encyclopedia / mathematics / rules
Leksikon
\(x + y = z\)
\(z - y = x\)
\(z - x = y\)
\(x y = z\)
\(\frac{z}{y} = x\)
\(\frac{z}{x} = y\)
\(x ^ {y} = z\)
\(\sqrt[y]{z} = x\)
\(log_{x}(z) = y\)
Potens
\(x ^ {n} = \prod ^ {n} x, n \gt 0\)
\(x ^ {n} = \frac{1}{x ^ {-n}}, x \lt 0\)
\(x ^ {0} = 1\)
\(x ^ {\frac{a}{b}} = \sqrt[b]{x ^ {a}}\)
\(x ^ {a} x ^ {b} = x ^ {a + b}\)
\(\frac{x ^ {a}}{x ^ {b}} = x ^ {a - b}\)
\(x ^ {a} y ^ {a} = (x y) ^ {a}\)
\(\frac{x ^ {a}}{y ^ {a}} = (\frac{x}{y}) ^ {a}\)
\((x ^ {a}) ^ {b} = x ^ {a b}\)
Brøker
\(\frac{x}{y} + n = \frac{x + n y}{y}\)
\(\frac{x}{y} + \frac{a}{b} = \frac{x b + a y}{y b}\)
\(\frac{x}{y} n = \frac{x n}{y}\)
\(\frac{x}{y} \frac{a}{b} = \frac{x a}{y b}\)
\(\frac{\frac{x}{y}}{\frac{a}{b}} = \frac{x b}{y a}\)