summaryrefslogtreecommitdiff
path: root/html/encyclopedia/mathematics.html
blob: adea0e4d2761c48cf865f275b68dc195c0acf24c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
<!DOCTYPE html>
<html lang="da">
	<!--#include virtual="/include/head.shtml"-->
	<head>
		<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
		<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
	</head>
	<body>
		<!--#include virtual="/include/pageHeader.shtml"-->
		<div class="page">
			<p class="pageTitle">Leksikon<sub> Matematik</sub></p>
			<div class="section" id="rules">
				<p class="large">Regneregler</p>
				<p class="math">\(x+y=z\)</p>
				<p class="math">\(z-y=x\)</p>
				<p class="math">\(z-x=y\)</p>
				<p class="math">\(\sum_{i=a}^b i=a+(a \pm 1) + \cdots +(b \pm 1)+b\)</p>
				<br />
				<p class="math">\(xy=z\)</p>
				<p class="math">\(\frac{z}{y}=x\)</p>
				<p class="math">\(\frac{z}{x}=y\)</p>
				<p class="math">\(\prod_{i=a}^b i=a(a \pm 1) \cdots (b \pm 1)b\)</p>
				<p class="math">\(n!=\prod_{i=1}^n i,n \gt 0\)</p>
				<p class="math">\(0!=1\)</p>
				<br />
				<p class="math">\(\frac{x}{y}=z\)</p>
				<p class="math">\(zy=x\)</p>
				<p class="math">\(\frac{x}{z}=y\)</p>
				<br />
				<p class="math">\(x^y=z\)</p>
				<p class="math">\(\sqrt[y]{z}=x\)</p>
				<p class="math">\(log_{x}(z)=y\)</p>
				<br />
				<p class="math">\(x^n=\prod_{i=1}^n x, n \gt 0\)</p>
				<p class="math">\(x^n=\frac{1}{x^{-n}}, n \lt 0\)</p>
				<p class="math">\(x^0=1\)</p>
				<p class="math">\(x^{\frac{a}{b}}=\sqrt[b]{x^a}\)</p>
				<br />
				<p class="math">\(\frac{x}{y}=x\frac{1}{y}\)</p>
				<p class="math">\(\frac{x}{y}+n=\frac{x+n y}{y}\)</p>
				<p class="math">\(\frac{x}{y}+\frac{a}{b}=\frac{x b+ay}{yb}\)</p>
				<p class="math">\(\frac{x}{y}n=\frac{xn}{y}\)</p>
				<p class="math">\(\frac{x}{y}\frac{a}{b}=\frac{x a}{y b}\)</p>
				<p class="math">\(\frac{x}{\frac{a}{b}}=\frac{xb}{a}\)</p>
				<p class="math">\(\frac{\frac{x}{y}}{z}=\frac{x}{yz}\)</p>
				<p class="math">\(\frac{\frac{x}{y}}{\frac{a}{b}}=\frac{xb}{ya}\)</p>
				<br />
				<p class="math">\(x^ax^b=x^{a+b}\)</p>
				<p class="math">\(\frac{x^a}{x^b}=x^{a-b}\)</p>
				<p class="math">\(x^ay^a=(xy)^a\)</p>
				<p class="math">\(\frac{x^a}{y^a}=(\frac{x}{y})^a\)</p>
				<p class="math">\((x^a)^b=x^{ab}\)</p>
			</div>
			<div class="section" id="equations">
				<p class="large">Ligninger</p>
				<p>Andengrads:</p>
				<p class="math">\(ax^2+bx+c=0\)</p>
				<p class="math">\(d=b^2-4ac\)</p>
				<p class="math">\(x=\frac{-b \pm \sqrt[2]{d}}{2a}\)</p>
			</div>
			<div class="section" id="functions">
				<p class="large">Funktioner</p>
				<p class="math">\(y=f(x)\)</p>
				<p class="math">\(x=f^{-1}(y)\)</p>
				<br />
				<p>Lineær:</p>
				<p class="math">\(f(x)=ax+b\)</p>
				<p class="math">\(a=\frac{y_1-y_0}{x_1-x_0}\)</p>
				<p class="math">\(b=y-ax\)</p>
				<p class="math">\(f(0)=b\)</p>
				<br />
				<p>Eksponentiel:</p>
				<p class="math">\(f(x)=ba^x\)</p>
				<p class="math">\(a=\sqrt[x_1-x_0]{\frac{y_1}{y_{0}}}\)</p>
				<p class="math">\(b=\frac{y}{a^x}\)</p>
				<p class="math">\(f(0)=b\)</p>
				<br />
				<p>Potens:</p>
				<p class="math">\(f(x)=bx^a\)</p>
				<p class="math">\(a=\frac{log_n(y_1)-log_n(y_0)}{log_n(x_1)-log_n(x_1)}\)</p>
				<p class="math">\(b=\frac{y}{x^a}\)</p>
				<p class="math">\(f(0)=0\)</p>
				<p class="math">\(f(1)=b\)</p>
				<br />
				<p>Andengrads:</p>
				<p class="math">\(f(x)=ax^2+bx+c\)</p>
			</div>
			<div class="section" id="trigonometry">
				<p class="large">Trigonometri</p>
				<p class="math">\(modliggende_{\angle A}=hosliggende_{\angle B}=a\)</p>
				<p class="math">\(hosliggende_{\angle A}=modliggende_{\angle B}=b\)</p>
				<p class="math">\(hypotenuse=modliggende_{\angle C}=c\)</p>
				<br />
				<p class="math">\(sin(\theta)=\frac{modliggende}{hypotenuse}\)</p>
				<p class="math">\(cos(\theta)=\frac{hosliggende}{hypotenuse}\)</p>
				<p class="math">\(tan(\theta)=\frac{modliggende}{hosliggende}\)</p>
				<p class="math">\(cot(\theta)=\frac{hosliggende}{modliggende}\)</p>
				<p class="math">\(csc(\theta)=\frac{hypotenuse}{modliggende}\)</p>
				<p class="math">\(sec(\theta)=\frac{hypotenuse}{hosliggende}\)</p>
				<br />
				<p class="math">\(sin^{-1}(\frac{modliggende}{hypotenuse})=\theta\)</p>
				<p class="math">\(cos^{-1}(\frac{hosliggende}{hypotenuse})=\theta\)</p>
				<p class="math">\(tan^{-1}(\frac{modliggende}{hosliggende})=\theta\)</p>
				<p class="math">\(cot^{-1}(\frac{hosliggende}{modliggende})=\theta\)</p>
				<p class="math">\(csc^{-1}(\frac{hypotenuse}{modliggende})=\theta\)</p>
				<p class="math">\(sec^{-1}(\frac{hypotenuse}{hosliggende})=\theta\)</p>
				<br />
				<p>Forkortelser:</p>
				<p class="math">\(sin=sinus\)</p>
				<p class="math">\(cos=cosinus\)</p>
				<p class="math">\(tan=tangens\)</p>
				<p class="math">\(cot=cotangens\)</p>
				<p class="math">\(csc=cosekant\)</p>
				<p class="math">\(sec=sekant\)</p>
				<p class="math">\(arcsin=sin^{-1}\)</p>
				<p class="math">\(arccos=cos^{-1}\)</p>
				<p class="math">\(arctan=tan^{-1}\)</p>
				<p class="math">\(arccot=cot^{-1}\)</p>
				<p class="math">\(arcsec=sec^{-1}\)</p>
				<p class="math">\(arccsc=csc^{-1}\)</p>
				<br />
				<p class="math">\(deg(rad)=\frac{rad \cdot 180}{\pi}\)</p>
				<p class="math">\(rad(deg)=\frac{deg \cdot \pi}{180}\)</p>
				<br />
				<p class="math">\(\sum \theta=(n-2)\pi\)</p>
				<p>... hvori <i>n</i> er antallet af vinkler.</p>
				<p class="math">\(\sum \theta=(3-2)\pi=\pi\)</p>
				<br />
				<p class="math">\(\angle A=sin^{-1}(\frac{a}{c})=cos^{-1}(\frac{b}{c})=tan^{-1}(\frac{a}{b})=(\sum \theta)-\angle B-\angle C\)</p>
				<p class="math">\(\angle B=sin^{-1}(\frac{b}{c})=cos^{-1}(\frac{a}{c})=tan^{-1}(\frac{b}{a})=(\sum \theta)-\angle A-\angle C\)</p>
				<p class="math">\(\angle C=(\sum \theta)-\angle A-\angle B\)</p>
				<p>I en regulær trekant:</p>
				<p class="math">\(\angle A=\angle B=\angle C=\frac{\pi}{3}\)</p>
				<p>I en retvinklet trekant:</p>
				<p class="math">\(\angle C=\frac{\pi}{2}\)</p>
				<br />
				<p class="math">\(a=c \cdot sin(\angle A)=c \cdot cos(\angle B)=b \cdot tan(\angle A)=b \cdot cot(\angle B)\)</p>
				<p class="math">\(b=c \cdot sin(\angle B)=c \cdot cos(\angle A)=a \cdot tan(\angle B)=a \cdot cot(\angle A)\)</p>
				<p class="math">\(c=a \cdot csc(\angle A)=b \cdot csc(\angle B)=a \cdot sec(\angle B)=b \cdot sec(\angle A)\)</p>
				<p>I en regulær trekant:</p>
				<p class="math">\(a=b=c\)</p>
				<p>I en retvinklet trekant:</p>
				<p class="math">\(a=\sqrt[2]{c-b^2}\)</p>
				<p class="math">\(b=\sqrt[2]{c-a^2}\)</p>
				<p class="math">\(c=\sqrt[2]{a^2+b^2}\)</p>
				<p>I en retvinklet trekant, hvori kateterne har samme længde:</p>
				<p class="math">\(a=b=\sqrt[2]{\frac{c^2}{2}}\)</p>
				<br />
				<p class="math">\(O=a+b+c\)</p>
				<p class="math">\(A=\frac{b h}{2}\)</p>
				<p>Mellem to ligedannede trekanter:</p>
				<p class="math">\(\angle A_1=\angle A_0\)</p>
				<p class="math">\(\angle B_1=\angle B_0\)</p>
				<p class="math">\(\angle C_1=\angle C_0\)</p>
				<p class="math">\(k=\frac{a_1}{a_0}=\frac{b_1}{b_0}=\frac{c_1}{c_0}\)</p>
				<p class="math">\(a_1=a_0 k\)</p>
				<p class="math">\(b_1=b_0 k\)</p>
				<p class="math">\(c_1=c_0 k\)</p>
				<p class="math">\(O_1=O_0 k\)</p>
				<p class="math">\(A_1=A_0 k^2\)</p>
			</div>
			<div class="section" id="constants">
				<p class="large">Konstanter</p>
				<table>
					<tr>
						<th>Navn</th>
						<th>Symbol</th>
					</tr>
					<tr>
						<td>Pythagoras' konstant</td>
						<td class="math">\(\sqrt[2]{2}\)</td>
					</tr>
					<tr>
						<td>Theodorus' konstant</td>
						<td class="math">\(\sqrt[2]{3}\)</td>
					</tr>
					<tr>
						<td>Eulers tal</td>
						<td class="math">\(e\)</td>
					</tr>
					<tr>
						<td><sub>den </sub>imaginære enhed</td>
						<td class="math">\(i\)</td>
					</tr>
					<tr>
						<td>Arkimedes' konstant (<i>pi</i>)</td>
						<td class="math">\(\pi\)</td>
					</tr>
					<tr>
						<td><i>tau</i></td>
						<td class="math">\(\tau\)</td>
					</tr>
					<tr>
						<td><sub>den </sub>gyldne ratio</td>
						<td class="math">\(\phi\)</td>
					</tr>
				</table>
				<p class="math">\(\sqrt[2]{2} \approx \frac{1\ 414\ 213\ 562}{10^9}\)</p>
				<p class="math">\(\sqrt[2]{3} \approx \frac{1\ 732\ 050\ 808}{10^9}\)</p>
				<p class="math">\(e=\sum_{n=0}^\infty \frac{1}{n!} \approx \frac{2\ 718\ 281\ 828}{10^9}\)</p>
				<p class="math">\(i=\sqrt[2]{-1}\)</p>
				<p class="math">\(\pi \approx \frac{3\ 141\ 592\ 654}{10^9}\)</p>
				<p class="math">\(\tau=2\pi \approx \frac{6\ 283\ 185\ 307}{10^9}\)</p>
				<p class="math">\(\phi=\frac{1+\sqrt[2]{5}}{2} \approx \frac{1\ 618\ 033\ 989}{10^9}\)</p>
			</div>
		</div>
		<!--#include virtual="/include/pageFooter.shtml"-->
	</body>
</html>