rust/compiler/rustc_abi/src/layout.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1508 lines
65 KiB
Rust
Raw Normal View History

2023-09-29 17:09:56 +02:00
use std::fmt::{self, Write};
use std::ops::{Bound, Deref};
2023-09-29 17:09:56 +02:00
use std::{cmp, iter};
use rustc_hashes::Hash64;
2023-09-29 17:09:56 +02:00
use rustc_index::Idx;
use rustc_index::bit_set::BitMatrix;
use tracing::debug;
2023-09-29 16:19:43 +02:00
use crate::{
AbiAndPrefAlign, Align, BackendRepr, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer,
LayoutData, Niche, NonZeroUsize, Primitive, ReprOptions, Scalar, Size, StructKind, TagEncoding,
Variants, WrappingRange,
2023-09-29 16:19:43 +02:00
};
mod coroutine;
mod simple;
2024-10-21 15:10:39 +02:00
#[cfg(feature = "nightly")]
mod ty;
2024-10-21 15:10:39 +02:00
#[cfg(feature = "nightly")]
pub use ty::{FIRST_VARIANT, FieldIdx, Layout, TyAbiInterface, TyAndLayout, VariantIdx};
2023-12-16 01:37:00 -08:00
// A variant is absent if it's uninhabited and only has ZST fields.
// Present uninhabited variants only require space for their fields,
// but *not* an encoding of the discriminant (e.g., a tag value).
// See issue #49298 for more details on the need to leave space
// for non-ZST uninhabited data (mostly partial initialization).
fn absent<'a, FieldIdx, VariantIdx, F>(fields: &IndexSlice<FieldIdx, F>) -> bool
where
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
2023-12-16 01:37:00 -08:00
{
let uninhabited = fields.iter().any(|f| f.is_uninhabited());
2023-12-16 01:37:00 -08:00
// We cannot ignore alignment; that might lead us to entirely discard a variant and
// produce an enum that is less aligned than it should be!
let is_1zst = fields.iter().all(|f| f.is_1zst());
uninhabited && is_1zst
}
/// Determines towards which end of a struct layout optimizations will try to place the best niches.
enum NicheBias {
Start,
End,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LayoutCalculatorError<F> {
/// An unsized type was found in a location where a sized type was expected.
///
/// This is not always a compile error, for example if there is a `[T]: Sized`
/// bound in a where clause.
///
/// Contains the field that was unexpectedly unsized.
UnexpectedUnsized(F),
/// A type was too large for the target platform.
SizeOverflow,
/// A union had no fields.
EmptyUnion,
/// The fields or variants have irreconcilable reprs
ReprConflict,
2025-03-07 21:17:16 +01:00
/// The length of an SIMD type is zero
ZeroLengthSimdType,
/// The length of an SIMD type exceeds the maximum number of lanes
OversizedSimdType { max_lanes: u64 },
/// An element type of an SIMD type isn't a primitive
NonPrimitiveSimdType(F),
}
impl<F> LayoutCalculatorError<F> {
pub fn without_payload(&self) -> LayoutCalculatorError<()> {
2025-03-07 21:17:16 +01:00
use LayoutCalculatorError::*;
match *self {
UnexpectedUnsized(_) => UnexpectedUnsized(()),
SizeOverflow => SizeOverflow,
EmptyUnion => EmptyUnion,
ReprConflict => ReprConflict,
ZeroLengthSimdType => ZeroLengthSimdType,
OversizedSimdType { max_lanes } => OversizedSimdType { max_lanes },
NonPrimitiveSimdType(_) => NonPrimitiveSimdType(()),
}
}
/// Format an untranslated diagnostic for this type
///
/// Intended for use by rust-analyzer, as neither it nor `rustc_abi` depend on fluent infra.
pub fn fallback_fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2025-03-07 21:17:16 +01:00
use LayoutCalculatorError::*;
f.write_str(match self {
2025-03-07 21:17:16 +01:00
UnexpectedUnsized(_) => "an unsized type was found where a sized type was expected",
SizeOverflow => "size overflow",
EmptyUnion => "type is a union with no fields",
ReprConflict => "type has an invalid repr",
ZeroLengthSimdType | OversizedSimdType { .. } | NonPrimitiveSimdType(_) => {
"invalid simd type definition"
}
})
}
}
type LayoutCalculatorResult<FieldIdx, VariantIdx, F> =
Result<LayoutData<FieldIdx, VariantIdx>, LayoutCalculatorError<F>>;
#[derive(Clone, Copy, Debug)]
pub struct LayoutCalculator<Cx> {
pub cx: Cx,
}
impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
pub fn new(cx: Cx) -> Self {
Self { cx }
}
pub fn array_like<FieldIdx: Idx, VariantIdx: Idx, F>(
2023-09-29 17:19:41 +02:00
&self,
element: &LayoutData<FieldIdx, VariantIdx>,
count_if_sized: Option<u64>, // None for slices
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let count = count_if_sized.unwrap_or(0);
let size =
element.size.checked_mul(count, &self.cx).ok_or(LayoutCalculatorError::SizeOverflow)?;
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Array { stride: element.size, count },
backend_repr: BackendRepr::Memory { sized: count_if_sized.is_some() },
largest_niche: element.largest_niche.filter(|_| count != 0),
uninhabited: element.uninhabited && count != 0,
align: element.align,
size,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
randomization_seed: element.randomization_seed.wrapping_add(Hash64::new(count)),
})
}
2025-03-07 21:17:16 +01:00
pub fn simd_type<
FieldIdx: Idx,
VariantIdx: Idx,
F: AsRef<LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
>(
&self,
element: F,
count: u64,
repr_packed: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let elt = element.as_ref();
if count == 0 {
return Err(LayoutCalculatorError::ZeroLengthSimdType);
} else if count > crate::MAX_SIMD_LANES {
return Err(LayoutCalculatorError::OversizedSimdType {
max_lanes: crate::MAX_SIMD_LANES,
});
}
let BackendRepr::Scalar(e_repr) = elt.backend_repr else {
return Err(LayoutCalculatorError::NonPrimitiveSimdType(element));
};
// Compute the size and alignment of the vector
let dl = self.cx.data_layout();
let size =
elt.size.checked_mul(count, dl).ok_or_else(|| LayoutCalculatorError::SizeOverflow)?;
let (repr, align) = if repr_packed && !count.is_power_of_two() {
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(
BackendRepr::Memory { sized: true },
AbiAndPrefAlign {
abi: Align::max_aligned_factor(size),
pref: dl.llvmlike_vector_align(size).pref,
},
)
} else {
(BackendRepr::SimdVector { element: e_repr, count }, dl.llvmlike_vector_align(size))
};
let size = size.align_to(align.abi);
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
backend_repr: repr,
largest_niche: elt.largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: elt.align.abi,
randomization_seed: elt.randomization_seed.wrapping_add(Hash64::new(count)),
})
}
/// Compute the layout for a coroutine.
///
/// This uses dedicated code instead of [`Self::layout_of_struct_or_enum`], as coroutine
/// fields may be shared between multiple variants (see the [`coroutine`] module for details).
pub fn coroutine<
'a,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
VariantIdx: Idx,
FieldIdx: Idx,
LocalIdx: Idx,
>(
&self,
local_layouts: &IndexSlice<LocalIdx, F>,
prefix_layouts: IndexVec<FieldIdx, F>,
variant_fields: &IndexSlice<VariantIdx, IndexVec<FieldIdx, LocalIdx>>,
storage_conflicts: &BitMatrix<LocalIdx, LocalIdx>,
tag_to_layout: impl Fn(Scalar) -> F,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
coroutine::layout(
self,
local_layouts,
prefix_layouts,
variant_fields,
storage_conflicts,
tag_to_layout,
)
}
pub fn univariant<
2023-09-29 17:19:41 +02:00
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
2023-09-29 17:19:41 +02:00
>(
&self,
2023-09-29 17:09:56 +02:00
fields: &IndexSlice<FieldIdx, F>,
repr: &ReprOptions,
kind: StructKind,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let dl = self.cx.data_layout();
let layout = self.univariant_biased(fields, repr, kind, NicheBias::Start);
2023-09-29 19:45:59 +10:00
// Enums prefer niches close to the beginning or the end of the variants so that other
// (smaller) data-carrying variants can be packed into the space after/before the niche.
// If the default field ordering does not give us a niche at the front then we do a second
2023-09-29 19:45:59 +10:00
// run and bias niches to the right and then check which one is closer to one of the
// struct's edges.
if let Ok(layout) = &layout {
// Don't try to calculate an end-biased layout for unsizable structs,
// otherwise we could end up with different layouts for
2023-09-29 19:45:59 +10:00
// Foo<Type> and Foo<dyn Trait> which would break unsizing.
if !matches!(kind, StructKind::MaybeUnsized) {
if let Some(niche) = layout.largest_niche {
let head_space = niche.offset.bytes();
let niche_len = niche.value.size(dl).bytes();
let tail_space = layout.size.bytes() - head_space - niche_len;
2023-09-29 19:45:59 +10:00
// This may end up doing redundant work if the niche is already in the last
// field (e.g. a trailing bool) and there is tail padding. But it's non-trivial
// to get the unpadded size so we try anyway.
if fields.len() > 1 && head_space != 0 && tail_space > 0 {
let alt_layout = self
.univariant_biased(fields, repr, kind, NicheBias::End)
.expect("alt layout should always work");
let alt_niche = alt_layout
.largest_niche
.expect("alt layout should have a niche like the regular one");
let alt_head_space = alt_niche.offset.bytes();
let alt_niche_len = alt_niche.value.size(dl).bytes();
let alt_tail_space =
alt_layout.size.bytes() - alt_head_space - alt_niche_len;
debug_assert_eq!(layout.size.bytes(), alt_layout.size.bytes());
let prefer_alt_layout =
alt_head_space > head_space && alt_head_space > tail_space;
debug!(
"sz: {}, default_niche_at: {}+{}, default_tail_space: {}, alt_niche_at/head_space: {}+{}, alt_tail: {}, num_fields: {}, better: {}\n\
layout: {}\n\
alt_layout: {}\n",
layout.size.bytes(),
head_space,
niche_len,
tail_space,
alt_head_space,
alt_niche_len,
alt_tail_space,
layout.fields.count(),
prefer_alt_layout,
self.format_field_niches(layout, fields),
self.format_field_niches(&alt_layout, fields),
);
2023-03-05 16:18:19 +01:00
if prefer_alt_layout {
return Ok(alt_layout);
}
}
}
}
}
layout
}
pub fn layout_of_struct_or_enum<
2023-09-29 17:09:56 +02:00
'a,
FieldIdx: Idx,
2023-09-29 17:19:41 +02:00
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
2023-09-29 17:09:56 +02:00
>(
&self,
repr: &ReprOptions,
2023-09-29 17:09:56 +02:00
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
is_enum: bool,
is_unsafe_cell: bool,
scalar_valid_range: (Bound<u128>, Bound<u128>),
discr_range_of_repr: impl Fn(i128, i128) -> (Integer, bool),
discriminants: impl Iterator<Item = (VariantIdx, i128)>,
2023-07-02 14:06:56 +02:00
dont_niche_optimize_enum: bool,
always_sized: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let (present_first, present_second) = {
let mut present_variants = variants
.iter_enumerated()
.filter_map(|(i, v)| if !repr.c() && absent(v) { None } else { Some(i) });
(present_variants.next(), present_variants.next())
};
let present_first = match present_first {
Some(present_first) => present_first,
// Uninhabited because it has no variants, or only absent ones.
None if is_enum => {
return Ok(LayoutData::never_type(&self.cx));
}
// If it's a struct, still compute a layout so that we can still compute the
// field offsets.
2023-09-29 17:19:41 +02:00
None => VariantIdx::new(0),
};
2023-12-16 01:56:55 -08:00
// take the struct path if it is an actual struct
if !is_enum ||
// or for optimizing univariant enums
(present_second.is_none() && !repr.inhibit_enum_layout_opt())
{
self.layout_of_struct(
2023-12-16 01:56:55 -08:00
repr,
variants,
is_enum,
is_unsafe_cell,
scalar_valid_range,
always_sized,
present_first,
)
} else {
// At this point, we have handled all unions and
// structs. (We have also handled univariant enums
// that allow representation optimization.)
assert!(is_enum);
self.layout_of_enum(
2023-12-16 01:56:55 -08:00
repr,
variants,
discr_range_of_repr,
discriminants,
dont_niche_optimize_enum,
)
}
}
pub fn layout_of_union<
2023-09-29 17:19:41 +02:00
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
2023-09-29 17:19:41 +02:00
>(
&self,
repr: &ReprOptions,
2023-09-29 17:09:56 +02:00
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let dl = self.cx.data_layout();
let mut align = if repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align };
let mut max_repr_align = repr.align;
// If all the non-ZST fields have the same repr and union repr optimizations aren't
// disabled, we can use that common repr for the union as a whole.
2023-02-19 16:25:07 -08:00
struct AbiMismatch;
let mut common_non_zst_repr_and_align = if repr.inhibits_union_abi_opt() {
2023-02-19 16:25:07 -08:00
// Can't optimize
Err(AbiMismatch)
} else {
Ok(None)
};
let mut size = Size::ZERO;
let only_variant_idx = VariantIdx::new(0);
let only_variant = &variants[only_variant_idx];
for field in only_variant {
2023-09-29 17:09:56 +02:00
if field.is_unsized() {
return Err(LayoutCalculatorError::UnexpectedUnsized(*field));
abi: unsized field in union - assert to delay bug Unions cannot have unsized fields, and as such, layout computation for unions asserts that each union field is sized (as this would normally have halted compilation earlier). However, if a generator ends up with an unsized local - a circumstance in which an error will always have been emitted earlier, for example, if attempting to dereference a `&str` - then the generator transform will produce a union with an unsized field. Since #110107, later passes will be run, such as constant propagation, and can attempt layout computation on the generator, which will result in layout computation of `str` in the context of it being a field of a union - and so the aforementioned assertion would cause an ICE. It didn't seem appropriate to try and detect this case in the MIR body and skip this specific pass; tainting the MIR body or delaying a bug from the generator transform (or elsewhere) wouldn't prevent this either (as neither would prevent the later pass from running); and tainting when the deref of `&str` is reported, if that's possible, would unnecessarily prevent potential other errors from being reported later in compilation, and is very tailored to this specific case of getting a unsized type in a generator. Given that this circumstance can only happen when an error should have already been reported, the correct fix appears to be just changing the assert to a delayed bug. This will still assert if there is some circumstance where this occurs and no error has been reported, but it won't crash the compiler in this instance. Signed-off-by: David Wood <david@davidtw.co>
2023-07-25 15:24:58 +01:00
}
2023-09-29 17:09:56 +02:00
align = align.max(field.align);
max_repr_align = max_repr_align.max(field.max_repr_align);
size = cmp::max(size, field.size);
2023-09-29 17:09:56 +02:00
if field.is_zst() {
// Nothing more to do for ZST fields
continue;
}
if let Ok(common) = common_non_zst_repr_and_align {
// Discard valid range information and allow undef
let field_abi = field.backend_repr.to_union();
if let Some((common_abi, common_align)) = common {
if common_abi != field_abi {
// Different fields have different ABI: disable opt
common_non_zst_repr_and_align = Err(AbiMismatch);
} else {
// Fields with the same non-Aggregate ABI should also
// have the same alignment
if !matches!(common_abi, BackendRepr::Memory { .. }) {
assert_eq!(
2023-09-29 17:09:56 +02:00
common_align, field.align.abi,
"non-Aggregate field with matching ABI but differing alignment"
);
}
}
} else {
2023-02-19 16:25:07 -08:00
// First non-ZST field: record its ABI and alignment
common_non_zst_repr_and_align = Ok(Some((field_abi, field.align.abi)));
}
}
}
if let Some(pack) = repr.pack {
align = align.min(AbiAndPrefAlign::new(pack));
}
// The unadjusted ABI alignment does not include repr(align), but does include repr(pack).
// See documentation on `LayoutS::unadjusted_abi_align`.
let unadjusted_abi_align = align.abi;
if let Some(repr_align) = repr.align {
align = align.max(AbiAndPrefAlign::new(repr_align));
}
// `align` must not be modified after this, or `unadjusted_abi_align` could be inaccurate.
let align = align;
// If all non-ZST fields have the same ABI, we may forward that ABI
// for the union as a whole, unless otherwise inhibited.
let backend_repr = match common_non_zst_repr_and_align {
Err(AbiMismatch) | Ok(None) => BackendRepr::Memory { sized: true },
Ok(Some((repr, _))) => match repr {
// Mismatched alignment (e.g. union is #[repr(packed)]): disable opt
BackendRepr::Scalar(_) | BackendRepr::ScalarPair(_, _)
if repr.scalar_align(dl).unwrap() != align.abi =>
{
BackendRepr::Memory { sized: true }
}
// Vectors require at least element alignment, else disable the opt
BackendRepr::SimdVector { element, count: _ }
if element.align(dl).abi > align.abi =>
{
BackendRepr::Memory { sized: true }
}
// the alignment tests passed and we can use this
BackendRepr::Scalar(..)
| BackendRepr::ScalarPair(..)
| BackendRepr::SimdVector { .. }
| BackendRepr::Memory { .. } => repr,
},
};
let Some(union_field_count) = NonZeroUsize::new(only_variant.len()) else {
return Err(LayoutCalculatorError::EmptyUnion);
};
let combined_seed = only_variant
.iter()
.map(|v| v.randomization_seed)
.fold(repr.field_shuffle_seed, |acc, seed| acc.wrapping_add(seed));
Ok(LayoutData {
variants: Variants::Single { index: only_variant_idx },
fields: FieldsShape::Union(union_field_count),
backend_repr,
largest_niche: None,
uninhabited: false,
align,
size: size.align_to(align.abi),
max_repr_align,
unadjusted_abi_align,
randomization_seed: combined_seed,
})
}
2023-02-16 01:50:57 +01:00
/// single-variant enums are just structs, if you think about it
fn layout_of_struct<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
repr: &ReprOptions,
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
is_enum: bool,
is_unsafe_cell: bool,
scalar_valid_range: (Bound<u128>, Bound<u128>),
always_sized: bool,
present_first: VariantIdx,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
// Struct, or univariant enum equivalent to a struct.
// (Typechecking will reject discriminant-sizing attrs.)
let dl = self.cx.data_layout();
let v = present_first;
let kind = if is_enum || variants[v].is_empty() || always_sized {
StructKind::AlwaysSized
} else {
StructKind::MaybeUnsized
2023-12-16 01:56:55 -08:00
};
let mut st = self.univariant(&variants[v], repr, kind)?;
st.variants = Variants::Single { index: v };
if is_unsafe_cell {
let hide_niches = |scalar: &mut _| match scalar {
Scalar::Initialized { value, valid_range } => {
*valid_range = WrappingRange::full(value.size(dl))
}
// Already doesn't have any niches
Scalar::Union { .. } => {}
};
match &mut st.backend_repr {
BackendRepr::Scalar(scalar) => hide_niches(scalar),
BackendRepr::ScalarPair(a, b) => {
hide_niches(a);
hide_niches(b);
}
BackendRepr::SimdVector { element, count: _ } => hide_niches(element),
BackendRepr::Memory { sized: _ } => {}
2023-12-16 01:56:55 -08:00
}
st.largest_niche = None;
return Ok(st);
2023-12-16 01:56:55 -08:00
}
let (start, end) = scalar_valid_range;
match st.backend_repr {
BackendRepr::Scalar(ref mut scalar) | BackendRepr::ScalarPair(ref mut scalar, _) => {
// Enlarging validity ranges would result in missed
// optimizations, *not* wrongly assuming the inner
// value is valid. e.g. unions already enlarge validity ranges,
// because the values may be uninitialized.
//
// Because of that we only check that the start and end
// of the range is representable with this scalar type.
let max_value = scalar.size(dl).unsigned_int_max();
if let Bound::Included(start) = start {
// FIXME(eddyb) this might be incorrect - it doesn't
// account for wrap-around (end < start) ranges.
assert!(start <= max_value, "{start} > {max_value}");
scalar.valid_range_mut().start = start;
}
if let Bound::Included(end) = end {
// FIXME(eddyb) this might be incorrect - it doesn't
// account for wrap-around (end < start) ranges.
assert!(end <= max_value, "{end} > {max_value}");
scalar.valid_range_mut().end = end;
}
2023-12-16 01:56:55 -08:00
// Update `largest_niche` if we have introduced a larger niche.
let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
if let Some(niche) = niche {
match st.largest_niche {
Some(largest_niche) => {
// Replace the existing niche even if they're equal,
// because this one is at a lower offset.
if largest_niche.available(dl) <= niche.available(dl) {
st.largest_niche = Some(niche);
}
2023-12-16 01:56:55 -08:00
}
None => st.largest_niche = Some(niche),
2023-12-16 01:56:55 -08:00
}
}
}
_ => assert!(
start == Bound::Unbounded && end == Bound::Unbounded,
"nonscalar layout for layout_scalar_valid_range type: {st:#?}",
),
2023-12-16 01:56:55 -08:00
}
Ok(st)
2023-12-16 01:44:13 -08:00
}
fn layout_of_enum<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
repr: &ReprOptions,
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
discr_range_of_repr: impl Fn(i128, i128) -> (Integer, bool),
discriminants: impl Iterator<Item = (VariantIdx, i128)>,
dont_niche_optimize_enum: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
// Until we've decided whether to use the tagged or
// niche filling LayoutS, we don't want to intern the
// variant layouts, so we can't store them in the
// overall LayoutS. Store the overall LayoutS
// and the variant LayoutSs here until then.
struct TmpLayout<FieldIdx: Idx, VariantIdx: Idx> {
layout: LayoutData<FieldIdx, VariantIdx>,
variants: IndexVec<VariantIdx, LayoutData<FieldIdx, VariantIdx>>,
2023-12-16 01:44:13 -08:00
}
let dl = self.cx.data_layout();
// bail if the enum has an incoherent repr that cannot be computed
if repr.packed() {
return Err(LayoutCalculatorError::ReprConflict);
}
2023-12-16 01:44:13 -08:00
let calculate_niche_filling_layout = || -> Option<TmpLayout<FieldIdx, VariantIdx>> {
if dont_niche_optimize_enum {
return None;
}
2023-12-16 01:44:13 -08:00
if variants.len() < 2 {
return None;
}
2023-12-16 01:44:13 -08:00
let mut align = dl.aggregate_align;
let mut max_repr_align = repr.align;
let mut unadjusted_abi_align = align.abi;
2023-12-16 01:44:13 -08:00
let mut variant_layouts = variants
.iter_enumerated()
.map(|(j, v)| {
let mut st = self.univariant(v, repr, StructKind::AlwaysSized).ok()?;
st.variants = Variants::Single { index: j };
2023-12-16 01:44:13 -08:00
align = align.max(st.align);
max_repr_align = max_repr_align.max(st.max_repr_align);
unadjusted_abi_align = unadjusted_abi_align.max(st.unadjusted_abi_align);
2023-12-16 01:44:13 -08:00
Some(st)
})
.collect::<Option<IndexVec<VariantIdx, _>>>()?;
2023-12-16 01:44:13 -08:00
let largest_variant_index = variant_layouts
.iter_enumerated()
.max_by_key(|(_i, layout)| layout.size.bytes())
.map(|(i, _layout)| i)?;
2023-12-16 01:44:13 -08:00
let all_indices = variants.indices();
let needs_disc =
|index: VariantIdx| index != largest_variant_index && !absent(&variants[index]);
let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap()
..=all_indices.rev().find(|v| needs_disc(*v)).unwrap();
2023-12-16 01:44:13 -08:00
let count =
(niche_variants.end().index() as u128 - niche_variants.start().index() as u128) + 1;
2023-12-16 01:44:13 -08:00
// Use the largest niche in the largest variant.
let niche = variant_layouts[largest_variant_index].largest_niche?;
let (niche_start, niche_scalar) = niche.reserve(dl, count)?;
let niche_offset = niche.offset;
let niche_size = niche.value.size(dl);
let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
let all_variants_fit = variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
if i == largest_variant_index {
return true;
2023-12-16 01:44:13 -08:00
}
layout.largest_niche = None;
2023-12-16 01:44:13 -08:00
if layout.size <= niche_offset {
// This variant will fit before the niche.
return true;
}
2023-12-16 01:44:13 -08:00
// Determine if it'll fit after the niche.
let this_align = layout.align.abi;
let this_offset = (niche_offset + niche_size).align_to(this_align);
2023-12-16 01:44:13 -08:00
if this_offset + layout.size > size {
return false;
}
2023-12-16 01:44:13 -08:00
// It'll fit, but we need to make some adjustments.
match layout.fields {
FieldsShape::Arbitrary { ref mut offsets, .. } => {
for offset in offsets.iter_mut() {
*offset += this_offset;
}
2023-12-16 01:44:13 -08:00
}
FieldsShape::Primitive | FieldsShape::Array { .. } | FieldsShape::Union(..) => {
panic!("Layout of fields should be Arbitrary for variants")
}
}
// It can't be a Scalar or ScalarPair because the offset isn't 0.
if !layout.is_uninhabited() {
layout.backend_repr = BackendRepr::Memory { sized: true };
2023-12-16 01:44:13 -08:00
}
layout.size += this_offset;
true
});
if !all_variants_fit {
return None;
2023-12-16 01:44:13 -08:00
}
let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
let others_zst = variant_layouts
.iter_enumerated()
.all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO);
let same_size = size == variant_layouts[largest_variant_index].size;
let same_align = align == variant_layouts[largest_variant_index].align;
let uninhabited = variant_layouts.iter().all(|v| v.is_uninhabited());
let abi = if same_size && same_align && others_zst {
match variant_layouts[largest_variant_index].backend_repr {
// When the total alignment and size match, we can use the
// same ABI as the scalar variant with the reserved niche.
BackendRepr::Scalar(_) => BackendRepr::Scalar(niche_scalar),
BackendRepr::ScalarPair(first, second) => {
// Only the niche is guaranteed to be initialised,
// so use union layouts for the other primitive.
if niche_offset == Size::ZERO {
BackendRepr::ScalarPair(niche_scalar, second.to_union())
} else {
BackendRepr::ScalarPair(first.to_union(), niche_scalar)
}
}
_ => BackendRepr::Memory { sized: true },
}
} else {
BackendRepr::Memory { sized: true }
};
let combined_seed = variant_layouts
.iter()
.map(|v| v.randomization_seed)
.fold(repr.field_shuffle_seed, |acc, seed| acc.wrapping_add(seed));
let layout = LayoutData {
variants: Variants::Multiple {
tag: niche_scalar,
tag_encoding: TagEncoding::Niche {
untagged_variant: largest_variant_index,
niche_variants,
niche_start,
},
tag_field: 0,
variants: IndexVec::new(),
2023-12-16 01:44:13 -08:00
},
fields: FieldsShape::Arbitrary {
offsets: [niche_offset].into(),
memory_index: [0].into(),
},
backend_repr: abi,
largest_niche,
uninhabited,
size,
align,
max_repr_align,
unadjusted_abi_align,
randomization_seed: combined_seed,
};
2023-12-16 01:44:13 -08:00
Some(TmpLayout { layout, variants: variant_layouts })
};
2023-12-16 01:44:13 -08:00
let niche_filling_layout = calculate_niche_filling_layout();
2023-12-16 01:44:13 -08:00
let (mut min, mut max) = (i128::MAX, i128::MIN);
let discr_type = repr.discr_type();
let bits = Integer::from_attr(dl, discr_type).size().bits();
for (i, mut val) in discriminants {
if !repr.c() && variants[i].iter().any(|f| f.is_uninhabited()) {
continue;
}
if discr_type.is_signed() {
// sign extend the raw representation to be an i128
val = (val << (128 - bits)) >> (128 - bits);
}
if val < min {
min = val;
}
if val > max {
max = val;
}
2023-12-16 01:44:13 -08:00
}
// We might have no inhabited variants, so pretend there's at least one.
if (min, max) == (i128::MAX, i128::MIN) {
min = 0;
max = 0;
2023-12-16 01:44:13 -08:00
}
assert!(min <= max, "discriminant range is {min}...{max}");
let (min_ity, signed) = discr_range_of_repr(min, max); //Integer::repr_discr(tcx, ty, &repr, min, max);
let mut align = dl.aggregate_align;
let mut max_repr_align = repr.align;
let mut unadjusted_abi_align = align.abi;
let mut size = Size::ZERO;
// We're interested in the smallest alignment, so start large.
let mut start_align = Align::from_bytes(256).unwrap();
assert_eq!(Integer::for_align(dl, start_align), None);
// repr(C) on an enum tells us to make a (tag, union) layout,
// so we need to grow the prefix alignment to be at least
// the alignment of the union. (This value is used both for
// determining the alignment of the overall enum, and the
// determining the alignment of the payload after the tag.)
let mut prefix_align = min_ity.align(dl).abi;
if repr.c() {
for fields in variants {
for field in fields {
prefix_align = prefix_align.max(field.align.abi);
}
2023-12-16 01:44:13 -08:00
}
}
// Create the set of structs that represent each variant.
let mut layout_variants = variants
.iter_enumerated()
.map(|(i, field_layouts)| {
let mut st = self.univariant(
field_layouts,
repr,
StructKind::Prefixed(min_ity.size(), prefix_align),
)?;
st.variants = Variants::Single { index: i };
// Find the first field we can't move later
// to make room for a larger discriminant.
for field_idx in st.fields.index_by_increasing_offset() {
let field = &field_layouts[FieldIdx::new(field_idx)];
if !field.is_1zst() {
start_align = start_align.min(field.align.abi);
break;
}
2023-12-16 01:44:13 -08:00
}
size = cmp::max(size, st.size);
align = align.max(st.align);
max_repr_align = max_repr_align.max(st.max_repr_align);
unadjusted_abi_align = unadjusted_abi_align.max(st.unadjusted_abi_align);
Ok(st)
})
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
2023-12-16 01:44:13 -08:00
// Align the maximum variant size to the largest alignment.
size = size.align_to(align.abi);
2023-12-16 01:44:13 -08:00
// FIXME(oli-obk): deduplicate and harden these checks
if size.bytes() >= dl.obj_size_bound() {
return Err(LayoutCalculatorError::SizeOverflow);
}
2023-12-16 01:44:13 -08:00
let typeck_ity = Integer::from_attr(dl, repr.discr_type());
if typeck_ity < min_ity {
// It is a bug if Layout decided on a greater discriminant size than typeck for
// some reason at this point (based on values discriminant can take on). Mostly
// because this discriminant will be loaded, and then stored into variable of
// type calculated by typeck. Consider such case (a bug): typeck decided on
// byte-sized discriminant, but layout thinks we need a 16-bit to store all
// discriminant values. That would be a bug, because then, in codegen, in order
// to store this 16-bit discriminant into 8-bit sized temporary some of the
// space necessary to represent would have to be discarded (or layout is wrong
// on thinking it needs 16 bits)
panic!(
"layout decided on a larger discriminant type ({min_ity:?}) than typeck ({typeck_ity:?})"
);
// However, it is fine to make discr type however large (as an optimisation)
// after this point well just truncate the value we load in codegen.
}
// Check to see if we should use a different type for the
// discriminant. We can safely use a type with the same size
// as the alignment of the first field of each variant.
// We increase the size of the discriminant to avoid LLVM copying
// padding when it doesn't need to. This normally causes unaligned
// load/stores and excessive memcpy/memset operations. By using a
// bigger integer size, LLVM can be sure about its contents and
// won't be so conservative.
// Use the initial field alignment
let mut ity = if repr.c() || repr.int.is_some() {
min_ity
} else {
Integer::for_align(dl, start_align).unwrap_or(min_ity)
};
2023-12-16 01:44:13 -08:00
// If the alignment is not larger than the chosen discriminant size,
// don't use the alignment as the final size.
if ity <= min_ity {
ity = min_ity;
} else {
// Patch up the variants' first few fields.
let old_ity_size = min_ity.size();
let new_ity_size = ity.size();
for variant in &mut layout_variants {
match variant.fields {
FieldsShape::Arbitrary { ref mut offsets, .. } => {
for i in offsets {
if *i <= old_ity_size {
assert_eq!(*i, old_ity_size);
*i = new_ity_size;
}
}
// We might be making the struct larger.
if variant.size <= old_ity_size {
variant.size = new_ity_size;
2023-12-16 01:44:13 -08:00
}
}
FieldsShape::Primitive | FieldsShape::Array { .. } | FieldsShape::Union(..) => {
panic!("encountered a non-arbitrary layout during enum layout")
2023-12-16 01:44:13 -08:00
}
}
}
}
let tag_mask = ity.size().unsigned_int_max();
let tag = Scalar::Initialized {
value: Primitive::Int(ity, signed),
valid_range: WrappingRange {
start: (min as u128 & tag_mask),
end: (max as u128 & tag_mask),
},
};
let mut abi = BackendRepr::Memory { sized: true };
let uninhabited = layout_variants.iter().all(|v| v.is_uninhabited());
if tag.size(dl) == size {
// Make sure we only use scalar layout when the enum is entirely its
// own tag (i.e. it has no padding nor any non-ZST variant fields).
abi = BackendRepr::Scalar(tag);
} else {
// Try to use a ScalarPair for all tagged enums.
// That's possible only if we can find a common primitive type for all variants.
let mut common_prim = None;
let mut common_prim_initialized_in_all_variants = true;
for (field_layouts, layout_variant) in iter::zip(variants, &layout_variants) {
let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
panic!("encountered a non-arbitrary layout during enum layout");
};
// We skip *all* ZST here and later check if we are good in terms of alignment.
// This lets us handle some cases involving aligned ZST.
let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
let (field, offset) = match (fields.next(), fields.next()) {
(None, None) => {
common_prim_initialized_in_all_variants = false;
continue;
}
(Some(pair), None) => pair,
2024-02-28 17:55:04 -05:00
_ => {
common_prim = None;
break;
}
2024-02-28 17:55:04 -05:00
};
let prim = match field.backend_repr {
BackendRepr::Scalar(scalar) => {
common_prim_initialized_in_all_variants &=
matches!(scalar, Scalar::Initialized { .. });
scalar.primitive()
}
_ => {
common_prim = None;
break;
}
};
if let Some((old_prim, common_offset)) = common_prim {
// All variants must be at the same offset
if offset != common_offset {
common_prim = None;
break;
}
// This is pretty conservative. We could go fancier
// by realising that (u8, u8) could just cohabit with
// u16 or even u32.
let new_prim = match (old_prim, prim) {
// Allow all identical primitives.
(x, y) if x == y => x,
// Allow integers of the same size with differing signedness.
// We arbitrarily choose the signedness of the first variant.
(p @ Primitive::Int(x, _), Primitive::Int(y, _)) if x == y => p,
// Allow integers mixed with pointers of the same layout.
// We must represent this using a pointer, to avoid
// roundtripping pointers through ptrtoint/inttoptr.
(p @ Primitive::Pointer(_), i @ Primitive::Int(..))
| (i @ Primitive::Int(..), p @ Primitive::Pointer(_))
if p.size(dl) == i.size(dl) && p.align(dl) == i.align(dl) =>
{
p
}
_ => {
common_prim = None;
break;
}
};
// We may be updating the primitive here, for example from int->ptr.
common_prim = Some((new_prim, common_offset));
} else {
common_prim = Some((prim, offset));
}
2023-12-16 01:44:13 -08:00
}
if let Some((prim, offset)) = common_prim {
let prim_scalar = if common_prim_initialized_in_all_variants {
let size = prim.size(dl);
assert!(size.bits() <= 128);
Scalar::Initialized { value: prim, valid_range: WrappingRange::full(size) }
} else {
// Common prim might be uninit.
Scalar::Union { value: prim }
};
let pair =
LayoutData::<FieldIdx, VariantIdx>::scalar_pair(&self.cx, tag, prim_scalar);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);
offsets
}
_ => panic!("encountered a non-arbitrary layout during enum layout"),
};
if pair_offsets[FieldIdx::new(0)] == Size::ZERO
&& pair_offsets[FieldIdx::new(1)] == *offset
&& align == pair.align
&& size == pair.size
{
// We can use `ScalarPair` only when it matches our
// already computed layout (including `#[repr(C)]`).
abi = pair.backend_repr;
2023-12-16 01:44:13 -08:00
}
}
}
// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
// variants to ensure they are consistent. This is because a downcast is
// semantically a NOP, and thus should not affect layout.
if matches!(abi, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
for variant in &mut layout_variants {
// We only do this for variants with fields; the others are not accessed anyway.
// Also do not overwrite any already existing "clever" ABIs.
if variant.fields.count() > 0
&& matches!(variant.backend_repr, BackendRepr::Memory { .. })
{
variant.backend_repr = abi;
// Also need to bump up the size and alignment, so that the entire value fits
// in here.
variant.size = cmp::max(variant.size, size);
variant.align.abi = cmp::max(variant.align.abi, align.abi);
}
2023-12-16 01:44:13 -08:00
}
}
let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
2023-12-16 01:44:13 -08:00
let combined_seed = layout_variants
.iter()
.map(|v| v.randomization_seed)
.fold(repr.field_shuffle_seed, |acc, seed| acc.wrapping_add(seed));
let tagged_layout = LayoutData {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: 0,
variants: IndexVec::new(),
},
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
largest_niche,
uninhabited,
backend_repr: abi,
align,
size,
max_repr_align,
unadjusted_abi_align,
randomization_seed: combined_seed,
};
2023-12-16 01:44:13 -08:00
let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
let mut best_layout = match (tagged_layout, niche_filling_layout) {
(tl, Some(nl)) => {
// Pick the smaller layout; otherwise,
// pick the layout with the larger niche; otherwise,
// pick tagged as it has simpler codegen.
use cmp::Ordering::*;
let niche_size = |tmp_l: &TmpLayout<FieldIdx, VariantIdx>| {
tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
};
match (tl.layout.size.cmp(&nl.layout.size), niche_size(&tl).cmp(&niche_size(&nl))) {
(Greater, _) => nl,
(Equal, Less) => nl,
_ => tl,
}
}
(tl, None) => tl,
};
// Now we can intern the variant layouts and store them in the enum layout.
best_layout.layout.variants = match best_layout.layout.variants {
Variants::Multiple { tag, tag_encoding, tag_field, .. } => {
Variants::Multiple { tag, tag_encoding, tag_field, variants: best_layout.variants }
}
Variants::Single { .. } | Variants::Empty => {
panic!("encountered a single-variant or empty enum during multi-variant layout")
}
};
Ok(best_layout.layout)
}
fn univariant_biased<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
fields: &IndexSlice<FieldIdx, F>,
repr: &ReprOptions,
kind: StructKind,
niche_bias: NicheBias,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let dl = self.cx.data_layout();
let pack = repr.pack;
let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
let mut max_repr_align = repr.align;
let mut inverse_memory_index: IndexVec<u32, FieldIdx> = fields.indices().collect();
let optimize_field_order = !repr.inhibit_struct_field_reordering();
let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
let optimizing = &mut inverse_memory_index.raw[..end];
let fields_excluding_tail = &fields.raw[..end];
// unsizable tail fields are excluded so that we use the same seed for the sized and unsized layouts.
let field_seed = fields_excluding_tail
.iter()
2025-02-15 13:57:21 -05:00
.fold(Hash64::ZERO, |acc, f| acc.wrapping_add(f.randomization_seed));
if optimize_field_order && fields.len() > 1 {
// If `-Z randomize-layout` was enabled for the type definition we can shuffle
// the field ordering to try and catch some code making assumptions about layouts
// we don't guarantee.
if repr.can_randomize_type_layout() && cfg!(feature = "randomize") {
#[cfg(feature = "randomize")]
{
use rand::SeedableRng;
use rand::seq::SliceRandom;
// `ReprOptions.field_shuffle_seed` is a deterministic seed we can use to randomize field
// ordering.
let mut rng = rand_xoshiro::Xoshiro128StarStar::seed_from_u64(
2025-02-15 13:57:21 -05:00
field_seed.wrapping_add(repr.field_shuffle_seed).as_u64(),
);
// Shuffle the ordering of the fields.
optimizing.shuffle(&mut rng);
}
// Otherwise we just leave things alone and actually optimize the type's fields
} else {
// To allow unsizing `&Foo<Type>` -> `&Foo<dyn Trait>`, the layout of the struct must
// not depend on the layout of the tail.
let max_field_align =
fields_excluding_tail.iter().map(|f| f.align.abi.bytes()).max().unwrap_or(1);
let largest_niche_size = fields_excluding_tail
.iter()
.filter_map(|f| f.largest_niche)
.map(|n| n.available(dl))
.max()
.unwrap_or(0);
// Calculates a sort key to group fields by their alignment or possibly some
// size-derived pseudo-alignment.
let alignment_group_key = |layout: &F| {
// The two branches here return values that cannot be meaningfully compared with
// each other. However, we know that consistently for all executions of
// `alignment_group_key`, one or the other branch will be taken, so this is okay.
if let Some(pack) = pack {
// Return the packed alignment in bytes.
layout.align.abi.min(pack).bytes()
} else {
// Returns `log2(effective-align)`. The calculation assumes that size is an
// integer multiple of align, except for ZSTs.
let align = layout.align.abi.bytes();
let size = layout.size.bytes();
let niche_size = layout.largest_niche.map(|n| n.available(dl)).unwrap_or(0);
// Group [u8; 4] with align-4 or [u8; 6] with align-2 fields.
let size_as_align = align.max(size).trailing_zeros();
let size_as_align = if largest_niche_size > 0 {
match niche_bias {
// Given `A(u8, [u8; 16])` and `B(bool, [u8; 16])` we want to bump the
// array to the front in the first case (for aligned loads) but keep
// the bool in front in the second case for its niches.
NicheBias::Start => {
max_field_align.trailing_zeros().min(size_as_align)
}
// When moving niches towards the end of the struct then for
// A((u8, u8, u8, bool), (u8, bool, u8)) we want to keep the first tuple
// in the align-1 group because its bool can be moved closer to the end.
NicheBias::End if niche_size == largest_niche_size => {
align.trailing_zeros()
}
NicheBias::End => size_as_align,
}
} else {
size_as_align
};
size_as_align as u64
}
};
match kind {
StructKind::AlwaysSized | StructKind::MaybeUnsized => {
// Currently `LayoutS` only exposes a single niche so sorting is usually
// sufficient to get one niche into the preferred position. If it ever
// supported multiple niches then a more advanced pick-and-pack approach could
// provide better results. But even for the single-niche cache it's not
// optimal. E.g. for A(u32, (bool, u8), u16) it would be possible to move the
// bool to the front but it would require packing the tuple together with the
// u16 to build a 4-byte group so that the u32 can be placed after it without
// padding. This kind of packing can't be achieved by sorting.
optimizing.sort_by_key(|&x| {
let f = &fields[x];
let field_size = f.size.bytes();
let niche_size = f.largest_niche.map_or(0, |n| n.available(dl));
let niche_size_key = match niche_bias {
// large niche first
NicheBias::Start => !niche_size,
// large niche last
NicheBias::End => niche_size,
};
let inner_niche_offset_key = match niche_bias {
NicheBias::Start => f.largest_niche.map_or(0, |n| n.offset.bytes()),
NicheBias::End => f.largest_niche.map_or(0, |n| {
!(field_size - n.value.size(dl).bytes() - n.offset.bytes())
}),
};
(
// Then place largest alignments first.
cmp::Reverse(alignment_group_key(f)),
// Then prioritize niche placement within alignment group according to
// `niche_bias_start`.
niche_size_key,
// Then among fields with equally-sized niches prefer the ones
// closer to the start/end of the field.
inner_niche_offset_key,
)
});
}
StructKind::Prefixed(..) => {
// Sort in ascending alignment so that the layout stays optimal
// regardless of the prefix.
// And put the largest niche in an alignment group at the end
// so it can be used as discriminant in jagged enums
optimizing.sort_by_key(|&x| {
let f = &fields[x];
let niche_size = f.largest_niche.map_or(0, |n| n.available(dl));
(alignment_group_key(f), niche_size)
});
}
2023-02-16 01:50:57 +01:00
}
// FIXME(Kixiron): We can always shuffle fields within a given alignment class
// regardless of the status of `-Z randomize-layout`
}
}
// inverse_memory_index holds field indices by increasing memory offset.
// That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
// We now write field offsets to the corresponding offset slot;
// field 5 with offset 0 puts 0 in offsets[5].
// At the bottom of this function, we invert `inverse_memory_index` to
// produce `memory_index` (see `invert_mapping`).
let mut unsized_field = None::<&F>;
let mut offsets = IndexVec::from_elem(Size::ZERO, fields);
let mut offset = Size::ZERO;
let mut largest_niche = None;
let mut largest_niche_available = 0;
if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
let prefix_align =
if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
align = align.max(AbiAndPrefAlign::new(prefix_align));
offset = prefix_size.align_to(prefix_align);
}
for &i in &inverse_memory_index {
let field = &fields[i];
if let Some(unsized_field) = unsized_field {
return Err(LayoutCalculatorError::UnexpectedUnsized(*unsized_field));
}
if field.is_unsized() {
if let StructKind::MaybeUnsized = kind {
unsized_field = Some(field);
} else {
return Err(LayoutCalculatorError::UnexpectedUnsized(*field));
}
}
// Invariant: offset < dl.obj_size_bound() <= 1<<61
let field_align = if let Some(pack) = pack {
field.align.min(AbiAndPrefAlign::new(pack))
} else {
field.align
};
offset = offset.align_to(field_align.abi);
align = align.max(field_align);
max_repr_align = max_repr_align.max(field.max_repr_align);
debug!("univariant offset: {:?} field: {:#?}", offset, field);
offsets[i] = offset;
if let Some(mut niche) = field.largest_niche {
let available = niche.available(dl);
// Pick up larger niches.
let prefer_new_niche = match niche_bias {
NicheBias::Start => available > largest_niche_available,
// if there are several niches of the same size then pick the last one
NicheBias::End => available >= largest_niche_available,
};
if prefer_new_niche {
largest_niche_available = available;
niche.offset += offset;
largest_niche = Some(niche);
2023-02-16 01:50:57 +01:00
}
}
offset =
offset.checked_add(field.size, dl).ok_or(LayoutCalculatorError::SizeOverflow)?;
2023-02-16 01:50:57 +01:00
}
// The unadjusted ABI alignment does not include repr(align), but does include repr(pack).
// See documentation on `LayoutS::unadjusted_abi_align`.
let unadjusted_abi_align = align.abi;
if let Some(repr_align) = repr.align {
align = align.max(AbiAndPrefAlign::new(repr_align));
2023-02-16 01:50:57 +01:00
}
// `align` must not be modified after this point, or `unadjusted_abi_align` could be inaccurate.
let align = align;
2023-02-16 01:50:57 +01:00
debug!("univariant min_size: {:?}", offset);
let min_size = offset;
// As stated above, inverse_memory_index holds field indices by increasing offset.
// This makes it an already-sorted view of the offsets vec.
// To invert it, consider:
// If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
// Field 5 would be the first element, so memory_index is i:
// Note: if we didn't optimize, it's already right.
let memory_index = if optimize_field_order {
inverse_memory_index.invert_bijective_mapping()
2023-02-16 01:50:57 +01:00
} else {
debug_assert!(inverse_memory_index.iter().copied().eq(fields.indices()));
inverse_memory_index.into_iter().map(|it| it.index() as u32).collect()
2023-02-16 01:50:57 +01:00
};
let size = min_size.align_to(align.abi);
// FIXME(oli-obk): deduplicate and harden these checks
if size.bytes() >= dl.obj_size_bound() {
return Err(LayoutCalculatorError::SizeOverflow);
2023-02-16 01:50:57 +01:00
}
let mut layout_of_single_non_zst_field = None;
let sized = unsized_field.is_none();
let mut abi = BackendRepr::Memory { sized };
2023-02-16 01:50:57 +01:00
let optimize_abi = !repr.inhibit_newtype_abi_optimization();
// Try to make this a Scalar/ScalarPair.
if sized && size.bytes() > 0 {
// We skip *all* ZST here and later check if we are good in terms of alignment.
// This lets us handle some cases involving aligned ZST.
let mut non_zst_fields = fields.iter_enumerated().filter(|&(_, f)| !f.is_zst());
match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
// We have exactly one non-ZST field.
(Some((i, field)), None, None) => {
layout_of_single_non_zst_field = Some(field);
// Field fills the struct and it has a scalar or scalar pair ABI.
if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
{
match field.backend_repr {
// For plain scalars, or vectors of them, we can't unpack
// newtypes for `#[repr(C)]`, as that affects C ABIs.
BackendRepr::Scalar(_) | BackendRepr::SimdVector { .. }
if optimize_abi =>
{
abi = field.backend_repr;
}
// But scalar pairs are Rust-specific and get
// treated as aggregates by C ABIs anyway.
BackendRepr::ScalarPair(..) => {
abi = field.backend_repr;
}
_ => {}
2023-02-16 01:50:57 +01:00
}
}
}
// Two non-ZST fields, and they're both scalars.
(Some((i, a)), Some((j, b)), None) => {
match (a.backend_repr, b.backend_repr) {
(BackendRepr::Scalar(a), BackendRepr::Scalar(b)) => {
// Order by the memory placement, not source order.
let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
((i, a), (j, b))
} else {
((j, b), (i, a))
};
let pair =
LayoutData::<FieldIdx, VariantIdx>::scalar_pair(&self.cx, a, b);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);
offsets
}
FieldsShape::Primitive
| FieldsShape::Array { .. }
| FieldsShape::Union(..) => {
panic!("encountered a non-arbitrary layout during enum layout")
}
};
if offsets[i] == pair_offsets[FieldIdx::new(0)]
&& offsets[j] == pair_offsets[FieldIdx::new(1)]
&& align == pair.align
&& size == pair.size
{
// We can use `ScalarPair` only when it matches our
// already computed layout (including `#[repr(C)]`).
abi = pair.backend_repr;
2023-02-16 01:50:57 +01:00
}
}
_ => {}
2023-02-16 01:50:57 +01:00
}
}
_ => {}
}
}
let uninhabited = fields.iter().any(|f| f.is_uninhabited());
let unadjusted_abi_align = if repr.transparent() {
match layout_of_single_non_zst_field {
Some(l) => l.unadjusted_abi_align,
None => {
// `repr(transparent)` with all ZST fields.
align.abi
}
}
} else {
unadjusted_abi_align
};
2023-03-05 16:18:19 +01:00
let seed = field_seed.wrapping_add(repr.field_shuffle_seed);
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary { offsets, memory_index },
backend_repr: abi,
largest_niche,
uninhabited,
align,
size,
max_repr_align,
unadjusted_abi_align,
randomization_seed: seed,
})
}
fn format_field_niches<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
>(
&self,
layout: &LayoutData<FieldIdx, VariantIdx>,
fields: &IndexSlice<FieldIdx, F>,
) -> String {
let dl = self.cx.data_layout();
let mut s = String::new();
for i in layout.fields.index_by_increasing_offset() {
let offset = layout.fields.offset(i);
let f = &fields[FieldIdx::new(i)];
write!(s, "[o{}a{}s{}", offset.bytes(), f.align.abi.bytes(), f.size.bytes()).unwrap();
if let Some(n) = f.largest_niche {
write!(
s,
" n{}b{}s{}",
n.offset.bytes(),
n.available(dl).ilog2(),
n.value.size(dl).bytes()
)
.unwrap();
}
write!(s, "] ").unwrap();
2023-03-05 16:18:19 +01:00
}
s
2023-03-05 16:18:19 +01:00
}
}