Leksikon Matematik
Regneregler
\(x + y = z\)
\(z - y = x\)
\(z - x = y\)
\(xy = z\)
\(\frac{z}{y} = x\)
\(\frac{z}{x} = y\)
\(\frac{x}{y} = z\)
\(zy = x\)
\(\frac{x}{z} = y\)
\(x^y = z\)
\(\sqrt[y]{z} = x\)
\(log_{x}(z) = y\)
\(x^n = \frac{1}{x^{-n}}, x \lt 0\)
\(x^0 = 1\)
\(x^{\frac{a}{b}} = \sqrt[b]{x^a}\)
\(\frac{x}{y} = x\frac{1}{y}\)
\(\frac{x}{y} + n = \frac{x + n y}{y}\)
\(\frac{x}{y} + \frac{a}{b} = \frac{x b + ay}{yb}\)
\(\frac{x}{y}n = \frac{xn}{y}\)
\(\frac{x}{y}\frac{a}{b} = \frac{x a}{y b}\)
\(\frac{x}{\frac{a}{b}} = \frac{xb}{a}\)
\(\frac{\frac{x}{y}}{z} = \frac{x}{yz}\)
\(\frac{\frac{x}{y}}{\frac{a}{b}} = \frac{xb}{ya}\)
\(x^ax^b = x^{a + b}\)
\(\frac{x^a}{x^b} = x^{a - b}\)
\(x^ay^a = (xy)^a\)
\(\frac{x^a}{y^a} = (\frac{x}{y})^a\)
\((x^a)^b = x^{ab}\)
Ligninger
Andengrads:
\(ax^2 + bx + c = 0\)
\(x = \frac{-b \pm \sqrt[2]{d}}{2a}\)
\(d = b^2 - 4ac\)
Funktioner
\(y = f(x)\)
\(x = f^{-1}(y)\)
Lineær:
\(f(x) = ax + b\)
\(a = \frac{y_1 - y_0}{x_1 - x_0}\)
\(b = y - ax\)
\(f(0) = b\)
Eksponentiel:
\(f(x) = ba^x\)
\(a = \sqrt[x_1 - x_0]{\frac{y_1}{y_{0}}}\)
\(b = \frac{y}{a^x}\)
\(f(0) = b\)
Potens:
\(f(x) = bx^a\)
\(a = \frac{log_n(y_1) - log_n(y_0)}{log_n(x_1) - log_n(x_1)}\)
\(b = \frac{y}{x^a}\)
\(f(0) = 0\)
\(f(1) = b\)
Andengrads:
\(f(x) = ax^2 + bx + c\)
Trigonometri
\(modliggende_{\angle A} = hosliggende_{\angle B} = a\)
\(hosliggende_{\angle A} = modliggende_{\angle B} = b\)
\(hypotenuse = modliggende_{\angle C} = c\)
\(sin(\theta) = \frac{modliggende}{hypotenuse}\)
\(cos(\theta) = \frac{hosliggende}{hypotenuse}\)
\(tan(\theta) = \frac{modliggende}{hosliggende}\)
\(cot(\theta) = \frac{hosliggende}{modliggende}\)
\(csc(\theta) = \frac{hypotenuse}{modliggende}\)
\(sec(\theta) = \frac{hypotenuse}{hosliggende}\)
\(sin^{-1} (\frac{modliggende}{hypotenuse}) = \theta\)
\(cos^{-1} (\frac{hosliggende}{hypotenuse}) = \theta\)
\(tan^{-1} (\frac{modliggende}{hosliggende}) = \theta\)
\(cot^{-1} (\frac{hosliggende}{modliggende}) = \theta\)
\(csc^{-1} (\frac{hypotenuse}{modliggende}) = \theta\)
\(sec^{-1} (\frac{hypotenuse}{hosliggende}) = \theta\)
Forkortelser:
\(sin = sinus\)
\(cos = cosinus\)
\(tan = tangens\)
\(cot = cotangens\)
\(csc = cosekant\)
\(sec = sekant\)
\(arcsin = sin^{-1}\)
\(arccos = cos^{-1}\)
\(arctan = tan^{-1}\)
\(arccot = cot^{-1}\)
\(arcsec = sec^{-1}\)
\(arccsc = csc^{-1}\)
\(deg(rad) = \frac{rad\pi}{180}\)
\(rad(deg) = \frac{deg180}{\pi}\)
\(vinkelsum(x) = (x - 2)\pi\)
\(vinkelsum(3) = (3 - 2)\pi = \pi\)
\(\angle A = sin^{-1} (\frac{a}{c}) = cos^{-1} (\frac{b}{c}) = tan^{-1} (\frac{a}{b}) = vinkelsum(3) - \angle B - \angle C\)
\(\angle B = sin^{-1} (\frac{b}{c}) = cos^{-1} (\frac{a}{c}) = tan^{-1} (\frac{b}{a}) = vinkelsum(3) - \angle A - \angle C\)
\(\angle C = vinkelsum(3) - \angle A - \angle B\)
I en regulær trekant:
\(\angle A = \angle B = \angle C\)
I en retvinklet trekant:
\(\angle C = \frac{\pi}{2}\)
\(a = c \cdot sin(\angle A) = c \cdot cos(\angle B) = b \cdot tan(\angle A) = b \cdot cot(\angle B)\)
\(b = c \cdot sin(\angle B) = c \cdot cos(\angle A) = a \cdot tan(\angle B) = a \cdot cot(\angle A)\)
\(c = a \cdot csc(\angle A) = b \cdot csc(\angle B) = a \cdot sec(\angle B) = b \cdot sec(\angle A)\)
I en regulær trekant:
\(a = b = c\)
I en retvinklet trekant:
\(a = \sqrt[2]{c - b^2}\)
\(b = \sqrt[2]{c - a^2}\)
\(c = \sqrt[2]{a^2 + b^2}\)
I en retvinklet trekant, hvori kateterne har samme længde:
\(a = b = \sqrt[2]{\frac{c^2}{2}}\)
\(O = a + b + c\)
\(A = \frac{b h}{2}\)
Mellem to ligedannede trekanter:
\(\angle A_1 = \angle A_0\)
\(\angle B_1 = \angle B_0\)
\(\angle C_1 = \angle C_0\)
\(k = \frac{a_1}{a_0} = \frac{b_1}{b_0} = \frac{c_1}{c_0}\)
\(a_1 = a_0 k\)
\(b_1 = b_0 k\)
\(c_1 = c_0 k\)
\(O_1 = O_0 k\)
\(A_1 = A_0 k^2\)
Konstanter
Navn | Symbol |
---|---|
Pythagoras' konstant | \(\sqrt[2]{2}\) |
Theodorus' konstant | \(\sqrt[2]{3}\) |
Eulers tal | \(e\) |
den imaginære enhed | \(i\) |
Arkimedes' konstant (pi) | \(\pi\) |
den gyldne ratio | \(\phi\) |
\(\sqrt[2]{2} \approx \frac{1\ 414\ 213\ 562}{10^9}\)
\(\sqrt[2]{3} \approx \frac{1\ 732\ 050\ 808}{10^9}\)
\(e = \sum_{n = 0}^\infty \frac{1}{n!} \approx \frac{2\ 718\ 281\ 828}{10^9}\)
\(i = \sqrt[2]{-1}\)
\(\pi \approx \frac{3\ 141\ 592\ 654}{10^9}\)
\(\phi = \frac{1 + \sqrt[2]{5}}{2} \approx \frac{1\ 618\ 033\ 989}{10^9}\)