//! Support for inlining external documentation into the current AST. use std::iter::once; use rustc_ast as ast; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_hir::def::{CtorKind, DefKind, Res}; use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX}; use rustc_hir::Mutability; use rustc_metadata::creader::LoadedMacro; use rustc_middle::ty; use rustc_mir::const_eval::is_min_const_fn; use rustc_span::hygiene::MacroKind; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::Span; use crate::clean::{self, Attributes, GetDefId, ToSource, TypeKind}; use crate::core::DocContext; use crate::doctree; use super::Clean; type Attrs<'hir> = rustc_middle::ty::Attributes<'hir>; /// Attempt to inline a definition into this AST. /// /// This function will fetch the definition specified, and if it is /// from another crate it will attempt to inline the documentation /// from the other crate into this crate. /// /// This is primarily used for `pub use` statements which are, in general, /// implementation details. Inlining the documentation should help provide a /// better experience when reading the documentation in this use case. /// /// The returned value is `None` if the definition could not be inlined, /// and `Some` of a vector of items if it was successfully expanded. /// /// `parent_module` refers to the parent of the *re-export*, not the original item. crate fn try_inline( cx: &DocContext<'_>, parent_module: DefId, res: Res, name: Symbol, attrs: Option>, visited: &mut FxHashSet, ) -> Option> { let did = res.opt_def_id()?; if did.is_local() { return None; } let mut ret = Vec::new(); debug!("attrs={:?}", attrs); let attrs_clone = attrs; let kind = match res { Res::Def(DefKind::Trait, did) => { record_extern_fqn(cx, did, clean::TypeKind::Trait); ret.extend(build_impls(cx, Some(parent_module), did, attrs)); clean::TraitItem(build_external_trait(cx, did)) } Res::Def(DefKind::Fn, did) => { record_extern_fqn(cx, did, clean::TypeKind::Function); clean::FunctionItem(build_external_function(cx, did)) } Res::Def(DefKind::Struct, did) => { record_extern_fqn(cx, did, clean::TypeKind::Struct); ret.extend(build_impls(cx, Some(parent_module), did, attrs)); clean::StructItem(build_struct(cx, did)) } Res::Def(DefKind::Union, did) => { record_extern_fqn(cx, did, clean::TypeKind::Union); ret.extend(build_impls(cx, Some(parent_module), did, attrs)); clean::UnionItem(build_union(cx, did)) } Res::Def(DefKind::TyAlias, did) => { record_extern_fqn(cx, did, clean::TypeKind::Typedef); ret.extend(build_impls(cx, Some(parent_module), did, attrs)); clean::TypedefItem(build_type_alias(cx, did), false) } Res::Def(DefKind::Enum, did) => { record_extern_fqn(cx, did, clean::TypeKind::Enum); ret.extend(build_impls(cx, Some(parent_module), did, attrs)); clean::EnumItem(build_enum(cx, did)) } Res::Def(DefKind::ForeignTy, did) => { record_extern_fqn(cx, did, clean::TypeKind::Foreign); ret.extend(build_impls(cx, Some(parent_module), did, attrs)); clean::ForeignTypeItem } // Never inline enum variants but leave them shown as re-exports. Res::Def(DefKind::Variant, _) => return None, // Assume that enum variants and struct types are re-exported next to // their constructors. Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()), Res::Def(DefKind::Mod, did) => { record_extern_fqn(cx, did, clean::TypeKind::Module); clean::ModuleItem(build_module(cx, did, visited)) } Res::Def(DefKind::Static, did) => { record_extern_fqn(cx, did, clean::TypeKind::Static); clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did))) } Res::Def(DefKind::Const, did) => { record_extern_fqn(cx, did, clean::TypeKind::Const); clean::ConstantItem(build_const(cx, did)) } Res::Def(DefKind::Macro(kind), did) => { let mac = build_macro(cx, did, name); let type_kind = match kind { MacroKind::Bang => TypeKind::Macro, MacroKind::Attr => TypeKind::Attr, MacroKind::Derive => TypeKind::Derive, }; record_extern_fqn(cx, did, type_kind); mac } _ => return None, }; let target_attrs = load_attrs(cx, did); let attrs = merge_attrs(cx, Some(parent_module), target_attrs, attrs_clone); cx.renderinfo.borrow_mut().inlined.insert(did); let what_rustc_thinks = clean::Item::from_def_id_and_parts(did, Some(name), kind, cx); ret.push(clean::Item { attrs, ..what_rustc_thinks }); Some(ret) } crate fn try_inline_glob( cx: &DocContext<'_>, res: Res, visited: &mut FxHashSet, ) -> Option> { if res == Res::Err { return None; } let did = res.def_id(); if did.is_local() { return None; } match res { Res::Def(DefKind::Mod, did) => { let m = build_module(cx, did, visited); Some(m.items) } // glob imports on things like enums aren't inlined even for local exports, so just bail _ => None, } } crate fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> Attrs<'hir> { cx.tcx.get_attrs(did) } /// Record an external fully qualified name in the external_paths cache. /// /// These names are used later on by HTML rendering to generate things like /// source links back to the original item. crate fn record_extern_fqn(cx: &DocContext<'_>, did: DefId, kind: clean::TypeKind) { let crate_name = cx.tcx.crate_name(did.krate).to_string(); let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| { // extern blocks have an empty name let s = elem.data.to_string(); if !s.is_empty() { Some(s) } else { None } }); let fqn = if let clean::TypeKind::Macro = kind { vec![crate_name, relative.last().expect("relative was empty")] } else { once(crate_name).chain(relative).collect() }; if did.is_local() { cx.renderinfo.borrow_mut().exact_paths.insert(did, fqn); } else { cx.renderinfo.borrow_mut().external_paths.insert(did, (fqn, kind)); } } crate fn build_external_trait(cx: &DocContext<'_>, did: DefId) -> clean::Trait { let trait_items = cx.tcx.associated_items(did).in_definition_order().map(|item| item.clean(cx)).collect(); let predicates = cx.tcx.predicates_of(did); let generics = (cx.tcx.generics_of(did), predicates).clean(cx); let generics = filter_non_trait_generics(did, generics); let (generics, supertrait_bounds) = separate_supertrait_bounds(generics); let is_spotlight = load_attrs(cx, did).clean(cx).has_doc_flag(sym::spotlight); let is_auto = cx.tcx.trait_is_auto(did); clean::Trait { unsafety: cx.tcx.trait_def(did).unsafety, generics, items: trait_items, bounds: supertrait_bounds, is_spotlight, is_auto, } } fn build_external_function(cx: &DocContext<'_>, did: DefId) -> clean::Function { let sig = cx.tcx.fn_sig(did); let constness = if is_min_const_fn(cx.tcx, did) { hir::Constness::Const } else { hir::Constness::NotConst }; let asyncness = cx.tcx.asyncness(did); let predicates = cx.tcx.predicates_of(did); let (generics, decl) = clean::enter_impl_trait(cx, || { ((cx.tcx.generics_of(did), predicates).clean(cx), (did, sig).clean(cx)) }); let (all_types, ret_types) = clean::get_all_types(&generics, &decl, cx); clean::Function { decl, generics, header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness }, all_types, ret_types, } } fn build_enum(cx: &DocContext<'_>, did: DefId) -> clean::Enum { let predicates = cx.tcx.explicit_predicates_of(did); clean::Enum { generics: (cx.tcx.generics_of(did), predicates).clean(cx), variants_stripped: false, variants: cx.tcx.adt_def(did).variants.clean(cx), } } fn build_struct(cx: &DocContext<'_>, did: DefId) -> clean::Struct { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Struct { struct_type: match variant.ctor_kind { CtorKind::Fictive => doctree::Plain, CtorKind::Fn => doctree::Tuple, CtorKind::Const => doctree::Unit, }, generics: (cx.tcx.generics_of(did), predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_union(cx: &DocContext<'_>, did: DefId) -> clean::Union { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Union { struct_type: doctree::Plain, generics: (cx.tcx.generics_of(did), predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_type_alias(cx: &DocContext<'_>, did: DefId) -> clean::Typedef { let predicates = cx.tcx.explicit_predicates_of(did); clean::Typedef { type_: cx.tcx.type_of(did).clean(cx), generics: (cx.tcx.generics_of(did), predicates).clean(cx), item_type: build_type_alias_type(cx, did), } } fn build_type_alias_type(cx: &DocContext<'_>, did: DefId) -> Option { let type_ = cx.tcx.type_of(did).clean(cx); type_.def_id().and_then(|did| build_ty(cx, did)) } crate fn build_ty(cx: &DocContext<'_>, did: DefId) -> Option { match cx.tcx.def_kind(did) { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Const | DefKind::Static => { Some(cx.tcx.type_of(did).clean(cx)) } DefKind::TyAlias => build_type_alias_type(cx, did), _ => None, } } /// Builds all inherent implementations of an ADT (struct/union/enum) or Trait item/path/reexport. crate fn build_impls( cx: &DocContext<'_>, parent_module: Option, did: DefId, attrs: Option>, ) -> Vec { let tcx = cx.tcx; let mut impls = Vec::new(); // for each implementation of an item represented by `did`, build the clean::Item for that impl for &did in tcx.inherent_impls(did).iter() { build_impl(cx, parent_module, did, attrs, &mut impls); } impls } /// `parent_module` refers to the parent of the re-export, not the original item fn merge_attrs( cx: &DocContext<'_>, parent_module: Option, old_attrs: Attrs<'_>, new_attrs: Option>, ) -> clean::Attributes { // NOTE: If we have additional attributes (from a re-export), // always insert them first. This ensure that re-export // doc comments show up before the original doc comments // when we render them. if let Some(inner) = new_attrs { if let Some(new_id) = parent_module { let diag = cx.sess().diagnostic(); Attributes::from_ast(diag, old_attrs, Some((inner, new_id))) } else { let mut both = inner.to_vec(); both.extend_from_slice(old_attrs); both.clean(cx) } } else { old_attrs.clean(cx) } } /// Builds a specific implementation of a type. The `did` could be a type method or trait method. crate fn build_impl( cx: &DocContext<'_>, parent_module: impl Into>, did: DefId, attrs: Option>, ret: &mut Vec, ) { if !cx.renderinfo.borrow_mut().inlined.insert(did) { return; } let tcx = cx.tcx; let associated_trait = tcx.impl_trait_ref(did); // Only inline impl if the implemented trait is // reachable in rustdoc generated documentation if !did.is_local() { if let Some(traitref) = associated_trait { let did = traitref.def_id; if !cx.renderinfo.borrow().access_levels.is_public(did) { return; } if let Some(stab) = tcx.lookup_stability(did) { if stab.level.is_unstable() && stab.feature == sym::rustc_private { return; } } } } let impl_item = match did.as_local() { Some(did) => { let hir_id = tcx.hir().local_def_id_to_hir_id(did); match tcx.hir().expect_item(hir_id).kind { hir::ItemKind::Impl { self_ty, ref generics, ref items, .. } => { Some((self_ty, generics, items)) } _ => panic!("`DefID` passed to `build_impl` is not an `impl"), } } None => None, }; let for_ = match impl_item { Some((self_ty, _, _)) => self_ty.clean(cx), None => tcx.type_of(did).clean(cx), }; // Only inline impl if the implementing type is // reachable in rustdoc generated documentation if !did.is_local() { if let Some(did) = for_.def_id() { if !cx.renderinfo.borrow().access_levels.is_public(did) { return; } if let Some(stab) = tcx.lookup_stability(did) { if stab.level.is_unstable() && stab.feature == sym::rustc_private { return; } } } } let predicates = tcx.explicit_predicates_of(did); let (trait_items, generics) = match impl_item { Some((_, generics, items)) => ( items.iter().map(|item| tcx.hir().impl_item(item.id).clean(cx)).collect::>(), generics.clean(cx), ), None => ( tcx.associated_items(did) .in_definition_order() .filter_map(|item| { if associated_trait.is_some() || item.vis == ty::Visibility::Public { Some(item.clean(cx)) } else { None } }) .collect::>(), clean::enter_impl_trait(cx, || (tcx.generics_of(did), predicates).clean(cx)), ), }; let polarity = tcx.impl_polarity(did); let trait_ = associated_trait.clean(cx).map(|bound| match bound { clean::GenericBound::TraitBound(polyt, _) => polyt.trait_, clean::GenericBound::Outlives(..) => unreachable!(), }); if trait_.def_id() == tcx.lang_items().deref_trait() { super::build_deref_target_impls(cx, &trait_items, ret); } if let Some(trait_did) = trait_.def_id() { record_extern_trait(cx, trait_did); } let provided = trait_ .def_id() .map(|did| tcx.provided_trait_methods(did).map(|meth| meth.ident.to_string()).collect()) .unwrap_or_default(); debug!("build_impl: impl {:?} for {:?}", trait_.def_id(), for_.def_id()); let mut item = clean::Item::from_def_id_and_parts( did, None, clean::ImplItem(clean::Impl { unsafety: hir::Unsafety::Normal, generics, provided_trait_methods: provided, trait_, for_, items: trait_items, polarity: Some(polarity.clean(cx)), synthetic: false, blanket_impl: None, }), cx, ); item.attrs = merge_attrs(cx, parent_module.into(), load_attrs(cx, did), attrs); debug!("merged_attrs={:?}", item.attrs); ret.push(item); } fn build_module(cx: &DocContext<'_>, did: DefId, visited: &mut FxHashSet) -> clean::Module { let mut items = Vec::new(); fill_in(cx, did, &mut items, visited); return clean::Module { items, is_crate: false }; fn fill_in( cx: &DocContext<'_>, did: DefId, items: &mut Vec, visited: &mut FxHashSet, ) { // If we're re-exporting a re-export it may actually re-export something in // two namespaces, so the target may be listed twice. Make sure we only // visit each node at most once. for &item in cx.tcx.item_children(did).iter() { if item.vis == ty::Visibility::Public { if let Some(def_id) = item.res.mod_def_id() { if did == def_id || !visited.insert(def_id) { continue; } } if let Res::PrimTy(p) = item.res { // Primitive types can't be inlined so generate an import instead. items.push(clean::Item { name: None, attrs: clean::Attributes::default(), source: clean::Span::dummy(), def_id: DefId::local(CRATE_DEF_INDEX), visibility: clean::Public, stability: None, const_stability: None, deprecation: None, kind: clean::ImportItem(clean::Import::new_simple( item.ident.name, clean::ImportSource { path: clean::Path { global: false, res: item.res, segments: vec![clean::PathSegment { name: clean::PrimitiveType::from(p).as_sym(), args: clean::GenericArgs::AngleBracketed { args: Vec::new(), bindings: Vec::new(), }, }], }, did: None, }, true, )), }); } else if let Some(i) = try_inline(cx, did, item.res, item.ident.name, None, visited) { items.extend(i) } } } } } crate fn print_inlined_const(cx: &DocContext<'_>, did: DefId) -> String { if let Some(did) = did.as_local() { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(did); rustc_hir_pretty::id_to_string(&cx.tcx.hir(), hir_id) } else { cx.tcx.rendered_const(did) } } fn build_const(cx: &DocContext<'_>, did: DefId) -> clean::Constant { clean::Constant { type_: cx.tcx.type_of(did).clean(cx), expr: print_inlined_const(cx, did), value: clean::utils::print_evaluated_const(cx, did), is_literal: did.as_local().map_or(false, |did| { clean::utils::is_literal_expr(cx, cx.tcx.hir().local_def_id_to_hir_id(did)) }), } } fn build_static(cx: &DocContext<'_>, did: DefId, mutable: bool) -> clean::Static { clean::Static { type_: cx.tcx.type_of(did).clean(cx), mutability: if mutable { Mutability::Mut } else { Mutability::Not }, expr: "\n\n\n".to_string(), // trigger the "[definition]" links } } fn build_macro(cx: &DocContext<'_>, did: DefId, name: Symbol) -> clean::ItemKind { let imported_from = cx.tcx.original_crate_name(did.krate); match cx.enter_resolver(|r| r.cstore().load_macro_untracked(did, cx.sess())) { LoadedMacro::MacroDef(def, _) => { let matchers: Vec = if let ast::ItemKind::MacroDef(ref def) = def.kind { let tts: Vec<_> = def.body.inner_tokens().into_trees().collect(); tts.chunks(4).map(|arm| arm[0].span()).collect() } else { unreachable!() }; let source = format!( "macro_rules! {} {{\n{}}}", name.clean(cx), matchers .iter() .map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) }) .collect::() ); clean::MacroItem(clean::Macro { source, imported_from: Some(imported_from) }) } LoadedMacro::ProcMacro(ext) => clean::ProcMacroItem(clean::ProcMacro { kind: ext.macro_kind(), helpers: ext.helper_attrs, }), } } /// A trait's generics clause actually contains all of the predicates for all of /// its associated types as well. We specifically move these clauses to the /// associated types instead when displaying, so when we're generating the /// generics for the trait itself we need to be sure to remove them. /// We also need to remove the implied "recursive" Self: Trait bound. /// /// The inverse of this filtering logic can be found in the `Clean` /// implementation for `AssociatedType` fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics { for pred in &mut g.where_predicates { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref mut bounds } if *s == kw::SelfUpper => { bounds.retain(|bound| match *bound { clean::GenericBound::TraitBound( clean::PolyTrait { trait_: clean::ResolvedPath { did, .. }, .. }, _, ) => did != trait_did, _ => true, }); } _ => {} } } g.where_predicates.retain(|pred| match *pred { clean::WherePredicate::BoundPredicate { ty: clean::QPath { self_type: box clean::Generic(ref s), trait_: box clean::ResolvedPath { did, .. }, name: ref _name, }, ref bounds, } => !(bounds.is_empty() || *s == kw::SelfUpper && did == trait_did), _ => true, }); g } /// Supertrait bounds for a trait are also listed in the generics coming from /// the metadata for a crate, so we want to separate those out and create a new /// list of explicit supertrait bounds to render nicely. fn separate_supertrait_bounds( mut g: clean::Generics, ) -> (clean::Generics, Vec) { let mut ty_bounds = Vec::new(); g.where_predicates.retain(|pred| match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds } if *s == kw::SelfUpper => { ty_bounds.extend(bounds.iter().cloned()); false } _ => true, }); (g, ty_bounds) } crate fn record_extern_trait(cx: &DocContext<'_>, did: DefId) { if did.is_local() { return; } { if cx.external_traits.borrow().contains_key(&did) || cx.active_extern_traits.borrow().contains(&did) { return; } } { cx.active_extern_traits.borrow_mut().insert(did); } debug!("record_extern_trait: {:?}", did); let trait_ = build_external_trait(cx, did); cx.external_traits.borrow_mut().insert(did, trait_); cx.active_extern_traits.borrow_mut().remove(&did); }