Leksikon Matematik
Regneregler
\(x+y=z\)
\(z-y=x\)
\(z-x=y\)
\(\sum_{i=a}^b i=a+(a \pm 1) + \cdots +(b \pm 1)+b\)
\(xy=z\)
\(\frac{z}{y}=x\)
\(\frac{z}{x}=y\)
\(\prod_{i=a}^b i=a(a \pm 1) \cdots (b \pm 1)b\)
\(n!=\prod_{i=1}^n i,n \gt 0\)
\(0!=1\)
\(\frac{x}{y}=z\)
\(zy=x\)
\(\frac{x}{z}=y\)
\(x^y=z\)
\(\sqrt[y]{z}=x\)
\(log_{x}(z)=y\)
\(x^n=\prod_{i=1}^n x, n \gt 0\)
\(x^n=\frac{1}{x^{-n}}, n \lt 0\)
\(x^0=1\)
\(x^{\frac{a}{b}}=\sqrt[b]{x^a}\)
\(\frac{x}{y}=x\frac{1}{y}\)
\(\frac{x}{y}+n=\frac{x+n y}{y}\)
\(\frac{x}{y}+\frac{a}{b}=\frac{x b+ay}{yb}\)
\(\frac{x}{y}n=\frac{xn}{y}\)
\(\frac{x}{y}\frac{a}{b}=\frac{x a}{y b}\)
\(\frac{x}{\frac{a}{b}}=\frac{xb}{a}\)
\(\frac{\frac{x}{y}}{z}=\frac{x}{yz}\)
\(\frac{\frac{x}{y}}{\frac{a}{b}}=\frac{xb}{ya}\)
\(x^ax^b=x^{a+b}\)
\(\frac{x^a}{x^b}=x^{a-b}\)
\(x^ay^a=(xy)^a\)
\(\frac{x^a}{y^a}=(\frac{x}{y})^a\)
\((x^a)^b=x^{ab}\)
Ligninger
Andengrads:
\(ax^2+bx+c=0\)
\(d=b^2-4ac\)
\(x=\frac{-b \pm \sqrt[2]{d}}{2a}\)
Funktioner
\(y=f(x)\)
\(x=f^{-1}(y)\)
Lineær:
\(f(x)=ax+b\)
\(a=\frac{y_1-y_0}{x_1-x_0}\)
\(b=y-ax\)
\(f(0)=b\)
Eksponentiel:
\(f(x)=ba^x\)
\(a=\sqrt[x_1-x_0]{\frac{y_1}{y_{0}}}\)
\(b=\frac{y}{a^x}\)
\(f(0)=b\)
Potens:
\(f(x)=bx^a\)
\(a=\frac{log_n(y_1)-log_n(y_0)}{log_n(x_1)-log_n(x_1)}\)
\(b=\frac{y}{x^a}\)
\(f(0)=0\)
\(f(1)=b\)
Andengrads:
\(f(x)=ax^2+bx+c\)
Trigonometri
\(modliggende_{\angle A}=hosliggende_{\angle B}=a\)
\(hosliggende_{\angle A}=modliggende_{\angle B}=b\)
\(hypotenuse=modliggende_{\angle C}=c\)
\(sin(\theta)=\frac{modliggende}{hypotenuse}\)
\(cos(\theta)=\frac{hosliggende}{hypotenuse}\)
\(tan(\theta)=\frac{modliggende}{hosliggende}\)
\(cot(\theta)=\frac{hosliggende}{modliggende}\)
\(csc(\theta)=\frac{hypotenuse}{modliggende}\)
\(sec(\theta)=\frac{hypotenuse}{hosliggende}\)
\(sin^{-1}(\frac{modliggende}{hypotenuse})=\theta\)
\(cos^{-1}(\frac{hosliggende}{hypotenuse})=\theta\)
\(tan^{-1}(\frac{modliggende}{hosliggende})=\theta\)
\(cot^{-1}(\frac{hosliggende}{modliggende})=\theta\)
\(csc^{-1}(\frac{hypotenuse}{modliggende})=\theta\)
\(sec^{-1}(\frac{hypotenuse}{hosliggende})=\theta\)
Forkortelser:
\(sin=sinus\)
\(cos=cosinus\)
\(tan=tangens\)
\(cot=cotangens\)
\(csc=cosekant\)
\(sec=sekant\)
\(arcsin=sin^{-1}\)
\(arccos=cos^{-1}\)
\(arctan=tan^{-1}\)
\(arccot=cot^{-1}\)
\(arcsec=sec^{-1}\)
\(arccsc=csc^{-1}\)
\(deg(rad)=\frac{rad \cdot 180}{\pi}\)
\(rad(deg)=\frac{deg \cdot \pi}{180}\)
\(\sum \theta=(n-2)\pi\)
... hvori n er antallet af vinkler.
\(\sum \theta=(3-2)\pi=\pi\)
\(\angle A=sin^{-1}(\frac{a}{c})=cos^{-1}(\frac{b}{c})=tan^{-1}(\frac{a}{b})=(\sum \theta)-\angle B-\angle C\)
\(\angle B=sin^{-1}(\frac{b}{c})=cos^{-1}(\frac{a}{c})=tan^{-1}(\frac{b}{a})=(\sum \theta)-\angle A-\angle C\)
\(\angle C=(\sum \theta)-\angle A-\angle B\)
I en regulær trekant:
\(\angle A=\angle B=\angle C=\frac{\pi}{3}\)
I en retvinklet trekant:
\(\angle C=\frac{\pi}{2}\)
\(a=c \cdot sin(\angle A)=c \cdot cos(\angle B)=b \cdot tan(\angle A)=b \cdot cot(\angle B)\)
\(b=c \cdot sin(\angle B)=c \cdot cos(\angle A)=a \cdot tan(\angle B)=a \cdot cot(\angle A)\)
\(c=a \cdot csc(\angle A)=b \cdot csc(\angle B)=a \cdot sec(\angle B)=b \cdot sec(\angle A)\)
I en regulær trekant:
\(a=b=c\)
I en retvinklet trekant:
\(a=\sqrt[2]{c-b^2}\)
\(b=\sqrt[2]{c-a^2}\)
\(c=\sqrt[2]{a^2+b^2}\)
I en retvinklet trekant, hvori kateterne har samme længde:
\(a=b=\sqrt[2]{\frac{c^2}{2}}\)
\(O=a+b+c\)
\(A=\frac{b h}{2}\)
Mellem to ligedannede trekanter:
\(\angle A_1=\angle A_0\)
\(\angle B_1=\angle B_0\)
\(\angle C_1=\angle C_0\)
\(k=\frac{a_1}{a_0}=\frac{b_1}{b_0}=\frac{c_1}{c_0}\)
\(a_1=a_0 k\)
\(b_1=b_0 k\)
\(c_1=c_0 k\)
\(O_1=O_0 k\)
\(A_1=A_0 k^2\)
Konstanter
Navn | Symbol |
---|---|
Pythagoras' konstant | \(\sqrt[2]{2}\) |
Theodorus' konstant | \(\sqrt[2]{3}\) |
Eulers tal | \(e\) |
den imaginære enhed | \(i\) |
Arkimedes' konstant (pi) | \(\pi\) |
tau | \(\tau\) |
den gyldne ratio | \(\phi\) |
\(\sqrt[2]{2} \approx \frac{1\ 414\ 213\ 562}{10^9}\)
\(\sqrt[2]{3} \approx \frac{1\ 732\ 050\ 808}{10^9}\)
\(e=\sum_{n=0}^\infty \frac{1}{n!} \approx \frac{2\ 718\ 281\ 828}{10^9}\)
\(i=\sqrt[2]{-1}\)
\(\pi \approx \frac{3\ 141\ 592\ 654}{10^9}\)
\(\tau=2\pi \approx \frac{6\ 283\ 185\ 307}{10^9}\)
\(\phi=\frac{1+\sqrt[2]{5}}{2} \approx \frac{1\ 618\ 033\ 989}{10^9}\)