait Resolution. See the [rustc guide] for more information on how this works.
2018-02-25 15:24:14 -06:00
//!
2018-11-26 15:03:13 -06:00
//! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html
#[allow(dead_code)]
pub mod auto_trait;
2018-11-24 20:18:16 +01:00
mod chalk_fulfill;
2019-12-24 17:38:22 -05:00
pub mod codegen;
mod coherence;
mod engine;
2019-12-24 17:38:22 -05:00
pub mod error_reporting;
mod fulfill;
mod object_safety;
mod on_unimplemented;
2019-12-24 17:38:22 -05:00
mod project;
pub mod query;
mod select;
mod specialize;
mod structural_impls;
mod util;
2019-02-05 11:20:45 -06:00
use crate::infer::outlives::env::OutlivesEnvironment;
2019-12-24 17:38:22 -05:00
use crate::infer::{InferCtxt, SuppressRegionErrors};
2019-02-05 11:20:45 -06:00
use crate::middle::region;
use crate::mir::interpret::ErrorHandled;
2019-12-24 17:38:22 -05:00
use crate::ty::error::{ExpectedFound, TypeError};
use crate::ty::fold::{TypeFoldable, TypeFolder, TypeVisitor};
use crate::ty::subst::{InternalSubsts, SubstsRef};
use crate::ty::{self, AdtKind, GenericParamDefKind, List, ToPredicate, Ty, TyCtxt};
use crate::util::common::ErrorReported;
use chalk_engine;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
2018-12-03 01:14:35 +01:00
use rustc_macros::HashStable;
use rustc_span::{Span, DUMMY_SP};
use syntax::ast;
2018-12-07 01:40:42 +00:00
use std::fmt::Debug;
use std::rc::Rc;
pub use self::FulfillmentErrorCode::*;
pub use self::ObligationCauseCode::*;
2019-12-24 17:38:22 -05:00
pub use self::SelectionError::*;
pub use self::Vtable::*;
pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
pub use self::coherence::{OrphanCheckErr, OverlapResult};
2019-12-24 17:38:22 -05:00
pub use self::engine::{TraitEngine, TraitEngineExt};
2018-03-11 10:29:22 +08:00
pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
pub use self::object_safety::MethodViolationCode;
2019-12-24 17:38:22 -05:00
pub use self::object_safety::ObjectSafetyViolation;
pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
2019-12-24 17:38:22 -05:00
pub use self::project::MismatchedProjectionTypes;
pub use self::project::{normalize, normalize_projection_type, poly_project_and_unify_type};
pub use self::project::{Normalized, ProjectionCache, ProjectionCacheSnapshot, Reveal};
pub use self::select::{EvaluationCache, SelectionCache, SelectionContext};
pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
pub use self::specialize::find_associated_item;
pub use self::specialize::specialization_graph::FutureCompatOverlapError;
pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
2019-12-24 17:38:22 -05:00
pub use self::specialize::{specialization_graph, translate_substs, OverlapError};
pub use self::util::{elaborate_predicates, elaborate_trait_ref, elaborate_trait_refs};
2019-12-24 17:38:22 -05:00
pub use self::util::{expand_trait_aliases, TraitAliasExpander};
pub use self::util::{
2019-12-24 17:38:22 -05:00
supertrait_def_ids, supertraits, transitive_bounds, SupertraitDefIds, Supertraits,
};
2018-11-24 20:18:16 +01:00
pub use self::chalk_fulfill::{
2019-12-24 17:38:22 -05:00
CanonicalGoal as ChalkCanonicalGoal, FulfillmentContext as ChalkFulfillmentContext,
2018-11-24 20:18:16 +01:00
};
pub use self::FulfillmentErrorCode::*;
2019-12-24 17:38:22 -05:00
pub use self::ObligationCauseCode::*;
pub use self::SelectionError::*;
pub use self::Vtable::*;
2019-02-08 14:53:55 +01:00
/// Whether to enable bug compatibility with issue #43355.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
2017-11-22 23:01:51 +02:00
pub enum IntercrateMode {
Issue43355,
2019-12-24 17:38:22 -05:00
Fixed,
2017-11-22 23:01:51 +02:00
}
2019-02-08 14:53:55 +01:00
/// The mode that trait queries run in.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum TraitQueryMode {
// Standard/un-canonicalized queries get accurate
// spans etc. passed in and hence can do reasonable
// error reporting on their own.
Standard,
// Canonicalized queries get dummy spans and hence
// must generally propagate errors to
// pre-canonicalization callsites.
Canonical,
}
2019-02-08 14:53:55 +01:00
/// An `Obligation` represents some trait reference (e.g., `int: Eq`) for
/// which the vtable must be found. The process of finding a vtable is
/// called "resolving" the `Obligation`. This process consists of
/// either identifying an `impl` (e.g., `impl Eq for int`) that
/// provides the required vtable, or else finding a bound that is in
/// scope. The eventual result is usually a `Selection` (defined below).
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Obligation<'tcx, T> {
2019-02-08 14:53:55 +01:00
/// The reason we have to prove this thing.
pub cause: ObligationCause<'tcx>,
2017-07-15 06:47:30 -04:00
2019-02-08 14:53:55 +01:00
/// The environment in which we should prove this thing.
2017-05-23 04:19:47 -04:00
pub param_env: ty::ParamEnv<'tcx>,
2017-07-15 06:47:30 -04:00
2019-02-08 14:53:55 +01:00
/// The thing we are trying to prove.
pub predicate: T,
2017-07-15 06:47:30 -04:00
/// If we started proving this as a result of trying to prove
/// something else, track the total depth to ensure termination.
/// If this goes over a certain threshold, we abort compilation --
/// in such cases, we can not say whether or not the predicate
2019-02-08 14:53:55 +01:00
/// holds for certain. Stupid halting problem; such a drag.
2017-07-15 06:47:30 -04:00
pub recursion_depth: usize,
}
pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
// `PredicateObligation` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert_size!(PredicateObligation<'_>, 112);
2019-02-08 14:53:55 +01:00
/// The reason why we incurred this obligation; used for error reporting.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct ObligationCause<'tcx> {
pub span: Span,
2014-12-05 01:59:17 -05:00
2019-02-08 14:53:55 +01:00
/// The ID of the fn body that triggered this obligation. This is
/// used for region obligations to determine the precise
/// environment in which the region obligation should be evaluated
/// (in particular, closures can add new assumptions). See the
/// field `region_obligations` of the `FulfillmentContext` for more
/// information.
2019-02-04 20:01:14 +01:00
pub body_id: hir::HirId,
2014-12-05 01:59:17 -05:00
2019-12-24 17:38:22 -05:00
pub code: ObligationCauseCode<'tcx>,
}
impl<'tcx> ObligationCause<'tcx> {
2019-06-14 00:48:52 +03:00
pub fn span(&self, tcx: TyCtxt<'tcx>) -> Span {
match self.code {
2019-12-24 17:38:22 -05:00
ObligationCauseCode::CompareImplMethodObligation { .. }
| ObligationCauseCode::MainFunctionType
| ObligationCauseCode::StartFunctionType => tcx.sess.source_map().def_span(self.span),
ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
arm_span,
..
}) => arm_span,
_ => self.span,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum ObligationCauseCode<'tcx> {
2019-02-08 14:53:55 +01:00
/// Not well classified or should be obvious from the span.
MiscObligation,
2019-02-08 14:53:55 +01:00
/// A slice or array is WF only if `T: Sized`.
SliceOrArrayElem,
2019-02-08 14:53:55 +01:00
/// A tuple is WF only if its middle elements are `Sized`.
TupleElem,
2019-02-08 14:53:55 +01:00
/// This is the trait reference from the given projection.
ProjectionWf(ty::ProjectionTy<'tcx>),
2019-02-08 14:53:55 +01:00
/// In an impl of trait `X` for type `Y`, type `Y` must
/// also implement all supertraits of `X`.
2015-08-16 06:32:28 -04:00
ItemObligation(DefId),
/// Like `ItemObligation`, but with extra detail on the source of the obligation.
BindingObligation(DefId, Span),
/// A type like `&'a T` is WF only if `T: 'a`.
ReferenceOutlivesReferent(Ty<'tcx>),
/// A type like `Box<Foo<'a> + 'b>` is WF only if `'b: 'a`.
ObjectTypeBound(Ty<'tcx>, ty::Region<'tcx>),
/// Obligation incurred due to an object cast.
ObjectCastObligation(/* Object type */ Ty<'tcx>),
/// Obligation incurred due to a coercion.
2019-12-24 17:38:22 -05:00
Coercion {
source: Ty<'tcx>,
target: Ty<'tcx>,
},
2019-11-21 18:40:27 +00:00
/// Various cases where expressions must be `Sized` / `Copy` / etc.
/// `L = X` implies that `L` is `Sized`.
AssignmentLhsSized,
/// `(x1, .., xn)` must be `Sized`.
TupleInitializerSized,
/// `S { ... }` must be `Sized`.
StructInitializerSized,
/// Type of each variable must be `Sized`.
VariableType(hir::HirId),
/// Argument type must be `Sized`.
2018-05-30 00:25:56 +09:00
SizedArgumentType,
/// Return type must be `Sized`.
SizedReturnType,
/// Yield type must be `Sized`.
2018-01-28 20:23:49 +01:00
SizedYieldType,
/// `[T, ..n]` implies that `T` must be `Copy`.
/// If `true`, suggest `const_in_array_repeat_expressions` feature flag.
RepeatVec(bool),
/// Types of fields (other than the last, except for packed structs) in a struct must be sized.
2019-12-24 17:38:22 -05:00
FieldSized {
adt_kind: AdtKind,
last: bool,
},
/// Constant expressions must be sized.
ConstSized,
/// `static` items must have `Sync` type.
2014-12-06 11:39:25 -05:00
SharedStatic,
BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
2014-12-06 11:39:25 -05:00
ImplDerivedObligation(DerivedObligationCause<'tcx>),
/// Error derived when matching traits/impls; see ObligationCause for more details
CompareImplMethodObligation {
item_name: ast::Name,
impl_item_def_id: DefId,
2016-10-12 16:38:58 -04:00
trait_item_def_id: DefId,
},
/// Error derived when matching traits/impls; see ObligationCause for more details
CompareImplTypeObligation {
item_name: ast::Name,
impl_item_def_id: DefId,
trait_item_def_id: DefId,
},
/// Checking that this expression can be assigned where it needs to be
// FIXME(eddyb) #11161 is the original Expr required?
ExprAssignable,
/// Computing common supertype in the arms of a match expression
MatchExpressionArm(Box<MatchExpressionArmCause<'tcx>>),
/// Type error arising from type checking a pattern against an expected type.
Pattern {
2019-12-30 11:39:13 +01:00
/// The span of the scrutinee or type expression which caused the `root_ty` type.
span: Option<Span>,
/// The root expected type induced by a scrutinee or type expression.
root_ty: Ty<'tcx>,
/// Whether the `Span` came from an expression or a type expression.
origin_expr: bool,
2019-12-24 17:38:22 -05:00
},
Migrate from `#[structural_match]` attribute a lang-item trait. (Or more precisely, a pair of such traits: one for `derive(PartialEq)` and one for `derive(Eq)`.) ((The addition of the second marker trait, `StructuralEq`, is largely a hack to work-around `fn (&T)` not implementing `PartialEq` and `Eq`; see also issue rust-lang/rust#46989; otherwise I would just check if `Eq` is implemented.)) Note: this does not use trait fulfillment error-reporting machinery; it just uses the trait system to determine if the ADT was tagged or not. (Nonetheless, I have kept an `on_unimplemented` message on the new trait for structural_match check, even though it is currently not used.) Note also: this does *not* resolve the ICE from rust-lang/rust#65466, as noted in a comment added in this commit. Further work is necessary to resolve that and other problems with the structural match checking, especially to do so without breaking stable code (adapted from test fn-ptr-is-structurally-matchable.rs): ```rust fn r_sm_to(_: &SM) {} fn main() { const CFN6: Wrap<fn(&SM)> = Wrap(r_sm_to); let input: Wrap<fn(&SM)> = Wrap(r_sm_to); match Wrap(input) { Wrap(CFN6) => {} Wrap(_) => {} }; } ``` where we would hit a problem with the strategy of unconditionally checking for `PartialEq` because the type `for <'a> fn(&'a SM)` does not currently even *implement* `PartialEq`. ---- added review feedback: * use an or-pattern * eschew `return` when tail position will do. * don't need fresh_expansion; just add `structural_match` to appropriate `allow_internal_unstable` attributes. also fixed example in doc comment so that it actually compiles.
2019-10-17 10:54:37 +02:00
/// Constants in patterns must have `Structural` type.
ConstPatternStructural,
/// Computing common supertype in an if expression
IfExpression(Box<IfExpressionCause>),
/// Computing common supertype of an if expression with no else counter-part
IfExpressionWithNoElse,
/// `main` has wrong type
MainFunctionType,
/// `start` has wrong type
StartFunctionType,
/// Intrinsic has wrong type
IntrinsicType,
/// Method receiver
MethodReceiver,
/// `return` with no expression
ReturnNoExpression,
/// `return` with an expression
ReturnValue(hir::HirId),
/// Return type of this function
ReturnType,
/// Block implicit return
2019-02-24 09:33:17 +01:00
BlockTailExpression(hir::HirId),
2018-05-06 22:50:35 +01:00
/// #[feature(trivial_bounds)] is not enabled
TrivialBound,
AssocTypeBound(Box<AssocTypeBoundData>),
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct AssocTypeBoundData {
pub impl_span: Option<Span>,
pub original: Span,
pub bounds: Vec<Span>,
}
// `ObligationCauseCode` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert_size!(ObligationCauseCode<'_>, 32);
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct MatchExpressionArmCause<'tcx> {
pub arm_span: Span,
pub source: hir::MatchSource,
pub prior_arms: Vec<Span>,
pub last_ty: Ty<'tcx>,
2019-12-30 12:48:48 +01:00
pub scrut_hir_id: hir::HirId,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct IfExpressionCause {
pub then: Span,
pub outer: Option<Span>,
pub semicolon: Option<Span>,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct DerivedObligationCause<'tcx> {
2014-12-30 08:59:33 -05:00
/// The trait reference of the parent obligation that led to the
/// current obligation. Note that only trait obligations lead to
/// derived obligations, so we just store the trait reference here
/// directly.
parent_trait_ref: ty::PolyTraitRef<'tcx>,
2019-02-08 14:53:55 +01:00
/// The parent trait had this cause.
2019-12-24 17:38:22 -05:00
parent_code: Rc<ObligationCauseCode<'tcx>>,
}
pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
2018-03-14 15:19:17 +01:00
/// The following types:
2019-02-08 14:53:55 +01:00
/// * `WhereClause`,
/// * `WellFormed`,
/// * `FromEnv`,
/// * `DomainGoal`,
/// * `Goal`,
/// * `Clause`,
/// * `Environment`,
/// * `InEnvironment`,
2018-03-14 15:19:17 +01:00
/// are used for representing the trait system in the form of
/// logic programming clauses. They are part of the interface
/// for the chalk SLG solver.
2019-11-15 18:30:20 +01:00
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable, Lift)]
2018-06-04 13:57:56 +02:00
pub enum WhereClause<'tcx> {
2018-03-14 13:38:03 +01:00
Implemented(ty::TraitPredicate<'tcx>),
ProjectionEq(ty::ProjectionPredicate<'tcx>),
2018-06-04 13:57:56 +02:00
RegionOutlives(ty::RegionOutlivesPredicate<'tcx>),
TypeOutlives(ty::TypeOutlivesPredicate<'tcx>),
}
2019-11-15 18:30:20 +01:00
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable, Lift)]
2018-06-04 13:57:56 +02:00
pub enum WellFormed<'tcx> {
Trait(ty::TraitPredicate<'tcx>),
Ty(Ty<'tcx>),
}
2019-11-15 18:30:20 +01:00
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable, Lift)]
2018-06-04 13:57:56 +02:00
pub enum FromEnv<'tcx> {
Trait(ty::TraitPredicate<'tcx>),
Ty(Ty<'tcx>),
2018-03-10 12:44:33 +01:00
}
2019-11-15 18:30:20 +01:00
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable, Lift)]
2018-03-10 12:44:33 +01:00
pub enum DomainGoal<'tcx> {
2018-06-04 13:57:56 +02:00
Holds(WhereClause<'tcx>),
WellFormed(WellFormed<'tcx>),
FromEnv(FromEnv<'tcx>),
Normalize(ty::ProjectionPredicate<'tcx>),
2018-03-10 12:44:33 +01:00
}
2018-03-28 14:13:08 +02:00
pub type PolyDomainGoal<'tcx> = ty::Binder<DomainGoal<'tcx>>;
2018-12-03 01:14:35 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
2018-03-10 12:44:33 +01:00
pub enum QuantifierKind {
Universal,
Existential,
}
2019-11-15 18:30:20 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable, Lift)]
pub enum GoalKind<'tcx> {
Implies(Clauses<'tcx>, Goal<'tcx>),
And(Goal<'tcx>, Goal<'tcx>),
Not(Goal<'tcx>),
2018-03-14 13:38:03 +01:00
DomainGoal(DomainGoal<'tcx>),
Quantified(QuantifierKind, ty::Binder<Goal<'tcx>>),
2018-11-28 22:11:00 +01:00
Subtype(Ty<'tcx>, Ty<'tcx>),
CannotProve,
2018-03-14 13:38:03 +01:00
}
pub type Goal<'tcx> = &'tcx GoalKind<'tcx>;
2018-08-22 00:35:01 +01:00
pub type Goals<'tcx> = &'tcx List<Goal<'tcx>>;
2018-06-04 13:57:56 +02:00
impl<'tcx> DomainGoal<'tcx> {
pub fn into_goal(self) -> GoalKind<'tcx> {
GoalKind::DomainGoal(self)
2018-06-04 13:57:56 +02:00
}
2018-10-11 16:26:43 +02:00
pub fn into_program_clause(self) -> ProgramClause<'tcx> {
ProgramClause {
goal: self,
2018-10-12 19:24:18 +02:00
hypotheses: ty::List::empty(),
category: ProgramClauseCategory::Other,
2018-10-11 16:26:43 +02:00
}
}
2018-06-04 13:57:56 +02:00
}
impl<'tcx> GoalKind<'tcx> {
2019-06-14 00:48:52 +03:00
pub fn from_poly_domain_goal(
domain_goal: PolyDomainGoal<'tcx>,
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
) -> GoalKind<'tcx> {
match domain_goal.no_bound_vars() {
2018-06-04 13:57:56 +02:00
Some(p) => p.into_goal(),
None => GoalKind::Quantified(
2018-03-28 14:13:08 +02:00
QuantifierKind::Universal,
2019-12-24 17:38:22 -05:00
domain_goal.map_bound(|p| tcx.mk_goal(p.into_goal())),
2018-03-28 14:13:08 +02:00
),
}
2018-03-10 12:44:33 +01:00
}
}
2018-03-14 15:19:17 +01:00
/// This matches the definition from Page 7 of "A Proof Procedure for the Logic of Hereditary
/// Harrop Formulas".
2019-11-13 21:36:57 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable)]
2018-03-14 13:38:03 +01:00
pub enum Clause<'tcx> {
2018-03-28 14:13:08 +02:00
Implies(ProgramClause<'tcx>),
ForAll(ty::Binder<ProgramClause<'tcx>>),
}
2018-10-12 19:24:18 +02:00
impl Clause<'tcx> {
pub fn category(self) -> ProgramClauseCategory {
match self {
Clause::Implies(clause) => clause.category,
Clause::ForAll(clause) => clause.skip_binder().category,
}
}
}
/// Multiple clauses.
2018-08-22 00:35:01 +01:00
pub type Clauses<'tcx> = &'tcx List<Clause<'tcx>>;
2018-03-28 14:13:08 +02:00
/// A "program clause" has the form `D :- G1, ..., Gn`. It is saying
/// that the domain goal `D` is true if `G1...Gn` are provable. This
/// is equivalent to the implication `G1..Gn => D`; we usually write
/// it with the reverse implication operator `:-` to emphasize the way
/// that programs are actually solved (via backchaining, which starts
/// with the goal to solve and proceeds from there).
2019-11-13 21:36:57 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable)]
2018-03-28 14:13:08 +02:00
pub struct ProgramClause<'tcx> {
2019-02-08 14:53:55 +01:00
/// This goal will be considered true ...
2018-03-28 14:13:08 +02:00
pub goal: DomainGoal<'tcx>,
2019-02-08 14:53:55 +01:00
/// ... if we can prove these hypotheses (there may be no hypotheses at all):
pub hypotheses: Goals<'tcx>,
2018-10-12 19:24:18 +02:00
/// Useful for filtering clauses.
pub category: ProgramClauseCategory,
}
2018-12-03 01:14:35 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
2018-10-12 19:24:18 +02:00
pub enum ProgramClauseCategory {
ImpliedBound,
WellFormed,
Other,
2018-03-10 12:44:33 +01:00
}
/// A set of clauses that we assume to be true.
2019-11-13 21:36:57 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable)]
pub struct Environment<'tcx> {
pub clauses: Clauses<'tcx>,
}
impl Environment<'tcx> {
pub fn with<G>(self, goal: G) -> InEnvironment<'tcx, G> {
2019-12-24 17:38:22 -05:00
InEnvironment { environment: self, goal }
}
}
/// Something (usually a goal), along with an environment.
2019-11-13 21:36:57 +01:00
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable, TypeFoldable)]
pub struct InEnvironment<'tcx, G> {
pub environment: Environment<'tcx>,
pub goal: G,
}
pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
2019-12-24 17:38:22 -05:00
#[derive(Clone, Debug, TypeFoldable)]
pub enum SelectionError<'tcx> {
Unimplemented,
2019-12-24 17:38:22 -05:00
OutputTypeParameterMismatch(
ty::PolyTraitRef<'tcx>,
ty::PolyTraitRef<'tcx>,
ty::error::TypeError<'tcx>,
),
2015-08-16 06:32:28 -04:00
TraitNotObjectSafe(DefId),
ConstEvalFailure(ErrorHandled),
Overflow,
}
pub struct FulfillmentError<'tcx> {
pub obligation: PredicateObligation<'tcx>,
2019-09-16 15:54:31 -07:00
pub code: FulfillmentErrorCode<'tcx>,
2019-09-18 12:05:37 -07:00
/// Diagnostics only: we opportunistically change the `code.span` when we encounter an
/// obligation error caused by a call argument. When this is the case, we also signal that in
/// this field to ensure accuracy of suggestions.
2019-09-16 15:54:31 -07:00
pub points_at_arg_span: bool,
}
#[derive(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
CodeSelectionError(SelectionError<'tcx>),
CodeProjectionError(MismatchedProjectionTypes<'tcx>),
2019-12-24 17:38:22 -05:00
CodeSubtypeError(ExpectedFound<Ty<'tcx>>, TypeError<'tcx>), // always comes from a SubtypePredicate
CodeAmbiguity,
}
/// When performing resolution, it is typically the case that there
/// can be one of three outcomes:
///
/// - `Ok(Some(r))`: success occurred with result `r`
/// - `Ok(None)`: could not definitely determine anything, usually due
/// to inconclusive type inference.
/// - `Err(e)`: error `e` occurred
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
/// Given the successful resolution of an obligation, the `Vtable`
/// indicates where the vtable comes from. Note that while we call this
/// a "vtable", it does not necessarily indicate dynamic dispatch at
/// runtime. `Vtable` instances just tell the compiler where to find
/// methods, but in generic code those methods are typically statically
/// dispatched -- only when an object is constructed is a `Vtable`
/// instance reified into an actual vtable.
///
/// For example, the vtable may be tied to a specific impl (case A),
/// or it may be relative to some bound that is in scope (case B).
///
/// ```
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
/// impl Clone for int { ... } // Impl_3
///
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
/// param: T,
/// mixed: Option<T>) {
///
/// // Case A: Vtable points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, Vtable will carry resolutions for those as well:
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
///
/// // Case B: Vtable must be provided by caller. This applies when
/// // type is a type parameter.
/// param.clone(); // VtableParam
///
/// // Case C: A mix of cases A and B.
/// mixed.clone(); // Vtable(Impl_1, [VtableParam])
/// }
/// ```
///
/// ### The type parameter `N`
///
/// See explanation on `VtableImplData`.
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub enum Vtable<'tcx, N> {
/// Vtable identifying a particular impl.
VtableImpl(VtableImplData<'tcx, N>),
2019-02-08 14:53:55 +01:00
/// Vtable for auto trait implementations.
2015-02-07 14:46:08 +01:00
/// This carries the information and nested obligations with regards
/// to an auto implementation for a trait `Trait`. The nested obligations
2015-02-07 14:46:08 +01:00
/// ensure the trait implementation holds for all the constituent types.
VtableAutoImpl(VtableAutoImplData<N>),
2015-01-24 14:17:24 +01:00
/// Successful resolution to an obligation provided by the caller
/// for some type parameter. The `Vec<N>` represents the
/// obligations incurred from normalizing the where-clause (if
/// any).
VtableParam(Vec<N>),
2019-02-08 14:53:55 +01:00
/// Virtual calls through an object.
VtableObject(VtableObjectData<'tcx, N>),
/// Successful resolution for a builtin trait.
VtableBuiltin(VtableBuiltinData<N>),
2019-02-08 14:53:55 +01:00
/// Vtable automatically generated for a closure. The `DefId` is the ID
/// of the closure expression. This is a `VtableImpl` in spirit, but the
/// impl is generated by the compiler and does not appear in the source.
VtableClosure(VtableClosureData<'tcx, N>),
2019-02-08 14:53:55 +01:00
/// Same as above, but for a function pointer type with the given signature.
VtableFnPointer(VtableFnPointerData<'tcx, N>),
2016-12-26 14:34:03 +01:00
/// Vtable automatically generated for a generator.
2016-12-26 14:34:03 +01:00
VtableGenerator(VtableGeneratorData<'tcx, N>),
/// Vtable for a trait alias.
VtableTraitAlias(VtableTraitAliasData<'tcx, N>),
}
/// Identifies a particular impl in the source, along with a set of
/// substitutions from the impl's type/lifetime parameters. The
/// `nested` vector corresponds to the nested obligations attached to
/// the impl's type parameters.
///
/// The type parameter `N` indicates the type used for "nested
/// obligations" that are required by the impl. During type-check, this
2018-05-08 16:10:16 +03:00
/// is `Obligation`, as one might expect. During codegen, however, this
/// is `()`, because codegen only requires a shallow resolution of an
/// impl, and nested obligations are satisfied later.
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableImplData<'tcx, N> {
2015-08-16 06:32:28 -04:00
pub impl_def_id: DefId,
2019-02-09 22:11:53 +08:00
pub substs: SubstsRef<'tcx>,
2019-12-24 17:38:22 -05:00
pub nested: Vec<N>,
}
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
2016-12-26 14:34:03 +01:00
pub struct VtableGeneratorData<'tcx, N> {
pub generator_def_id: DefId,
pub substs: SubstsRef<'tcx>,
2016-12-26 14:34:03 +01:00
/// Nested obligations. This can be non-empty if the generator
/// signature contains associated types.
2019-12-24 17:38:22 -05:00
pub nested: Vec<N>,
2016-12-26 14:34:03 +01:00
}
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableClosureData<'tcx, N> {
2015-08-16 06:32:28 -04:00
pub closure_def_id: DefId,
2019-09-26 17:30:44 +00:00
pub substs: SubstsRef<'tcx>,
/// Nested obligations. This can be non-empty if the closure
/// signature contains associated types.
2019-12-24 17:38:22 -05:00
pub nested: Vec<N>,
}
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableAutoImplData<N> {
2015-08-16 06:32:28 -04:00
pub trait_def_id: DefId,
2019-12-24 17:38:22 -05:00
pub nested: Vec<N>,
2015-02-02 12:14:01 +01:00
}
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableBuiltinData<N> {
2019-12-24 17:38:22 -05:00
pub nested: Vec<N>,
}
/// A vtable for some object-safe trait `Foo` automatically derived
/// for the object type `Foo`.
2019-11-13 21:36:57 +01:00
#[derive(PartialEq, Eq, Clone, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableObjectData<'tcx, N> {
/// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
/// The vtable is formed by concatenating together the method lists of
/// the base object trait and all supertraits; this is the start of
/// `upcast_trait_ref`'s methods in that vtable.
pub vtable_base: usize,
pub nested: Vec<N>,
}
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableFnPointerData<'tcx, N> {
2017-09-14 21:44:23 -04:00
pub fn_ty: Ty<'tcx>,
2019-12-24 17:38:22 -05:00
pub nested: Vec<N>,
}
2019-11-13 21:36:57 +01:00
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable, TypeFoldable)]
pub struct VtableTraitAliasData<'tcx, N> {
pub alias_def_id: DefId,
2019-02-09 22:11:53 +08:00
pub substs: SubstsRef<'tcx>,
pub nested: Vec<N>,
}
/// Creates predicate obligations from the generic bounds.
pub fn predicates_for_generics<'tcx>(
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
generic_bounds: &ty::InstantiatedPredicates<'tcx>,
) -> PredicateObligations<'tcx> {
2017-05-23 04:19:47 -04:00
util::predicates_for_generics(cause, 0, param_env, generic_bounds)
}
/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
2019-06-14 00:48:52 +03:00
pub fn type_known_to_meet_bound_modulo_regions<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
def_id: DefId,
span: Span,
) -> bool {
2019-12-24 17:38:22 -05:00
debug!(
"type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
ty,
infcx.tcx.def_path_str(def_id)
);
2016-11-13 19:42:15 -07:00
2019-12-24 17:38:22 -05:00
let trait_ref = ty::TraitRef { def_id, substs: infcx.tcx.mk_substs_trait(ty, &[]) };
2016-11-13 19:42:15 -07:00
let obligation = Obligation {
2017-05-23 04:19:47 -04:00
param_env,
2019-02-04 20:01:14 +01:00
cause: ObligationCause::misc(span, hir::DUMMY_HIR_ID),
2016-11-13 19:42:15 -07:00
recursion_depth: 0,
predicate: trait_ref.to_predicate(),
};
let result = infcx.predicate_must_hold_modulo_regions(&obligation);
2019-12-24 17:38:22 -05:00
debug!(
"type_known_to_meet_ty={:?} bound={} => {:?}",
ty,
infcx.tcx.def_path_str(def_id),
result
);
2015-10-21 19:01:58 +03:00
if result && (ty.has_infer_types() || ty.has_closure_types()) {
// Because of inference "guessing", selection can sometimes claim
// to succeed while the success requires a guess. To ensure
// this function's result remains infallible, we must confirm
// that guess. While imperfect, I believe this is sound.
2017-11-23 23:21:56 +02:00
// The handling of regions in this area of the code is terrible,
// see issue #29149. We should be able to improve on this with
// NLL.
let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
2015-10-21 19:01:58 +03:00
// We can use a dummy node-id here because we won't pay any mind
// to region obligations that arise (there shouldn't really be any
// anyhow).
2019-02-04 20:01:14 +01:00
let cause = ObligationCause::misc(span, hir::DUMMY_HIR_ID);
2017-05-23 04:19:47 -04:00
fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
2015-10-21 19:01:58 +03:00
// Note: we only assume something is `Copy` if we can
// *definitively* show that it implements `Copy`. Otherwise,
// assume it is move; linear is always ok.
match fulfill_cx.select_all_or_error(infcx) {
Ok(()) => {
2019-12-24 17:38:22 -05:00
debug!(
"type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
ty,
infcx.tcx.def_path_str(def_id)
);
2015-10-21 19:01:58 +03:00
true
}
Err(e) => {
2019-12-24 17:38:22 -05:00
debug!(
"type_known_to_meet_bound_modulo_regions: ty={:?} bound={} errors={:?}",
ty,
infcx.tcx.def_path_str(def_id),
e
);
2015-10-21 19:01:58 +03:00
false
}
}
2015-10-21 19:01:58 +03:00
} else {
result
}
}
fn do_normalize_predicates<'tcx>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
region_context: DefId,
cause: ObligationCause<'tcx>,
elaborated_env: ty::ParamEnv<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>,
) -> Result<Vec<ty::Predicate<'tcx>>, ErrorReported> {
debug!(
"do_normalize_predicates(predicates={:?}, region_context={:?}, cause={:?})",
2019-12-24 17:38:22 -05:00
predicates, region_context, cause,
);
let span = cause.span;
tcx.infer_ctxt().enter(|infcx| {
2017-11-23 23:21:56 +02:00
// FIXME. We should really... do something with these region
// obligations. But this call just continues the older
// behavior (i.e., doesn't cause any new bugs), and it would
// take some further refactoring to actually solve them. In
// particular, we would have to handle implied bounds
// properly, and that code is currently largely confined to
// regionck (though I made some efforts to extract it
// out). -nmatsakis
//
// @arielby: In any case, these obligations are checked
// by wfcheck anyway, so I'm not sure we have to check
// them here too, and we will remove this function when
// we move over to lazy normalization *anyway*.
let fulfill_cx = FulfillmentContext::new_ignoring_regions();
2019-12-24 17:38:22 -05:00
let predicates =
match fully_normalize(&infcx, fulfill_cx, cause, elaborated_env, &predicates) {
Ok(predicates) => predicates,
Err(errors) => {
infcx.report_fulfillment_errors(&errors, None, false);
return Err(ErrorReported);
}
};
debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
let region_scope_tree = region::ScopeTree::default();
// We can use the `elaborated_env` here; the region code only
// cares about declarations like `'a: 'b`.
let outlives_env = OutlivesEnvironment::new(elaborated_env);
infcx.resolve_regions_and_report_errors(
region_context,
&region_scope_tree,
&outlives_env,
SuppressRegionErrors::default(),
);
let predicates = match infcx.fully_resolve(&predicates) {
Ok(predicates) => predicates,
Err(fixup_err) => {
// If we encounter a fixup error, it means that some type
// variable wound up unconstrained. I actually don't know
// if this can happen, and I certainly don't expect it to
// happen often, but if it did happen it probably
// represents a legitimate failure due to some kind of
// unconstrained variable, and it seems better not to ICE,
// all things considered.
tcx.sess.span_err(span, &fixup_err.to_string());
2019-12-24 17:38:22 -05:00
return Err(ErrorReported);
}
};
2019-05-31 10:23:22 +02:00
if predicates.has_local_value() {
// FIXME: shouldn't we, you know, actually report an error here? or an ICE?
Err(ErrorReported)
} else {
Ok(predicates)
}
})
}
// FIXME: this is gonna need to be removed ...
/// Normalizes the parameter environment, reporting errors if they occur.
pub fn normalize_param_env_or_error<'tcx>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
region_context: DefId,
unnormalized_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
) -> ty::ParamEnv<'tcx> {
// I'm not wild about reporting errors here; I'd prefer to
// have the errors get reported at a defined place (e.g.,
// during typeck). Instead I have all parameter
// environments, in effect, going through this function
// and hence potentially reporting errors. This ensures of
// course that we never forget to normalize (the
// alternative seemed like it would involve a lot of
// manual invocations of this fn -- and then we'd have to
// deal with the errors at each of those sites).
//
// In any case, in practice, typeck constructs all the
// parameter environments once for every fn as it goes,
// and errors will get reported then; so after typeck we
// can be sure that no errors should occur.
2019-12-24 17:38:22 -05:00
debug!(
"normalize_param_env_or_error(region_context={:?}, unnormalized_env={:?}, cause={:?})",
region_context, unnormalized_env, cause
);
let mut predicates: Vec<_> =
2019-12-24 17:38:22 -05:00
util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.to_vec()).collect();
2019-12-24 17:38:22 -05:00
debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
2018-11-17 18:56:14 +01:00
let elaborated_env = ty::ParamEnv::new(
tcx.intern_predicates(&predicates),
unnormalized_env.reveal,
2019-12-24 17:38:22 -05:00
unnormalized_env.def_id,
2018-11-17 18:56:14 +01:00
);
// HACK: we are trying to normalize the param-env inside *itself*. The problem is that
// normalization expects its param-env to be already normalized, which means we have
// a circularity.
//
// The way we handle this is by normalizing the param-env inside an unnormalized version
// of the param-env, which means that if the param-env contains unnormalized projections,
// we'll have some normalization failures. This is unfortunate.
//
// Lazy normalization would basically handle this by treating just the
// normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
//
// Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
// types, so to make the situation less bad, we normalize all the predicates *but*
// the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
// then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
//
// This works fairly well because trait matching does not actually care about param-env
// TypeOutlives predicates - these are normally used by regionck.
2019-12-24 17:38:22 -05:00
let outlives_predicates: Vec<_> = predicates
.drain_filter(|predicate| match predicate {
ty::Predicate::TypeOutlives(..) => true,
2019-12-24 17:38:22 -05:00
_ => false,
})
.collect();
2019-12-24 17:38:22 -05:00
debug!(
"normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
predicates, outlives_predicates
);
let non_outlives_predicates = match do_normalize_predicates(
tcx,
region_context,
cause.clone(),
elaborated_env,
predicates,
) {
Ok(predicates) => predicates,
// An unnormalized env is better than nothing.
Err(ErrorReported) => {
debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
return elaborated_env;
}
};
debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
// Not sure whether it is better to include the unnormalized TypeOutlives predicates
// here. I believe they should not matter, because we are ignoring TypeOutlives param-env
// predicates here anyway. Keeping them here anyway because it seems safer.
let outlives_env: Vec<_> =
non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
2019-12-24 17:38:22 -05:00
let outlives_env =
ty::ParamEnv::new(tcx.intern_predicates(&outlives_env), unnormalized_env.reveal, None);
let outlives_predicates = match do_normalize_predicates(
tcx,
region_context,
cause,
outlives_env,
outlives_predicates,
) {
Ok(predicates) => predicates,
// An unnormalized env is better than nothing.
Err(ErrorReported) => {
debug!("normalize_param_env_or_error: errored resolving outlives predicates");
return elaborated_env;
}
};
debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
let mut predicates = non_outlives_predicates;
predicates.extend(outlives_predicates);
debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
2018-11-17 18:56:14 +01:00
ty::ParamEnv::new(
tcx.intern_predicates(&predicates),
unnormalized_env.reveal,
2019-12-24 17:38:22 -05:00
unnormalized_env.def_id,
2018-11-17 18:56:14 +01:00
)
}
2019-06-14 00:48:52 +03:00
pub fn fully_normalize<'a, 'tcx, T>(
infcx: &InferCtxt<'a, 'tcx>,
mut fulfill_cx: FulfillmentContext<'tcx>,
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
value: &T,
) -> Result<T, Vec<FulfillmentError<'tcx>>>
where
T: TypeFoldable<'tcx>,
{
debug!("fully_normalize_with_fulfillcx(value={:?})", value);
let selcx = &mut SelectionContext::new(infcx);
let Normalized { value: normalized_value, obligations } =
2017-05-23 04:19:47 -04:00
project::normalize(selcx, param_env, cause, value);
2019-12-24 17:38:22 -05:00
debug!(
"fully_normalize: normalized_value={:?} obligations={:?}",
normalized_value, obligations
);
for obligation in obligations {
fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
}
2015-07-01 13:08:25 -07:00
debug!("fully_normalize: select_all_or_error start");
fulfill_cx.select_all_or_error(infcx)?;
debug!("fully_normalize: select_all_or_error complete");
let resolved_value = infcx.resolve_vars_if_possible(&normalized_value);
debug!("fully_normalize: resolved_value={:?}", resolved_value);
Ok(resolved_value)
}
2017-05-23 04:19:47 -04:00
/// Normalizes the predicates and checks whether they hold in an empty
/// environment. If this returns false, then either normalize
/// encountered an error or one of the predicates did not hold. Used
/// when creating vtables to check for unsatisfiable methods.
fn normalize_and_test_predicates<'tcx>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>,
) -> bool {
2019-12-24 17:38:22 -05:00
debug!("normalize_and_test_predicates(predicates={:?})", predicates);
let result = tcx.infer_ctxt().enter(|infcx| {
let param_env = ty::ParamEnv::reveal_all();
let mut selcx = SelectionContext::new(&infcx);
let mut fulfill_cx = FulfillmentContext::new();
let cause = ObligationCause::dummy();
let Normalized { value: predicates, obligations } =
2017-05-23 04:19:47 -04:00
normalize(&mut selcx, param_env, cause.clone(), &predicates);
for obligation in obligations {
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
for predicate in predicates {
2017-05-23 04:19:47 -04:00
let obligation = Obligation::new(cause.clone(), param_env, predicate);
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
fulfill_cx.select_all_or_error(&infcx).is_ok()
});
2019-12-24 17:38:22 -05:00
debug!("normalize_and_test_predicates(predicates={:?}) = {:?}", predicates, result);
result
}
fn substitute_normalize_and_test_predicates<'tcx>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
key: (DefId, SubstsRef<'tcx>),
) -> bool {
2019-12-24 17:38:22 -05:00
debug!("substitute_normalize_and_test_predicates(key={:?})", key);
let predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
let result = normalize_and_test_predicates(tcx, predicates);
2019-12-24 17:38:22 -05:00
debug!("substitute_normalize_and_test_predicates(key={:?}) = {:?}", key, result);
result
}
/// Given a trait `trait_ref`, iterates the vtable entries
/// that come from `trait_ref`, including its supertraits.
#[inline] // FIXME(#35870): avoid closures being unexported due to `impl Trait`.
fn vtable_methods<'tcx>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> &'tcx [Option<(DefId, SubstsRef<'tcx>)>] {
debug!("vtable_methods({:?})", trait_ref);
2019-12-24 17:38:22 -05:00
tcx.arena.alloc_from_iter(supertraits(tcx, trait_ref).flat_map(move |trait_ref| {
let trait_methods = tcx
.associated_items(trait_ref.def_id())
.filter(|item| item.kind == ty::AssocKind::Method);
// Now list each method's DefId and InternalSubsts (for within its trait).
// If the method can never be called from this object, produce None.
trait_methods.map(move |trait_method| {
debug!("vtable_methods: trait_method={:?}", trait_method);
let def_id = trait_method.def_id;
// Some methods cannot be called on an object; skip those.
if !tcx.is_vtable_safe_method(trait_ref.def_id(), &trait_method) {
debug!("vtable_methods: not vtable safe");
return None;
}
2017-10-09 10:39:53 -05:00
2019-12-24 17:38:22 -05:00
// The method may have some early-bound lifetimes; add regions for those.
let substs = trait_ref.map_bound(|trait_ref| {
InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
trait_ref.substs[param.index as usize]
}
})
});
// The trait type may have higher-ranked lifetimes in it;
// erase them if they appear, so that we get the type
// at some particular call site.
let substs =
tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &substs);
// It's possible that the method relies on where-clauses that
// do not hold for this particular set of type parameters.
// Note that this method could then never be called, so we
// do not want to try and codegen it, in that case (see #23435).
let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
if !normalize_and_test_predicates(tcx, predicates.predicates) {
debug!("vtable_methods: predicates do not hold");
return None;
}
2017-10-09 10:39:53 -05:00
2019-12-24 17:38:22 -05:00
Some((def_id, substs))
})
2019-12-24 17:38:22 -05:00
}))
}
2019-03-27 15:14:41 +00:00
impl<'tcx, O> Obligation<'tcx, O> {
2019-12-24 17:38:22 -05:00
pub fn new(
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: O,
) -> Obligation<'tcx, O> {
2017-05-23 04:19:47 -04:00
Obligation { cause, param_env, recursion_depth: 0, predicate }
}
2019-12-24 17:38:22 -05:00
fn with_depth(
cause: ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
predicate: O,
) -> Obligation<'tcx, O> {
2017-05-23 04:19:47 -04:00
Obligation { cause, param_env, recursion_depth, predicate }
}
2019-12-24 17:38:22 -05:00
pub fn misc(
span: Span,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
trait_ref: O,
) -> Obligation<'tcx, O> {
2017-05-23 04:19:47 -04:00
Obligation::new(ObligationCause::misc(span, body_id), param_env, trait_ref)
}
2019-12-24 17:38:22 -05:00
pub fn with<P>(&self, value: P) -> Obligation<'tcx, P> {
Obligation {
cause: self.cause.clone(),
param_env: self.param_env,
recursion_depth: self.recursion_depth,
predicate: value,
}
}
}
impl<'tcx> ObligationCause<'tcx> {
#[inline]
2019-12-24 17:38:22 -05:00
pub fn new(
span: Span,
body_id: hir::HirId,
code: ObligationCauseCode<'tcx>,
) -> ObligationCause<'tcx> {
2019-02-04 20:01:14 +01:00
ObligationCause { span, body_id, code }
}
2019-02-04 20:01:14 +01:00
pub fn misc(span: Span, body_id: hir::HirId) -> ObligationCause<'tcx> {
ObligationCause { span, body_id, code: MiscObligation }
}
pub fn dummy() -> ObligationCause<'tcx> {
2019-02-04 20:01:14 +01:00
ObligationCause { span: DUMMY_SP, body_id: hir::CRATE_HIR_ID, code: MiscObligation }
}
}
impl<'tcx, N> Vtable<'tcx, N> {
pub fn nested_obligations(self) -> Vec<N> {
match self {
VtableImpl(i) => i.nested,
VtableParam(n) => n,
VtableBuiltin(i) => i.nested,
VtableAutoImpl(d) => d.nested,
VtableClosure(c) => c.nested,
2016-12-26 14:34:03 +01:00
VtableGenerator(c) => c.nested,
VtableObject(d) => d.nested,
VtableFnPointer(d) => d.nested,
VtableTraitAlias(d) => d.nested,
}
}
2019-12-24 17:38:22 -05:00
pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M>
where
F: FnMut(N) -> M,
{
match self {
VtableImpl(i) => VtableImpl(VtableImplData {
impl_def_id: i.impl_def_id,
substs: i.substs,
nested: i.nested.into_iter().map(f).collect(),
}),
VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
2019-12-24 17:38:22 -05:00
VtableBuiltin(i) => {
VtableBuiltin(VtableBuiltinData { nested: i.nested.into_iter().map(f).collect() })
}
VtableObject(o) => VtableObject(VtableObjectData {
upcast_trait_ref: o.upcast_trait_ref,
vtable_base: o.vtable_base,
nested: o.nested.into_iter().map(f).collect(),
}),
VtableAutoImpl(d) => VtableAutoImpl(VtableAutoImplData {
trait_def_id: d.trait_def_id,
nested: d.nested.into_iter().map(f).collect(),
}),
VtableClosure(c) => VtableClosure(VtableClosureData {
closure_def_id: c.closure_def_id,
substs: c.substs,
nested: c.nested.into_iter().map(f).collect(),
}),
2016-12-26 14:34:03 +01:00
VtableGenerator(c) => VtableGenerator(VtableGeneratorData {
generator_def_id: c.generator_def_id,
2016-12-26 14:34:03 +01:00
substs: c.substs,
nested: c.nested.into_iter().map(f).collect(),
}),
VtableFnPointer(p) => VtableFnPointer(VtableFnPointerData {
fn_ty: p.fn_ty,
nested: p.nested.into_iter().map(f).collect(),
}),
VtableTraitAlias(d) => VtableTraitAlias(VtableTraitAliasData {
alias_def_id: d.alias_def_id,
substs: d.substs,
nested: d.nested.into_iter().map(f).collect(),
}),
}
}
}
impl<'tcx> FulfillmentError<'tcx> {
2019-12-24 17:38:22 -05:00
fn new(
obligation: PredicateObligation<'tcx>,
code: FulfillmentErrorCode<'tcx>,
) -> FulfillmentError<'tcx> {
2019-09-16 15:54:31 -07:00
FulfillmentError { obligation: obligation, code: code, points_at_arg_span: false }
}
}
impl<'tcx> TraitObligation<'tcx> {
fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
self.predicate.map_bound(|p| p.self_ty())
}
}
pub fn provide(providers: &mut ty::query::Providers<'_>) {
2018-06-13 16:44:43 +03:00
*providers = ty::query::Providers {
is_object_safe: object_safety::is_object_safe_provider,
specialization_graph_of: specialize::specialization_graph_provider,
specializes: specialize::specializes,
2018-05-08 16:10:16 +03:00
codegen_fulfill_obligation: codegen::codegen_fulfill_obligation,
vtable_methods,
substitute_normalize_and_test_predicates,
..*providers
};
}
pub trait ExClauseFold<'tcx>
where
Self: chalk_engine::context::Context + Clone,
{
2019-06-14 00:48:52 +03:00
fn fold_ex_clause_with<F: TypeFolder<'tcx>>(
ex_clause: &chalk_engine::ExClause<Self>,
folder: &mut F,
) -> chalk_engine::ExClause<Self>;
2019-06-11 12:21:38 +03:00
fn visit_ex_clause_with<V: TypeVisitor<'tcx>>(
ex_clause: &chalk_engine::ExClause<Self>,
visitor: &mut V,
) -> bool;
}
pub trait ChalkContextLift<'tcx>
where
Self: chalk_engine::context::Context + Clone,
{
type LiftedExClause: Debug + 'tcx;
type LiftedDelayedLiteral: Debug + 'tcx;
type LiftedLiteral: Debug + 'tcx;
2019-06-14 00:48:52 +03:00
fn lift_ex_clause_to_tcx(
ex_clause: &chalk_engine::ExClause<Self>,
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
) -> Option<Self::LiftedExClause>;
2019-06-14 00:48:52 +03:00
fn lift_delayed_literal_to_tcx(
ex_clause: &chalk_engine::DelayedLiteral<Self>,
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
) -> Option<Self::LiftedDelayedLiteral>;
2019-06-14 00:48:52 +03:00
fn lift_literal_to_tcx(
ex_clause: &chalk_engine::Literal<Self>,
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
) -> Option<Self::LiftedLiteral>;
}