1
Fork 0
rust/compiler/rustc_resolve/src/ident.rs
Nilstrieb ffafcd8819 Update to bitflags 2 in the compiler
This involves lots of breaking changes. There are two big changes that
force changes. The first is that the bitflag types now don't
automatically implement normal derive traits, so we need to derive them
manually.

Additionally, bitflags now have a hidden inner type by default, which
breaks our custom derives. The bitflags docs recommend using the impl
form in these cases, which I did.
2023-12-30 18:17:28 +01:00

1574 lines
73 KiB
Rust

use rustc_ast::{self as ast, NodeId};
use rustc_hir::def::{DefKind, Namespace, NonMacroAttrKind, PartialRes, PerNS};
use rustc_middle::bug;
use rustc_middle::ty;
use rustc_session::lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK;
use rustc_session::lint::BuiltinLintDiagnostics;
use rustc_span::def_id::LocalDefId;
use rustc_span::hygiene::{ExpnId, ExpnKind, LocalExpnId, MacroKind, SyntaxContext};
use rustc_span::symbol::{kw, Ident};
use rustc_span::Span;
use crate::errors::{ParamKindInEnumDiscriminant, ParamKindInNonTrivialAnonConst};
use crate::late::{
ConstantHasGenerics, HasGenericParams, NoConstantGenericsReason, PathSource, Rib, RibKind,
};
use crate::macros::{sub_namespace_match, MacroRulesScope};
use crate::BindingKey;
use crate::{errors, AmbiguityError, AmbiguityErrorMisc, AmbiguityKind, Determinacy, Finalize};
use crate::{ImportKind, LexicalScopeBinding, Module, ModuleKind, ModuleOrUniformRoot};
use crate::{NameBinding, NameBindingKind, ParentScope, PathResult, PrivacyError, Res};
use crate::{ResolutionError, Resolver, Scope, ScopeSet, Segment, ToNameBinding, Weak};
use Determinacy::*;
use Namespace::*;
type Visibility = ty::Visibility<LocalDefId>;
impl<'a, 'tcx> Resolver<'a, 'tcx> {
/// A generic scope visitor.
/// Visits scopes in order to resolve some identifier in them or perform other actions.
/// If the callback returns `Some` result, we stop visiting scopes and return it.
pub(crate) fn visit_scopes<T>(
&mut self,
scope_set: ScopeSet<'a>,
parent_scope: &ParentScope<'a>,
ctxt: SyntaxContext,
mut visitor: impl FnMut(
&mut Self,
Scope<'a>,
/*use_prelude*/ bool,
SyntaxContext,
) -> Option<T>,
) -> Option<T> {
// General principles:
// 1. Not controlled (user-defined) names should have higher priority than controlled names
// built into the language or standard library. This way we can add new names into the
// language or standard library without breaking user code.
// 2. "Closed set" below means new names cannot appear after the current resolution attempt.
// Places to search (in order of decreasing priority):
// (Type NS)
// 1. FIXME: Ribs (type parameters), there's no necessary infrastructure yet
// (open set, not controlled).
// 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled).
// 3. Extern prelude (open, the open part is from macro expansions, not controlled).
// 4. Tool modules (closed, controlled right now, but not in the future).
// 5. Standard library prelude (de-facto closed, controlled).
// 6. Language prelude (closed, controlled).
// (Value NS)
// 1. FIXME: Ribs (local variables), there's no necessary infrastructure yet
// (open set, not controlled).
// 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled).
// 3. Standard library prelude (de-facto closed, controlled).
// (Macro NS)
// 1-3. Derive helpers (open, not controlled). All ambiguities with other names
// are currently reported as errors. They should be higher in priority than preludes
// and probably even names in modules according to the "general principles" above. They
// also should be subject to restricted shadowing because are effectively produced by
// derives (you need to resolve the derive first to add helpers into scope), but they
// should be available before the derive is expanded for compatibility.
// It's mess in general, so we are being conservative for now.
// 1-3. `macro_rules` (open, not controlled), loop through `macro_rules` scopes. Have higher
// priority than prelude macros, but create ambiguities with macros in modules.
// 1-3. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled). Have higher priority than prelude macros, but create
// ambiguities with `macro_rules`.
// 4. `macro_use` prelude (open, the open part is from macro expansions, not controlled).
// 4a. User-defined prelude from macro-use
// (open, the open part is from macro expansions, not controlled).
// 4b. "Standard library prelude" part implemented through `macro-use` (closed, controlled).
// 4c. Standard library prelude (de-facto closed, controlled).
// 6. Language prelude: builtin attributes (closed, controlled).
let rust_2015 = ctxt.edition().is_rust_2015();
let (ns, macro_kind, is_absolute_path) = match scope_set {
ScopeSet::All(ns) => (ns, None, false),
ScopeSet::AbsolutePath(ns) => (ns, None, true),
ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind), false),
ScopeSet::Late(ns, ..) => (ns, None, false),
};
let module = match scope_set {
// Start with the specified module.
ScopeSet::Late(_, module, _) => module,
// Jump out of trait or enum modules, they do not act as scopes.
_ => parent_scope.module.nearest_item_scope(),
};
let mut scope = match ns {
_ if is_absolute_path => Scope::CrateRoot,
TypeNS | ValueNS => Scope::Module(module, None),
MacroNS => Scope::DeriveHelpers(parent_scope.expansion),
};
let mut ctxt = ctxt.normalize_to_macros_2_0();
let mut use_prelude = !module.no_implicit_prelude;
loop {
let visit = match scope {
// Derive helpers are not in scope when resolving derives in the same container.
Scope::DeriveHelpers(expn_id) => {
!(expn_id == parent_scope.expansion && macro_kind == Some(MacroKind::Derive))
}
Scope::DeriveHelpersCompat => true,
Scope::MacroRules(macro_rules_scope) => {
// Use "path compression" on `macro_rules` scope chains. This is an optimization
// used to avoid long scope chains, see the comments on `MacroRulesScopeRef`.
// As another consequence of this optimization visitors never observe invocation
// scopes for macros that were already expanded.
while let MacroRulesScope::Invocation(invoc_id) = macro_rules_scope.get() {
if let Some(next_scope) = self.output_macro_rules_scopes.get(&invoc_id) {
macro_rules_scope.set(next_scope.get());
} else {
break;
}
}
true
}
Scope::CrateRoot => true,
Scope::Module(..) => true,
Scope::MacroUsePrelude => use_prelude || rust_2015,
Scope::BuiltinAttrs => true,
Scope::ExternPrelude => use_prelude || is_absolute_path,
Scope::ToolPrelude => use_prelude,
Scope::StdLibPrelude => use_prelude || ns == MacroNS,
Scope::BuiltinTypes => true,
};
if visit {
if let break_result @ Some(..) = visitor(self, scope, use_prelude, ctxt) {
return break_result;
}
}
scope = match scope {
Scope::DeriveHelpers(LocalExpnId::ROOT) => Scope::DeriveHelpersCompat,
Scope::DeriveHelpers(expn_id) => {
// Derive helpers are not visible to code generated by bang or derive macros.
let expn_data = expn_id.expn_data();
match expn_data.kind {
ExpnKind::Root
| ExpnKind::Macro(MacroKind::Bang | MacroKind::Derive, _) => {
Scope::DeriveHelpersCompat
}
_ => Scope::DeriveHelpers(expn_data.parent.expect_local()),
}
}
Scope::DeriveHelpersCompat => Scope::MacroRules(parent_scope.macro_rules),
Scope::MacroRules(macro_rules_scope) => match macro_rules_scope.get() {
MacroRulesScope::Binding(binding) => {
Scope::MacroRules(binding.parent_macro_rules_scope)
}
MacroRulesScope::Invocation(invoc_id) => {
Scope::MacroRules(self.invocation_parent_scopes[&invoc_id].macro_rules)
}
MacroRulesScope::Empty => Scope::Module(module, None),
},
Scope::CrateRoot => match ns {
TypeNS => {
ctxt.adjust(ExpnId::root());
Scope::ExternPrelude
}
ValueNS | MacroNS => break,
},
Scope::Module(module, prev_lint_id) => {
use_prelude = !module.no_implicit_prelude;
let derive_fallback_lint_id = match scope_set {
ScopeSet::Late(.., lint_id) => lint_id,
_ => None,
};
match self.hygienic_lexical_parent(module, &mut ctxt, derive_fallback_lint_id) {
Some((parent_module, lint_id)) => {
Scope::Module(parent_module, lint_id.or(prev_lint_id))
}
None => {
ctxt.adjust(ExpnId::root());
match ns {
TypeNS => Scope::ExternPrelude,
ValueNS => Scope::StdLibPrelude,
MacroNS => Scope::MacroUsePrelude,
}
}
}
}
Scope::MacroUsePrelude => Scope::StdLibPrelude,
Scope::BuiltinAttrs => break, // nowhere else to search
Scope::ExternPrelude if is_absolute_path => break,
Scope::ExternPrelude => Scope::ToolPrelude,
Scope::ToolPrelude => Scope::StdLibPrelude,
Scope::StdLibPrelude => match ns {
TypeNS => Scope::BuiltinTypes,
ValueNS => break, // nowhere else to search
MacroNS => Scope::BuiltinAttrs,
},
Scope::BuiltinTypes => break, // nowhere else to search
};
}
None
}
fn hygienic_lexical_parent(
&mut self,
module: Module<'a>,
ctxt: &mut SyntaxContext,
derive_fallback_lint_id: Option<NodeId>,
) -> Option<(Module<'a>, Option<NodeId>)> {
if !module.expansion.outer_expn_is_descendant_of(*ctxt) {
return Some((self.expn_def_scope(ctxt.remove_mark()), None));
}
if let ModuleKind::Block = module.kind {
return Some((module.parent.unwrap().nearest_item_scope(), None));
}
// We need to support the next case under a deprecation warning
// ```
// struct MyStruct;
// ---- begin: this comes from a proc macro derive
// mod implementation_details {
// // Note that `MyStruct` is not in scope here.
// impl SomeTrait for MyStruct { ... }
// }
// ---- end
// ```
// So we have to fall back to the module's parent during lexical resolution in this case.
if derive_fallback_lint_id.is_some() {
if let Some(parent) = module.parent {
// Inner module is inside the macro, parent module is outside of the macro.
if module.expansion != parent.expansion
&& module.expansion.is_descendant_of(parent.expansion)
{
// The macro is a proc macro derive
if let Some(def_id) = module.expansion.expn_data().macro_def_id {
let ext = &self.get_macro_by_def_id(def_id).ext;
if ext.builtin_name.is_none()
&& ext.macro_kind() == MacroKind::Derive
&& parent.expansion.outer_expn_is_descendant_of(*ctxt)
{
return Some((parent, derive_fallback_lint_id));
}
}
}
}
}
None
}
/// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
/// More specifically, we proceed up the hierarchy of scopes and return the binding for
/// `ident` in the first scope that defines it (or None if no scopes define it).
///
/// A block's items are above its local variables in the scope hierarchy, regardless of where
/// the items are defined in the block. For example,
/// ```rust
/// fn f() {
/// g(); // Since there are no local variables in scope yet, this resolves to the item.
/// let g = || {};
/// fn g() {}
/// g(); // This resolves to the local variable `g` since it shadows the item.
/// }
/// ```
///
/// Invariant: This must only be called during main resolution, not during
/// import resolution.
#[instrument(level = "debug", skip(self, ribs))]
pub(crate) fn resolve_ident_in_lexical_scope(
&mut self,
mut ident: Ident,
ns: Namespace,
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
ribs: &[Rib<'a>],
ignore_binding: Option<NameBinding<'a>>,
) -> Option<LexicalScopeBinding<'a>> {
assert!(ns == TypeNS || ns == ValueNS);
let orig_ident = ident;
if ident.name == kw::Empty {
return Some(LexicalScopeBinding::Res(Res::Err));
}
let (general_span, normalized_span) = if ident.name == kw::SelfUpper {
// FIXME(jseyfried) improve `Self` hygiene
let empty_span = ident.span.with_ctxt(SyntaxContext::root());
(empty_span, empty_span)
} else if ns == TypeNS {
let normalized_span = ident.span.normalize_to_macros_2_0();
(normalized_span, normalized_span)
} else {
(ident.span.normalize_to_macro_rules(), ident.span.normalize_to_macros_2_0())
};
ident.span = general_span;
let normalized_ident = Ident { span: normalized_span, ..ident };
// Walk backwards up the ribs in scope.
let mut module = self.graph_root;
for i in (0..ribs.len()).rev() {
debug!("walk rib\n{:?}", ribs[i].bindings);
// Use the rib kind to determine whether we are resolving parameters
// (macro 2.0 hygiene) or local variables (`macro_rules` hygiene).
let rib_ident = if ribs[i].kind.contains_params() { normalized_ident } else { ident };
if let Some((original_rib_ident_def, res)) = ribs[i].bindings.get_key_value(&rib_ident)
{
// The ident resolves to a type parameter or local variable.
return Some(LexicalScopeBinding::Res(self.validate_res_from_ribs(
i,
rib_ident,
*res,
finalize.map(|finalize| finalize.path_span),
*original_rib_ident_def,
ribs,
)));
}
module = match ribs[i].kind {
RibKind::Module(module) => module,
RibKind::MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
// If an invocation of this macro created `ident`, give up on `ident`
// and switch to `ident`'s source from the macro definition.
ident.span.remove_mark();
continue;
}
_ => continue,
};
match module.kind {
ModuleKind::Block => {} // We can see through blocks
_ => break,
}
let item = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(module),
ident,
ns,
parent_scope,
finalize,
ignore_binding,
);
if let Ok(binding) = item {
// The ident resolves to an item.
return Some(LexicalScopeBinding::Item(binding));
}
}
self.early_resolve_ident_in_lexical_scope(
orig_ident,
ScopeSet::Late(ns, module, finalize.map(|finalize| finalize.node_id)),
parent_scope,
finalize,
finalize.is_some(),
ignore_binding,
)
.ok()
.map(LexicalScopeBinding::Item)
}
/// Resolve an identifier in lexical scope.
/// This is a variation of `fn resolve_ident_in_lexical_scope` that can be run during
/// expansion and import resolution (perhaps they can be merged in the future).
/// The function is used for resolving initial segments of macro paths (e.g., `foo` in
/// `foo::bar!();` or `foo!();`) and also for import paths on 2018 edition.
#[instrument(level = "debug", skip(self))]
pub(crate) fn early_resolve_ident_in_lexical_scope(
&mut self,
orig_ident: Ident,
scope_set: ScopeSet<'a>,
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
force: bool,
ignore_binding: Option<NameBinding<'a>>,
) -> Result<NameBinding<'a>, Determinacy> {
bitflags::bitflags! {
#[derive(Clone, Copy)]
struct Flags: u8 {
const MACRO_RULES = 1 << 0;
const MODULE = 1 << 1;
const MISC_SUGGEST_CRATE = 1 << 2;
const MISC_SUGGEST_SELF = 1 << 3;
const MISC_FROM_PRELUDE = 1 << 4;
}
}
assert!(force || finalize.is_none()); // `finalize` implies `force`
// Make sure `self`, `super` etc produce an error when passed to here.
if orig_ident.is_path_segment_keyword() {
return Err(Determinacy::Determined);
}
let (ns, macro_kind) = match scope_set {
ScopeSet::All(ns) => (ns, None),
ScopeSet::AbsolutePath(ns) => (ns, None),
ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind)),
ScopeSet::Late(ns, ..) => (ns, None),
};
// This is *the* result, resolution from the scope closest to the resolved identifier.
// However, sometimes this result is "weak" because it comes from a glob import or
// a macro expansion, and in this case it cannot shadow names from outer scopes, e.g.
// mod m { ... } // solution in outer scope
// {
// use prefix::*; // imports another `m` - innermost solution
// // weak, cannot shadow the outer `m`, need to report ambiguity error
// m::mac!();
// }
// So we have to save the innermost solution and continue searching in outer scopes
// to detect potential ambiguities.
let mut innermost_result: Option<(NameBinding<'_>, Flags)> = None;
let mut determinacy = Determinacy::Determined;
// Go through all the scopes and try to resolve the name.
let break_result = self.visit_scopes(
scope_set,
parent_scope,
orig_ident.span.ctxt(),
|this, scope, use_prelude, ctxt| {
let ident = Ident::new(orig_ident.name, orig_ident.span.with_ctxt(ctxt));
let result = match scope {
Scope::DeriveHelpers(expn_id) => {
if let Some(binding) = this.helper_attrs.get(&expn_id).and_then(|attrs| {
attrs.iter().rfind(|(i, _)| ident == *i).map(|(_, binding)| *binding)
}) {
Ok((binding, Flags::empty()))
} else {
Err(Determinacy::Determined)
}
}
Scope::DeriveHelpersCompat => {
// FIXME: Try running this logic eariler, to allocate name bindings for
// legacy derive helpers when creating an attribute invocation with
// following derives. Legacy derive helpers are not common, so it shouldn't
// affect performance. It should also allow to remove the `derives`
// component from `ParentScope`.
let mut result = Err(Determinacy::Determined);
for derive in parent_scope.derives {
let parent_scope = &ParentScope { derives: &[], ..*parent_scope };
match this.resolve_macro_path(
derive,
Some(MacroKind::Derive),
parent_scope,
true,
force,
) {
Ok((Some(ext), _)) => {
if ext.helper_attrs.contains(&ident.name) {
let binding = (
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat),
Visibility::Public,
derive.span,
LocalExpnId::ROOT,
)
.to_name_binding(this.arenas);
result = Ok((binding, Flags::empty()));
break;
}
}
Ok(_) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => {
result = Err(Determinacy::Undetermined)
}
}
}
result
}
Scope::MacroRules(macro_rules_scope) => match macro_rules_scope.get() {
MacroRulesScope::Binding(macro_rules_binding)
if ident == macro_rules_binding.ident =>
{
Ok((macro_rules_binding.binding, Flags::MACRO_RULES))
}
MacroRulesScope::Invocation(_) => Err(Determinacy::Undetermined),
_ => Err(Determinacy::Determined),
},
Scope::CrateRoot => {
let root_ident = Ident::new(kw::PathRoot, ident.span);
let root_module = this.resolve_crate_root(root_ident);
let binding = this.resolve_ident_in_module_ext(
ModuleOrUniformRoot::Module(root_module),
ident,
ns,
parent_scope,
finalize,
ignore_binding,
);
match binding {
Ok(binding) => Ok((binding, Flags::MODULE | Flags::MISC_SUGGEST_CRATE)),
Err((Determinacy::Undetermined, Weak::No)) => {
return Some(Err(Determinacy::determined(force)));
}
Err((Determinacy::Undetermined, Weak::Yes)) => {
Err(Determinacy::Undetermined)
}
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
Scope::Module(module, derive_fallback_lint_id) => {
let adjusted_parent_scope = &ParentScope { module, ..*parent_scope };
let binding = this.resolve_ident_in_module_unadjusted_ext(
ModuleOrUniformRoot::Module(module),
ident,
ns,
adjusted_parent_scope,
!matches!(scope_set, ScopeSet::Late(..)),
finalize,
ignore_binding,
);
match binding {
Ok(binding) => {
if let Some(lint_id) = derive_fallback_lint_id {
this.lint_buffer.buffer_lint_with_diagnostic(
PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
lint_id,
orig_ident.span,
format!(
"cannot find {} `{}` in this scope",
ns.descr(),
ident
),
BuiltinLintDiagnostics::ProcMacroDeriveResolutionFallback(
orig_ident.span,
),
);
}
let misc_flags = if module == this.graph_root {
Flags::MISC_SUGGEST_CRATE
} else if module.is_normal() {
Flags::MISC_SUGGEST_SELF
} else {
Flags::empty()
};
Ok((binding, Flags::MODULE | misc_flags))
}
Err((Determinacy::Undetermined, Weak::No)) => {
return Some(Err(Determinacy::determined(force)));
}
Err((Determinacy::Undetermined, Weak::Yes)) => {
Err(Determinacy::Undetermined)
}
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
Scope::MacroUsePrelude => {
match this.macro_use_prelude.get(&ident.name).cloned() {
Some(binding) => Ok((binding, Flags::MISC_FROM_PRELUDE)),
None => Err(Determinacy::determined(
this.graph_root.unexpanded_invocations.borrow().is_empty(),
)),
}
}
Scope::BuiltinAttrs => match this.builtin_attrs_bindings.get(&ident.name) {
Some(binding) => Ok((*binding, Flags::empty())),
None => Err(Determinacy::Determined),
},
Scope::ExternPrelude => {
match this.extern_prelude_get(ident, finalize.is_some()) {
Some(binding) => Ok((binding, Flags::empty())),
None => Err(Determinacy::determined(
this.graph_root.unexpanded_invocations.borrow().is_empty(),
)),
}
}
Scope::ToolPrelude => match this.registered_tool_bindings.get(&ident) {
Some(binding) => Ok((*binding, Flags::empty())),
None => Err(Determinacy::Determined),
},
Scope::StdLibPrelude => {
let mut result = Err(Determinacy::Determined);
if let Some(prelude) = this.prelude {
if let Ok(binding) = this.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(prelude),
ident,
ns,
parent_scope,
None,
ignore_binding,
) {
if use_prelude || this.is_builtin_macro(binding.res()) {
result = Ok((binding, Flags::MISC_FROM_PRELUDE));
}
}
}
result
}
Scope::BuiltinTypes => match this.builtin_types_bindings.get(&ident.name) {
Some(binding) => Ok((*binding, Flags::empty())),
None => Err(Determinacy::Determined),
},
};
match result {
Ok((binding, flags))
if sub_namespace_match(binding.macro_kind(), macro_kind) =>
{
if finalize.is_none() || matches!(scope_set, ScopeSet::Late(..)) {
return Some(Ok(binding));
}
if let Some((innermost_binding, innermost_flags)) = innermost_result {
// Found another solution, if the first one was "weak", report an error.
let (res, innermost_res) = (binding.res(), innermost_binding.res());
if res != innermost_res {
let is_builtin = |res| {
matches!(res, Res::NonMacroAttr(NonMacroAttrKind::Builtin(..)))
};
let derive_helper =
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelper);
let derive_helper_compat =
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat);
let ambiguity_error_kind = if is_builtin(innermost_res)
|| is_builtin(res)
{
Some(AmbiguityKind::BuiltinAttr)
} else if innermost_res == derive_helper_compat
|| res == derive_helper_compat && innermost_res != derive_helper
{
Some(AmbiguityKind::DeriveHelper)
} else if innermost_flags.contains(Flags::MACRO_RULES)
&& flags.contains(Flags::MODULE)
&& !this.disambiguate_macro_rules_vs_modularized(
innermost_binding,
binding,
)
|| flags.contains(Flags::MACRO_RULES)
&& innermost_flags.contains(Flags::MODULE)
&& !this.disambiguate_macro_rules_vs_modularized(
binding,
innermost_binding,
)
{
Some(AmbiguityKind::MacroRulesVsModularized)
} else if innermost_binding.is_glob_import() {
Some(AmbiguityKind::GlobVsOuter)
} else if innermost_binding
.may_appear_after(parent_scope.expansion, binding)
{
Some(AmbiguityKind::MoreExpandedVsOuter)
} else {
None
};
if let Some(kind) = ambiguity_error_kind {
let misc = |f: Flags| {
if f.contains(Flags::MISC_SUGGEST_CRATE) {
AmbiguityErrorMisc::SuggestCrate
} else if f.contains(Flags::MISC_SUGGEST_SELF) {
AmbiguityErrorMisc::SuggestSelf
} else if f.contains(Flags::MISC_FROM_PRELUDE) {
AmbiguityErrorMisc::FromPrelude
} else {
AmbiguityErrorMisc::None
}
};
this.ambiguity_errors.push(AmbiguityError {
kind,
ident: orig_ident,
b1: innermost_binding,
b2: binding,
warning: false,
misc1: misc(innermost_flags),
misc2: misc(flags),
});
return Some(Ok(innermost_binding));
}
}
} else {
// Found the first solution.
innermost_result = Some((binding, flags));
}
}
Ok(..) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined,
}
None
},
);
if let Some(break_result) = break_result {
return break_result;
}
// The first found solution was the only one, return it.
if let Some((binding, _)) = innermost_result {
return Ok(binding);
}
Err(Determinacy::determined(determinacy == Determinacy::Determined || force))
}
#[instrument(level = "debug", skip(self))]
pub(crate) fn maybe_resolve_ident_in_module(
&mut self,
module: ModuleOrUniformRoot<'a>,
ident: Ident,
ns: Namespace,
parent_scope: &ParentScope<'a>,
) -> Result<NameBinding<'a>, Determinacy> {
self.resolve_ident_in_module_ext(module, ident, ns, parent_scope, None, None)
.map_err(|(determinacy, _)| determinacy)
}
#[instrument(level = "debug", skip(self))]
pub(crate) fn resolve_ident_in_module(
&mut self,
module: ModuleOrUniformRoot<'a>,
ident: Ident,
ns: Namespace,
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
ignore_binding: Option<NameBinding<'a>>,
) -> Result<NameBinding<'a>, Determinacy> {
self.resolve_ident_in_module_ext(module, ident, ns, parent_scope, finalize, ignore_binding)
.map_err(|(determinacy, _)| determinacy)
}
#[instrument(level = "debug", skip(self))]
fn resolve_ident_in_module_ext(
&mut self,
module: ModuleOrUniformRoot<'a>,
mut ident: Ident,
ns: Namespace,
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
ignore_binding: Option<NameBinding<'a>>,
) -> Result<NameBinding<'a>, (Determinacy, Weak)> {
let tmp_parent_scope;
let mut adjusted_parent_scope = parent_scope;
match module {
ModuleOrUniformRoot::Module(m) => {
if let Some(def) = ident.span.normalize_to_macros_2_0_and_adjust(m.expansion) {
tmp_parent_scope =
ParentScope { module: self.expn_def_scope(def), ..*parent_scope };
adjusted_parent_scope = &tmp_parent_scope;
}
}
ModuleOrUniformRoot::ExternPrelude => {
ident.span.normalize_to_macros_2_0_and_adjust(ExpnId::root());
}
ModuleOrUniformRoot::CrateRootAndExternPrelude | ModuleOrUniformRoot::CurrentScope => {
// No adjustments
}
}
self.resolve_ident_in_module_unadjusted_ext(
module,
ident,
ns,
adjusted_parent_scope,
false,
finalize,
ignore_binding,
)
}
#[instrument(level = "debug", skip(self))]
fn resolve_ident_in_module_unadjusted(
&mut self,
module: ModuleOrUniformRoot<'a>,
ident: Ident,
ns: Namespace,
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
ignore_binding: Option<NameBinding<'a>>,
) -> Result<NameBinding<'a>, Determinacy> {
self.resolve_ident_in_module_unadjusted_ext(
module,
ident,
ns,
parent_scope,
false,
finalize,
ignore_binding,
)
.map_err(|(determinacy, _)| determinacy)
}
/// Attempts to resolve `ident` in namespaces `ns` of `module`.
/// Invariant: if `finalize` is `Some`, expansion and import resolution must be complete.
#[instrument(level = "debug", skip(self))]
fn resolve_ident_in_module_unadjusted_ext(
&mut self,
module: ModuleOrUniformRoot<'a>,
ident: Ident,
ns: Namespace,
parent_scope: &ParentScope<'a>,
restricted_shadowing: bool,
finalize: Option<Finalize>,
// This binding should be ignored during in-module resolution, so that we don't get
// "self-confirming" import resolutions during import validation and checking.
ignore_binding: Option<NameBinding<'a>>,
) -> Result<NameBinding<'a>, (Determinacy, Weak)> {
let module = match module {
ModuleOrUniformRoot::Module(module) => module,
ModuleOrUniformRoot::CrateRootAndExternPrelude => {
assert!(!restricted_shadowing);
let binding = self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::AbsolutePath(ns),
parent_scope,
finalize,
finalize.is_some(),
ignore_binding,
);
return binding.map_err(|determinacy| (determinacy, Weak::No));
}
ModuleOrUniformRoot::ExternPrelude => {
assert!(!restricted_shadowing);
return if ns != TypeNS {
Err((Determined, Weak::No))
} else if let Some(binding) = self.extern_prelude_get(ident, finalize.is_some()) {
Ok(binding)
} else if !self.graph_root.unexpanded_invocations.borrow().is_empty() {
// Macro-expanded `extern crate` items can add names to extern prelude.
Err((Undetermined, Weak::No))
} else {
Err((Determined, Weak::No))
};
}
ModuleOrUniformRoot::CurrentScope => {
assert!(!restricted_shadowing);
if ns == TypeNS {
if ident.name == kw::Crate || ident.name == kw::DollarCrate {
let module = self.resolve_crate_root(ident);
return Ok(self.module_self_bindings[&module]);
} else if ident.name == kw::Super || ident.name == kw::SelfLower {
// FIXME: Implement these with renaming requirements so that e.g.
// `use super;` doesn't work, but `use super as name;` does.
// Fall through here to get an error from `early_resolve_...`.
}
}
let binding = self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::All(ns),
parent_scope,
finalize,
finalize.is_some(),
ignore_binding,
);
return binding.map_err(|determinacy| (determinacy, Weak::No));
}
};
let key = BindingKey::new(ident, ns);
let resolution =
self.resolution(module, key).try_borrow_mut().map_err(|_| (Determined, Weak::No))?; // This happens when there is a cycle of imports.
// If the primary binding is unusable, search further and return the shadowed glob
// binding if it exists. What we really want here is having two separate scopes in
// a module - one for non-globs and one for globs, but until that's done use this
// hack to avoid inconsistent resolution ICEs during import validation.
let binding = [resolution.binding, resolution.shadowed_glob]
.into_iter()
.find_map(|binding| if binding == ignore_binding { None } else { binding });
if let Some(Finalize { path_span, report_private, .. }) = finalize {
let Some(binding) = binding else {
return Err((Determined, Weak::No));
};
if !self.is_accessible_from(binding.vis, parent_scope.module) {
if report_private {
self.privacy_errors.push(PrivacyError {
ident,
binding,
dedup_span: path_span,
outermost_res: None,
parent_scope: *parent_scope,
});
} else {
return Err((Determined, Weak::No));
}
}
// Forbid expanded shadowing to avoid time travel.
if let Some(shadowed_glob) = resolution.shadowed_glob
&& restricted_shadowing
&& binding.expansion != LocalExpnId::ROOT
&& binding.res() != shadowed_glob.res()
{
self.ambiguity_errors.push(AmbiguityError {
kind: AmbiguityKind::GlobVsExpanded,
ident,
b1: binding,
b2: shadowed_glob,
warning: false,
misc1: AmbiguityErrorMisc::None,
misc2: AmbiguityErrorMisc::None,
});
}
if !restricted_shadowing && binding.expansion != LocalExpnId::ROOT {
if let NameBindingKind::Import { import, .. } = binding.kind
&& matches!(import.kind, ImportKind::MacroExport)
{
self.macro_expanded_macro_export_errors.insert((path_span, binding.span));
}
}
self.record_use(ident, binding, restricted_shadowing);
return Ok(binding);
}
let check_usable = |this: &mut Self, binding: NameBinding<'a>| {
let usable = this.is_accessible_from(binding.vis, parent_scope.module);
if usable { Ok(binding) } else { Err((Determined, Weak::No)) }
};
// Items and single imports are not shadowable, if we have one, then it's determined.
if let Some(binding) = binding {
if !binding.is_glob_import() {
return check_usable(self, binding);
}
}
// --- From now on we either have a glob resolution or no resolution. ---
// Check if one of single imports can still define the name,
// if it can then our result is not determined and can be invalidated.
for single_import in &resolution.single_imports {
let Some(import_vis) = single_import.vis.get() else {
continue;
};
if !self.is_accessible_from(import_vis, parent_scope.module) {
continue;
}
if let Some(ignored) = ignore_binding
&& let NameBindingKind::Import { import, .. } = ignored.kind
&& import == *single_import
{
// Ignore not just the binding itself, but if it has a shadowed_glob,
// ignore that, too, because this loop is supposed to only process
// named imports.
continue;
}
let Some(module) = single_import.imported_module.get() else {
return Err((Undetermined, Weak::No));
};
let ImportKind::Single { source: ident, .. } = single_import.kind else {
unreachable!();
};
match self.resolve_ident_in_module(
module,
ident,
ns,
&single_import.parent_scope,
None,
ignore_binding,
) {
Err(Determined) => continue,
Ok(binding)
if !self.is_accessible_from(binding.vis, single_import.parent_scope.module) =>
{
continue;
}
Ok(_) | Err(Undetermined) => return Err((Undetermined, Weak::No)),
}
}
// So we have a resolution that's from a glob import. This resolution is determined
// if it cannot be shadowed by some new item/import expanded from a macro.
// This happens either if there are no unexpanded macros, or expanded names cannot
// shadow globs (that happens in macro namespace or with restricted shadowing).
//
// Additionally, any macro in any module can plant names in the root module if it creates
// `macro_export` macros, so the root module effectively has unresolved invocations if any
// module has unresolved invocations.
// However, it causes resolution/expansion to stuck too often (#53144), so, to make
// progress, we have to ignore those potential unresolved invocations from other modules
// and prohibit access to macro-expanded `macro_export` macros instead (unless restricted
// shadowing is enabled, see `macro_expanded_macro_export_errors`).
if let Some(binding) = binding {
if binding.determined() || ns == MacroNS || restricted_shadowing {
return check_usable(self, binding);
} else {
return Err((Undetermined, Weak::No));
}
}
// --- From now on we have no resolution. ---
// Now we are in situation when new item/import can appear only from a glob or a macro
// expansion. With restricted shadowing names from globs and macro expansions cannot
// shadow names from outer scopes, so we can freely fallback from module search to search
// in outer scopes. For `early_resolve_ident_in_lexical_scope` to continue search in outer
// scopes we return `Undetermined` with `Weak::Yes`.
// Check if one of unexpanded macros can still define the name,
// if it can then our "no resolution" result is not determined and can be invalidated.
if !module.unexpanded_invocations.borrow().is_empty() {
return Err((Undetermined, Weak::Yes));
}
// Check if one of glob imports can still define the name,
// if it can then our "no resolution" result is not determined and can be invalidated.
for glob_import in module.globs.borrow().iter() {
let Some(import_vis) = glob_import.vis.get() else {
continue;
};
if !self.is_accessible_from(import_vis, parent_scope.module) {
continue;
}
let module = match glob_import.imported_module.get() {
Some(ModuleOrUniformRoot::Module(module)) => module,
Some(_) => continue,
None => return Err((Undetermined, Weak::Yes)),
};
let tmp_parent_scope;
let (mut adjusted_parent_scope, mut ident) =
(parent_scope, ident.normalize_to_macros_2_0());
match ident.span.glob_adjust(module.expansion, glob_import.span) {
Some(Some(def)) => {
tmp_parent_scope =
ParentScope { module: self.expn_def_scope(def), ..*parent_scope };
adjusted_parent_scope = &tmp_parent_scope;
}
Some(None) => {}
None => continue,
};
let result = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(module),
ident,
ns,
adjusted_parent_scope,
None,
ignore_binding,
);
match result {
Err(Determined) => continue,
Ok(binding)
if !self.is_accessible_from(binding.vis, glob_import.parent_scope.module) =>
{
continue;
}
Ok(_) | Err(Undetermined) => return Err((Undetermined, Weak::Yes)),
}
}
// No resolution and no one else can define the name - determinate error.
Err((Determined, Weak::No))
}
/// Validate a local resolution (from ribs).
#[instrument(level = "debug", skip(self, all_ribs))]
fn validate_res_from_ribs(
&mut self,
rib_index: usize,
rib_ident: Ident,
mut res: Res,
finalize: Option<Span>,
original_rib_ident_def: Ident,
all_ribs: &[Rib<'a>],
) -> Res {
const CG_BUG_STR: &str = "min_const_generics resolve check didn't stop compilation";
debug!("validate_res_from_ribs({:?})", res);
let ribs = &all_ribs[rib_index + 1..];
// An invalid forward use of a generic parameter from a previous default.
if let RibKind::ForwardGenericParamBan = all_ribs[rib_index].kind {
if let Some(span) = finalize {
let res_error = if rib_ident.name == kw::SelfUpper {
ResolutionError::SelfInGenericParamDefault
} else {
ResolutionError::ForwardDeclaredGenericParam
};
self.report_error(span, res_error);
}
assert_eq!(res, Res::Err);
return Res::Err;
}
match res {
Res::Local(_) => {
use ResolutionError::*;
let mut res_err = None;
for rib in ribs {
match rib.kind {
RibKind::Normal
| RibKind::FnOrCoroutine
| RibKind::Module(..)
| RibKind::MacroDefinition(..)
| RibKind::ForwardGenericParamBan => {
// Nothing to do. Continue.
}
RibKind::Item(_) | RibKind::AssocItem => {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
if let Some(span) = finalize {
// We don't immediately trigger a resolve error, because
// we want certain other resolution errors (namely those
// emitted for `ConstantItemRibKind` below) to take
// precedence.
res_err = Some((span, CannotCaptureDynamicEnvironmentInFnItem));
}
}
RibKind::ConstantItem(_, item) => {
// Still doesn't deal with upvars
if let Some(span) = finalize {
let (span, resolution_error) = match item {
None if rib_ident.as_str() == "self" => (span, LowercaseSelf),
None => (
rib_ident.span,
AttemptToUseNonConstantValueInConstant(
original_rib_ident_def,
"const",
"let",
),
),
Some((ident, kind)) => (
span,
AttemptToUseNonConstantValueInConstant(
ident,
"let",
kind.as_str(),
),
),
};
self.report_error(span, resolution_error);
}
return Res::Err;
}
RibKind::ConstParamTy => {
if let Some(span) = finalize {
self.report_error(
span,
ParamInTyOfConstParam {
name: rib_ident.name,
param_kind: None,
},
);
}
return Res::Err;
}
RibKind::InlineAsmSym => {
if let Some(span) = finalize {
self.report_error(span, InvalidAsmSym);
}
return Res::Err;
}
}
}
if let Some((span, res_err)) = res_err {
self.report_error(span, res_err);
return Res::Err;
}
}
Res::Def(DefKind::TyParam, _) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } => {
for rib in ribs {
let has_generic_params: HasGenericParams = match rib.kind {
RibKind::Normal
| RibKind::FnOrCoroutine
| RibKind::Module(..)
| RibKind::MacroDefinition(..)
| RibKind::InlineAsmSym
| RibKind::AssocItem
| RibKind::ForwardGenericParamBan => {
// Nothing to do. Continue.
continue;
}
RibKind::ConstantItem(trivial, _) => {
if let ConstantHasGenerics::No(cause) = trivial {
// HACK(min_const_generics): If we encounter `Self` in an anonymous
// constant we can't easily tell if it's generic at this stage, so
// we instead remember this and then enforce the self type to be
// concrete later on.
if let Res::SelfTyAlias {
alias_to: def,
forbid_generic: _,
is_trait_impl,
} = res
{
res = Res::SelfTyAlias {
alias_to: def,
forbid_generic: true,
is_trait_impl,
}
} else {
if let Some(span) = finalize {
let error = match cause {
NoConstantGenericsReason::IsEnumDiscriminant => {
ResolutionError::ParamInEnumDiscriminant {
name: rib_ident.name,
param_kind: ParamKindInEnumDiscriminant::Type,
}
}
NoConstantGenericsReason::NonTrivialConstArg => {
ResolutionError::ParamInNonTrivialAnonConst {
name: rib_ident.name,
param_kind:
ParamKindInNonTrivialAnonConst::Type,
}
}
};
self.report_error(span, error);
self.dcx().span_delayed_bug(span, CG_BUG_STR);
}
return Res::Err;
}
}
continue;
}
// This was an attempt to use a type parameter outside its scope.
RibKind::Item(has_generic_params) => has_generic_params,
RibKind::ConstParamTy => {
if let Some(span) = finalize {
self.report_error(
span,
ResolutionError::ParamInTyOfConstParam {
name: rib_ident.name,
param_kind: Some(errors::ParamKindInTyOfConstParam::Type),
},
);
}
return Res::Err;
}
};
if let Some(span) = finalize {
self.report_error(
span,
ResolutionError::GenericParamsFromOuterItem(res, has_generic_params),
);
}
return Res::Err;
}
}
Res::Def(DefKind::ConstParam, _) => {
for rib in ribs {
let has_generic_params = match rib.kind {
RibKind::Normal
| RibKind::FnOrCoroutine
| RibKind::Module(..)
| RibKind::MacroDefinition(..)
| RibKind::InlineAsmSym
| RibKind::AssocItem
| RibKind::ForwardGenericParamBan => continue,
RibKind::ConstantItem(trivial, _) => {
if let ConstantHasGenerics::No(cause) = trivial {
if let Some(span) = finalize {
let error = match cause {
NoConstantGenericsReason::IsEnumDiscriminant => {
ResolutionError::ParamInEnumDiscriminant {
name: rib_ident.name,
param_kind: ParamKindInEnumDiscriminant::Const,
}
}
NoConstantGenericsReason::NonTrivialConstArg => {
ResolutionError::ParamInNonTrivialAnonConst {
name: rib_ident.name,
param_kind: ParamKindInNonTrivialAnonConst::Const {
name: rib_ident.name,
},
}
}
};
self.report_error(span, error);
}
return Res::Err;
}
continue;
}
RibKind::Item(has_generic_params) => has_generic_params,
RibKind::ConstParamTy => {
if let Some(span) = finalize {
self.report_error(
span,
ResolutionError::ParamInTyOfConstParam {
name: rib_ident.name,
param_kind: Some(errors::ParamKindInTyOfConstParam::Const),
},
);
}
return Res::Err;
}
};
// This was an attempt to use a const parameter outside its scope.
if let Some(span) = finalize {
self.report_error(
span,
ResolutionError::GenericParamsFromOuterItem(res, has_generic_params),
);
}
return Res::Err;
}
}
_ => {}
}
res
}
#[instrument(level = "debug", skip(self))]
pub(crate) fn maybe_resolve_path(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
parent_scope: &ParentScope<'a>,
) -> PathResult<'a> {
self.resolve_path_with_ribs(path, opt_ns, parent_scope, None, None, None)
}
#[instrument(level = "debug", skip(self))]
pub(crate) fn resolve_path(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
ignore_binding: Option<NameBinding<'a>>,
) -> PathResult<'a> {
self.resolve_path_with_ribs(path, opt_ns, parent_scope, finalize, None, ignore_binding)
}
pub(crate) fn resolve_path_with_ribs(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
parent_scope: &ParentScope<'a>,
finalize: Option<Finalize>,
ribs: Option<&PerNS<Vec<Rib<'a>>>>,
ignore_binding: Option<NameBinding<'a>>,
) -> PathResult<'a> {
let mut module = None;
let mut allow_super = true;
let mut second_binding = None;
// We'll provide more context to the privacy errors later, up to `len`.
let privacy_errors_len = self.privacy_errors.len();
for (segment_idx, &Segment { ident, id, .. }) in path.iter().enumerate() {
debug!("resolve_path ident {} {:?} {:?}", segment_idx, ident, id);
let record_segment_res = |this: &mut Self, res| {
if finalize.is_some() {
if let Some(id) = id {
if !this.partial_res_map.contains_key(&id) {
assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
this.record_partial_res(id, PartialRes::new(res));
}
}
}
};
let is_last = segment_idx + 1 == path.len();
let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
let name = ident.name;
allow_super &= ns == TypeNS && (name == kw::SelfLower || name == kw::Super);
if ns == TypeNS {
if allow_super && name == kw::Super {
let mut ctxt = ident.span.ctxt().normalize_to_macros_2_0();
let self_module = match segment_idx {
0 => Some(self.resolve_self(&mut ctxt, parent_scope.module)),
_ => match module {
Some(ModuleOrUniformRoot::Module(module)) => Some(module),
_ => None,
},
};
if let Some(self_module) = self_module {
if let Some(parent) = self_module.parent {
module = Some(ModuleOrUniformRoot::Module(
self.resolve_self(&mut ctxt, parent),
));
continue;
}
}
return PathResult::failed(
ident.span,
false,
finalize.is_some(),
module,
|| ("there are too many leading `super` keywords".to_string(), None),
);
}
if segment_idx == 0 {
if name == kw::SelfLower {
let mut ctxt = ident.span.ctxt().normalize_to_macros_2_0();
module = Some(ModuleOrUniformRoot::Module(
self.resolve_self(&mut ctxt, parent_scope.module),
));
continue;
}
if name == kw::PathRoot && ident.span.at_least_rust_2018() {
module = Some(ModuleOrUniformRoot::ExternPrelude);
continue;
}
if name == kw::PathRoot
&& ident.span.is_rust_2015()
&& self.tcx.sess.at_least_rust_2018()
{
// `::a::b` from 2015 macro on 2018 global edition
module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
continue;
}
if name == kw::PathRoot || name == kw::Crate || name == kw::DollarCrate {
// `::a::b`, `crate::a::b` or `$crate::a::b`
module = Some(ModuleOrUniformRoot::Module(self.resolve_crate_root(ident)));
continue;
}
}
}
// Report special messages for path segment keywords in wrong positions.
if ident.is_path_segment_keyword() && segment_idx != 0 {
return PathResult::failed(ident.span, false, finalize.is_some(), module, || {
let name_str = if name == kw::PathRoot {
"crate root".to_string()
} else {
format!("`{name}`")
};
let label = if segment_idx == 1 && path[0].ident.name == kw::PathRoot {
format!("global paths cannot start with {name_str}")
} else {
format!("{name_str} in paths can only be used in start position")
};
(label, None)
});
}
let binding = if let Some(module) = module {
self.resolve_ident_in_module(
module,
ident,
ns,
parent_scope,
finalize,
ignore_binding,
)
} else if let Some(ribs) = ribs
&& let Some(TypeNS | ValueNS) = opt_ns
{
match self.resolve_ident_in_lexical_scope(
ident,
ns,
parent_scope,
finalize,
&ribs[ns],
ignore_binding,
) {
// we found a locally-imported or available item/module
Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
// we found a local variable or type param
Some(LexicalScopeBinding::Res(res)) => {
record_segment_res(self, res);
return PathResult::NonModule(PartialRes::with_unresolved_segments(
res,
path.len() - 1,
));
}
_ => Err(Determinacy::determined(finalize.is_some())),
}
} else {
self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::All(ns),
parent_scope,
finalize,
finalize.is_some(),
ignore_binding,
)
};
match binding {
Ok(binding) => {
if segment_idx == 1 {
second_binding = Some(binding);
}
let res = binding.res();
// Mark every privacy error in this path with the res to the last element. This allows us
// to detect the item the user cares about and either find an alternative import, or tell
// the user it is not accessible.
for error in &mut self.privacy_errors[privacy_errors_len..] {
error.outermost_res = Some((res, ident));
}
let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(res);
if let Some(next_module) = binding.module() {
module = Some(ModuleOrUniformRoot::Module(next_module));
record_segment_res(self, res);
} else if res == Res::ToolMod && !is_last && opt_ns.is_some() {
if binding.is_import() {
self.dcx().emit_err(errors::ToolModuleImported {
span: ident.span,
import: binding.span,
});
}
let res = Res::NonMacroAttr(NonMacroAttrKind::Tool);
return PathResult::NonModule(PartialRes::new(res));
} else if res == Res::Err {
return PathResult::NonModule(PartialRes::new(Res::Err));
} else if opt_ns.is_some() && (is_last || maybe_assoc) {
self.lint_if_path_starts_with_module(finalize, path, second_binding);
record_segment_res(self, res);
return PathResult::NonModule(PartialRes::with_unresolved_segments(
res,
path.len() - segment_idx - 1,
));
} else {
return PathResult::failed(
ident.span,
is_last,
finalize.is_some(),
module,
|| {
let label = format!(
"`{ident}` is {} {}, not a module",
res.article(),
res.descr()
);
(label, None)
},
);
}
}
Err(Undetermined) => return PathResult::Indeterminate,
Err(Determined) => {
if let Some(ModuleOrUniformRoot::Module(module)) = module {
if opt_ns.is_some() && !module.is_normal() {
return PathResult::NonModule(PartialRes::with_unresolved_segments(
module.res().unwrap(),
path.len() - segment_idx,
));
}
}
return PathResult::failed(
ident.span,
is_last,
finalize.is_some(),
module,
|| {
self.report_path_resolution_error(
path,
opt_ns,
parent_scope,
ribs,
ignore_binding,
module,
segment_idx,
ident,
)
},
);
}
}
}
self.lint_if_path_starts_with_module(finalize, path, second_binding);
PathResult::Module(match module {
Some(module) => module,
None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
_ => bug!("resolve_path: non-empty path `{:?}` has no module", path),
})
}
}